

SGM80581/SGM80582/SGM80584 220MHz, Rail-to-Rail I/O, CMOS Operational Amplifiers

GENERAL DESCRIPTION

The SGM80581 (single), SGM80582 (dual) and SGM80584 (quad) are voltage feedback CMOS operational amplifiers, which are optimized for high-speed operation. These devices are designed for applications requiring wide bandwidth or high continuous output current, such as video line driver. They can offer a high output current of 150mA. They are unity-gain stable and offer a wide bandwidth of 220MHz. They exhibit a differential gain of 0.01% and a differential phase of 0.1°.

The SGM80581/2/4 can operate from 2.5V to 5.5V single supply or ± 1.25 V to ± 2.75 V dual power supplies, consuming 4.5mA quiescent current per amplifier. These devices support rail-to-rail input and output operation. The input common mode voltage range is from (-V_S) - 0.1V to (+V_S) + 0.1V, and the output range is from (-V_S) + 0.015V to (+V_S) - 0.015V. The circuitry of multichannel versions is fully independent, which minimizes crosstalk and avoids interaction.

The SGM80581 is available in Green SOT-23-5 and SOIC-8 packages. The SGM80582 is available in Green MSOP-8 and SOIC-8 packages. The SGM80584 is available in a Green SOIC-14 package. They are rated over the extended -40°C to +125°C temperature range.

FEATURES

• High-Speed:

Unity-Gain Bandwidth: 220MHz
 Gain-Bandwidth Product: 100MHz

Slew Rate: 160V/us

• Excellent Video Performance:

• 0.1dB Gain Flatness: 30MHz

Diff Gain Error: 0.01%
Diff Phase Error: 0.1°

• High Output Current: 150mA (TYP)

Low Noise: 7nV/√Hz at 1MHