



FIAM™

72V Input



Actual size:  
2.28 x 2.2 x 0.5in  
[57.9 x 55.9 x 12.7mm]



## Filter Input Attenuator Module

### Features & Benefits

- RoHS Compliant (with F or G pin style)
- EMI filtering – EN50121-3-2<sup>[a]</sup>
- Transient protection – EN50155, EN50121-3-2
- Low-profile mounting options
- 500W output power
- 60950-1 compliance
- Mini-size package
- Inrush current limiting

### Product Highlights

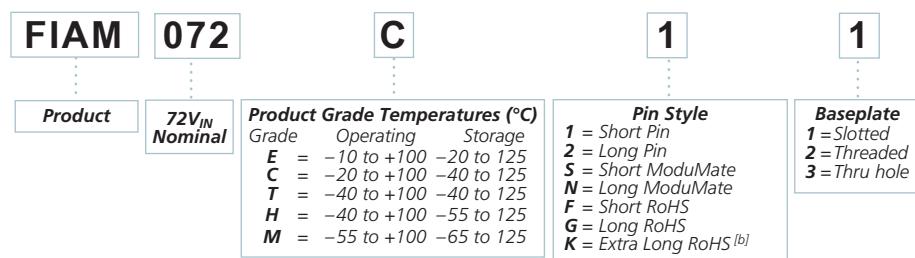
The FIAM072 is a DC front-end module designed for rail applications providing transient protection, inrush current limiting and EMI filtering (EN50121-3-2) in a Mini-size package. The FIAM enables designers using Vicor 72V<sub>IN</sub> Mini, Micro or Maxi or VI/VE-200 and VI/VE-J00 (4 input) DC-DC converters to meet the transient immunity and EMI requirements required for the rail industry and protect system hardware from inrush current. The FIAM072 accepts an input voltage of 43 – 110V<sub>DC</sub> and provide up to 500W of output power and remote on/off control.

The FIAM072 is housed in an industry-standard "half brick" module measuring 2.28 x 2.2 x 0.5in and depending upon model selected, may be mounted onboard or inboard for height-critical applications.

### Compatible Products

- Mini, Micro, Maxi 72V Input DC-DC converters
- VI / VE-200™, VI / VE-J00™ ("4" input)

<sup>[a]</sup> EMI performance is subject to a wide variety of external influences such as PCB construction, circuit layout etc. As such, external components in addition to those listed herein may be required in specific instances to gain full compliance to the standards specified.


### Absolute Maximum Rating

| Parameter                 | Rating      | Unit            | Notes               |
|---------------------------|-------------|-----------------|---------------------|
| +IN to -IN                | 110         | V <sub>DC</sub> | Continuous          |
|                           | 252         | V               | 20ms                |
| +OUT to -OUT              | 110         | V <sub>DC</sub> | Continuous          |
| Mounting torque           | 5 [0.57]    | in-lbs [N·m]    | 6 each, #4-40 or M3 |
| Operating temperature     | -55 to +100 | °C              | M-Grade             |
| Storage temperature       | -65 to +125 | °C              | M-Grade             |
| Pin soldering temperature | 500 [260]   | °F [°C]         | <5sec; wave solder  |
|                           | 750 [390]   | °F [°C]         | <7sec; hand solder  |

### Thermal Resistance

| Parameter               | Min  | Typ | Max | Unit    |
|-------------------------|------|-----|-----|---------|
| Baseplate to sink       |      |     |     |         |
| flat, greased surface   | 0.16 |     |     | °C/Watt |
| thermal pad (P/N 20264) | 0.14 |     |     | °C/Watt |
| Baseplate to ambient    |      |     |     |         |
| Free Convection         | 8.0  |     |     | °C/Watt |
| 1000LFM                 | 1.9  |     |     | °C/Watt |

### Part Numbering



<sup>[b]</sup> Not intended for socket or Surfmate mounting

Note: Product images may not highlight current product markings.

## Specifications

(Typical at  $T_{BP} = 25^\circ\text{C}$ , nominal line and 75% load, unless otherwise specified.)

### Input Specifications

| Parameter          | Min | Typ | Max   | Unit            | Notes                                 |
|--------------------|-----|-----|-------|-----------------|---------------------------------------|
| Input voltage      | 43  | 72  | 110   | $V_{DC}$        | Continuous                            |
| Inrush limiting    |     |     | 0.05  | $A/\mu\text{F}$ |                                       |
| Transient immunity |     |     | 115   | $V_{DC}$        | Consistent with 100ms per NF F 01-510 |
|                    |     |     | 112.5 | $V_{DC}$        | Consistent with 1s per RIA 12         |
|                    |     |     | 252   | $V_{DC}$        | Consistent with 20ms per RIA 12       |

### Output Specifications

| Parameter             | Min | Typ | Max | Unit          | Notes                                                               |
|-----------------------|-----|-----|-----|---------------|---------------------------------------------------------------------|
| Output power          |     |     | 500 | W             | Output power derates linearly below $50V_{IN}$ to 400W @ $43V_{IN}$ |
| Efficiency            |     | 98  |     | %             |                                                                     |
| Internal Voltage Drop |     |     | 1.5 | V             | 500W at $25^\circ\text{C}$ baseplate                                |
| External capacitance  |     |     | 150 | $\mu\text{F}$ |                                                                     |

### Control Pin Specifications

| Parameter        | Min | Typ | Max | Unit     | Notes                                   |
|------------------|-----|-----|-----|----------|-----------------------------------------|
| ON / OFF control |     |     |     |          |                                         |
| Enable (ON)      | 0.0 |     | 1.0 | $V_{DC}$ | Referenced to $-V_{OUT}$                |
| Disable (OFF)    | 3.5 |     | 5.0 | $V_{DC}$ | 100k $\Omega$ internal pull-up resistor |

### EMI

| Standard    | Notes                                                                                               |
|-------------|-----------------------------------------------------------------------------------------------------|
| EN50121-3-2 | 150kHz to 500kHz - 99dB $\mu\text{V}$ quasi-peak<br>500kHz to 30MHz - 93dB $\mu\text{V}$ quasi-peak |

EMI performance is subject to a wide variety of external influences such as PCB construction, circuit layout etc. As such, external components in addition to those listed herein may be required in specific instances to gain full compliance to the standards specified.

### Immunity

| Parameter                               | Typ. Value                 | Units                | Notes                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------|----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN50121-3-2 (Table 7.3 Surges)          | $\pm 2,000$<br>$\pm 1,000$ | $V_{DC}$<br>$V_{DC}$ | Waveform – 1.2 / 50 $\mu\text{s}$ , 42 $\Omega$ , 0.5 $\mu\text{F}$ , line to ground<br>Waveform – 1.2 / 50 $\mu\text{s}$ , 42 $\Omega$ , 0.5 $\mu\text{F}$ , line to line<br>Performance Criteria B - no damage to the product but a temporary change in the intended DC voltage is acceptable as long as it self-recovers without user intervention. |
| EN50121-3-2 (Table 7.2 Fast Transients) | $\pm 2,000$                | $V_{DC}$             | 5/50ns, 5kHz<br>Performance Criteria A - no damage to the product and no change to the intended DC voltage level for a duration greater than 1.0 $\mu\text{sec}$ .                                                                                                                                                                                     |
| EN50121-3-2 (Table 7.1 RF Common Mode)  |                            |                      | 0.15 to 80MHz, 10V <sub>RMS</sub> , 80% AM, 1kHz<br>Performance Criteria A - no damage to the product and no change to the intended DC voltage level greater than +/-5%.                                                                                                                                                                               |

### Safety Specifications

| Parameter                               | Min | Typ   | Max | Unit      | Notes |
|-----------------------------------------|-----|-------|-----|-----------|-------|
| Dielectric withstand (I/O to baseplate) |     | 1,000 |     | $V_{RMS}$ |       |
|                                         |     | 1,414 |     | $V_{DC}$  |       |

## Specifications (Cont.)

(Typical at  $T_{BP} = 25^\circ\text{C}$ , nominal line and 75% load, unless otherwise specified.)

### Agency Approvals

| Safety Standards                                          | Markings             | Notes                                                              |
|-----------------------------------------------------------|----------------------|--------------------------------------------------------------------|
| UL60950-1, CSA60950-1, EN60950-1, IEC60950-1<br>EN60950-1 | cTUVus<br>CE<br>UKCA | Low Voltage Directive<br>Electrical equipment (safety) regulations |

### General Specifications

| Parameter | Min | Typ         | Max        | Unit              | Remarks |
|-----------|-----|-------------|------------|-------------------|---------|
| Weight    |     | 3.1<br>[88] | 4<br>[113] | ounces<br>[grams] |         |
| Warranty  |     |             | 2          | years             |         |

### Module Environmental Qualification

#### Altitude

MIL-STD-810F, Method 500.4, Procedure I & II, 40,000ft. and 70,000ft. Operational.

#### Explosive Atmosphere

MIL-STD-810F, Method 511.4, Procedure I, Operational.

#### Vibration

EN 61373, Random Vibration: Category <0.3Kg, Freq range: 5-150Hz @ 5grms, 5hrs per axis.

MIL-STD-810F, Method 514.5, Procedure I, Category 14, Sine and Random vibration per Table 514.5C for Helicopter AH-6J Main Rotor with overall level of 5.6Grms for 4 hours per axis. MIL-STD-810F, Method 514.5C, General Minimum Integrity Curve per Figure 514.5C-17 with overall level of 7.7Grms for 1 hour per axis.

#### Shock

EN 61373, Shock: Long. / Trans. / Vert. Axis, peak acceleration: 5g / 2g / 1g, Duration: 50ms/ 20ms.

MIL-STD-810F, Method 516.5, Procedure I, Functional Shock, 40g. MIL-S-901D, Lightweight Hammer Shock, 3 impacts/axis, 1,3,5 ft.

MIL-STD-202F, Method 213B, 60g, 9ms half sine. MIL-STD-202F, Method 213B, 75g, 11ms Saw Tooth Shock.

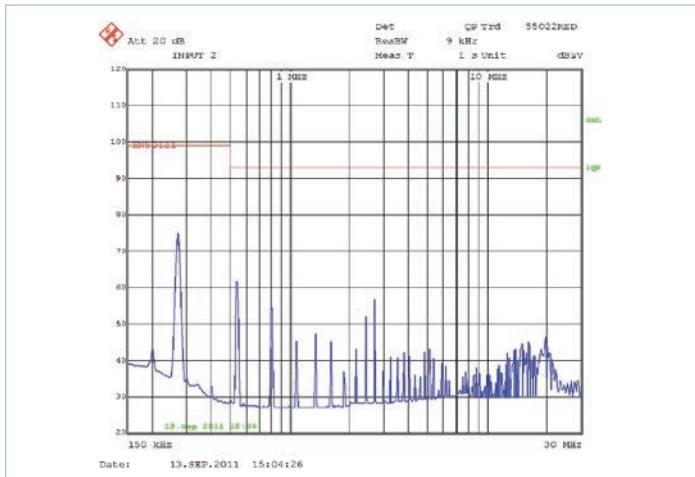
#### Acceleration

MIL-STD-810F, Method 513.5, Procedure II, table 513.5-II, Operational, 2-7g, 6 directions.

#### Humidity

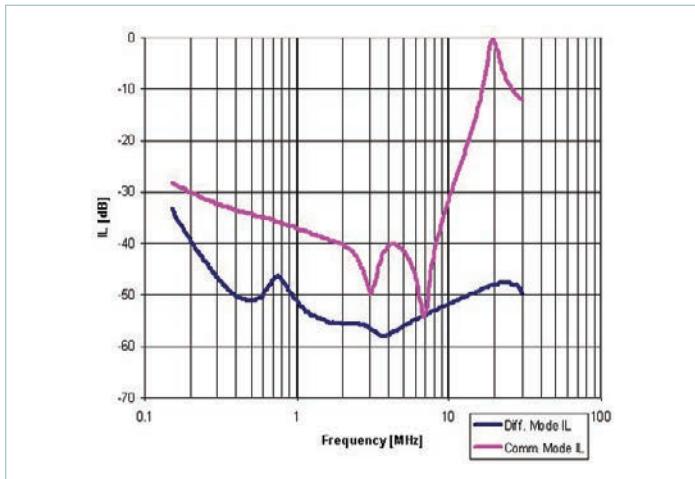
MIL-STD-810F, Method 507.4.

#### Solder Test


MIL-STD-202G, Method 208H, 8 hour aging.

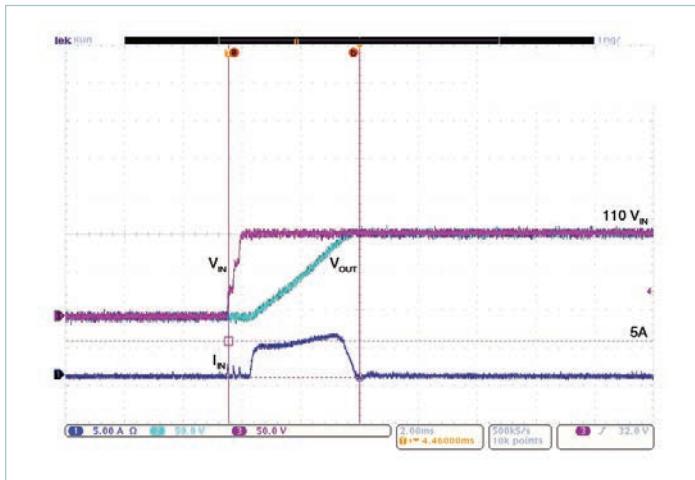
### Module Environmental Stress Screening

| Parameter                           | H-Grade                                              | M-Grade                                              |
|-------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Operating temperature               | -40 to +100°C                                        | -55 to +100°C                                        |
| Storage temperature                 | -55 to +125°C                                        | -65 to +125°C                                        |
| Temperature cycling*                | 12 cycles<br>-65 to +100°C                           | 12 cycles<br>-65 to +100°C                           |
| Ambient test @ 25°C                 | Yes                                                  | Yes                                                  |
| Power cycling burn-in               | 12 hours, 29 cycles                                  | 24 hours, 58 cycles                                  |
| Functional and parametric ATE tests | -40 and +100°C                                       | -55 and +100°C                                       |
| Hi-Pot test                         | Yes                                                  | Yes                                                  |
| Visual inspection                   | Yes                                                  | Yes                                                  |
| Test data                           | <a href="http://vicorpowers.com">vicorpowers.com</a> | <a href="http://vicorpowers.com">vicorpowers.com</a> |

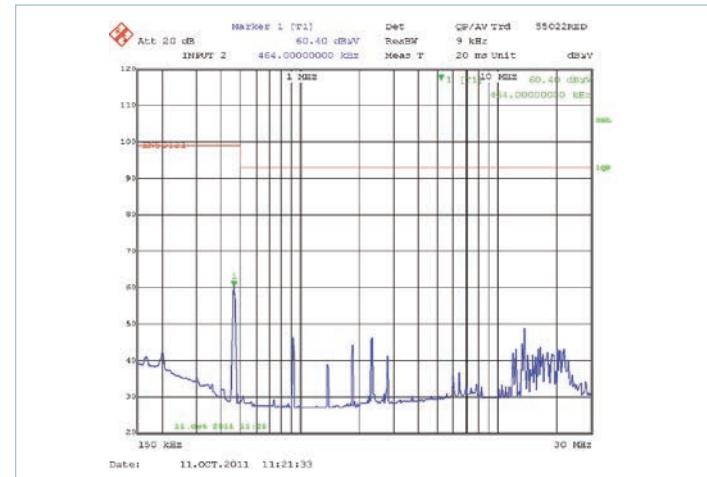

\* Temperature cycled with power off, 17°C per minute rate of change.

## Conducted Noise



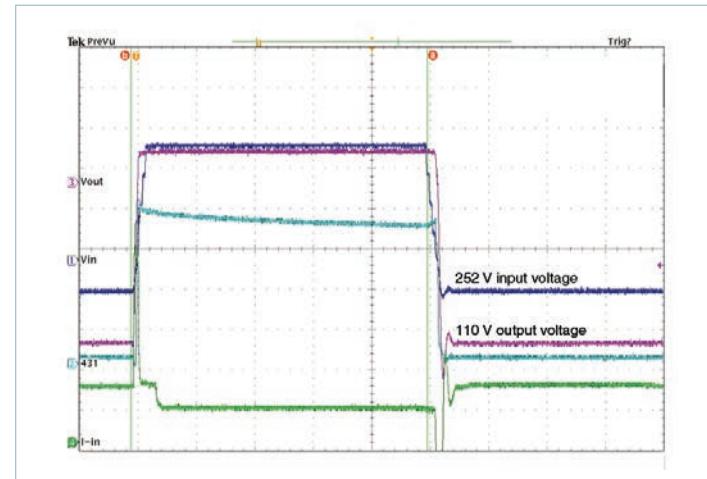

**Figure 1** — Conducted noise (EN50121-3-2); FIAM72M21 and model V72A24C400BL DC-DC converter operating at  $72V_{DG}$ , 375W

## Insertion Loss



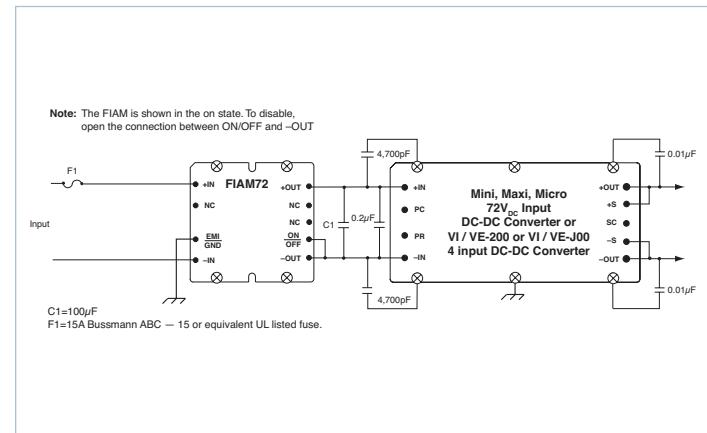

**Figure 3** — Insertion loss curve

## Inrush Limiting




**Figure 5** — Inrush current. (150 $\mu$ F external capacitance)



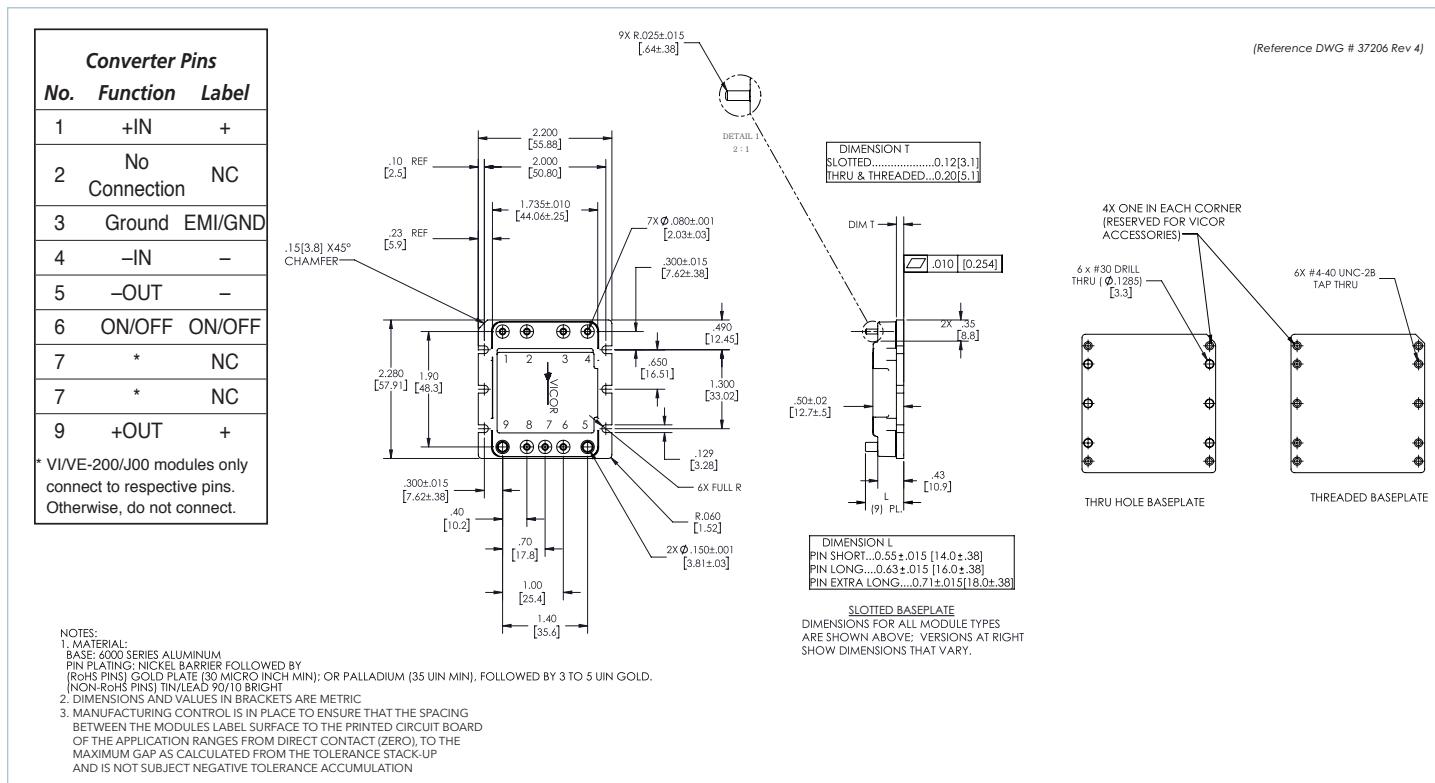

**Figure 2** — Conducted noise (EN50121-3-2); FIAM72M21 and model VE-243-EU + VI-B43-CU DC-DC converters operating at  $72V_{DG}$ , 375W

## Transient Immunity

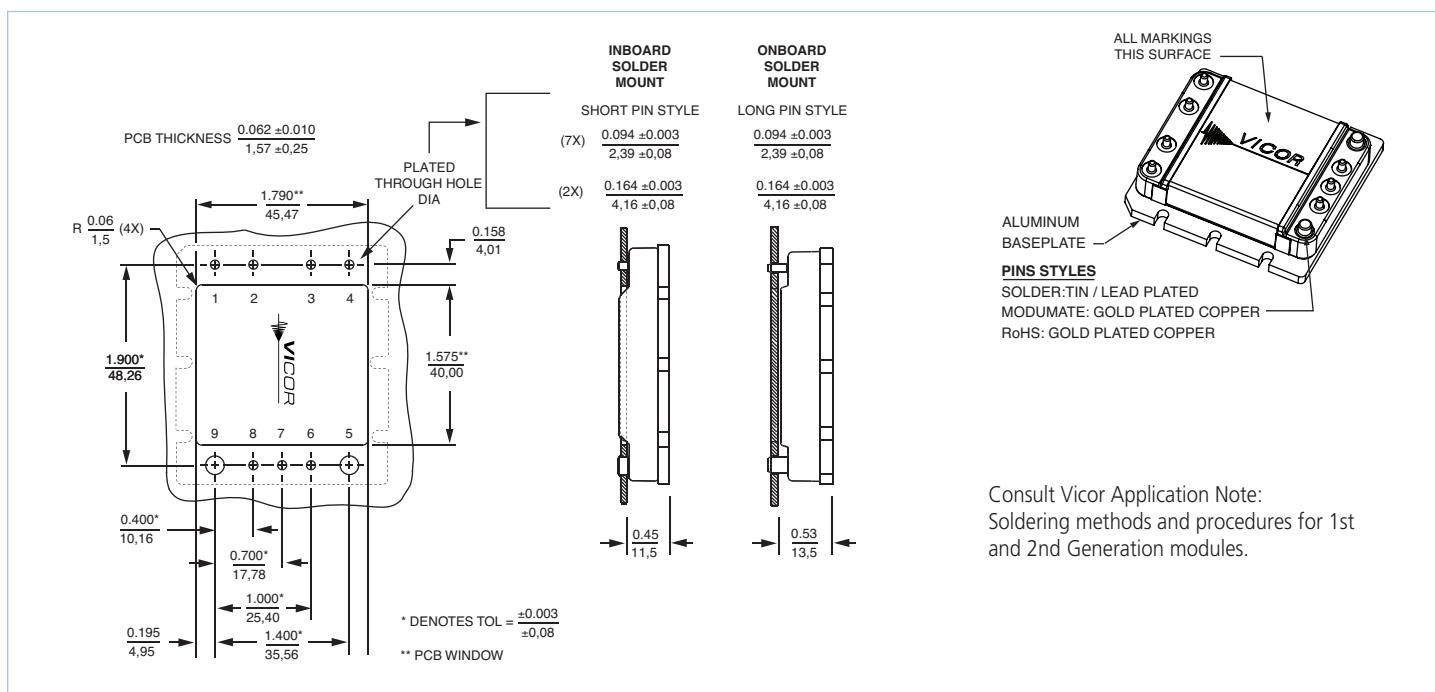


**Figure 4** — Transient immunity: FIAM output response to an input transient

## Transient and Surge Protection




**Figure 6** — Typical connection diagram


## Storage

Vicor products, when not installed in customer units, should be stored in ESD safe packaging in accordance with ANSI/ESD S20.20, "Protection of Electrical and Electronic Parts, Assemblies and Equipment" and should be maintained in a temperature controlled factory/warehouse environment not exposed to outside elements controlled between the temperature ranges of 15°C and 38°C. Humidity shall not be condensing, no minimum humidity when stored in an ESD compliant package.

## Mechanical Diagram



## PCB Mounting Specifications



**Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.**

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

**Specifications are subject to change without notice.**

Visit [http://www.vicorpowers.com/dc-dc\\_filters/fiam-filter\\_input\\_attenuator\\_module](http://www.vicorpowers.com/dc-dc_filters/fiam-filter_input_attenuator_module) for the latest product information.

**Vicor's Standard Terms and Conditions and Product Warranty**

All sales are subject to Vicor's Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor's webpage (<http://www.vicorpowers.com/termsconditionswarranty>) or upon request.

**Life Support Policy**

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

**Intellectual Property Notice**

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

Contact Us: <http://www.vicorpowers.com/contact-us>

**Vicor Corporation**

25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
[www.vicorpowers.com](http://www.vicorpowers.com)

**email**

Customer Service: [custserv@vicorpowers.com](mailto:custserv@vicorpowers.com)  
Technical Support: [apps@vicorpowers.com](mailto:apps@vicorpowers.com)

©2019 – 2021 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.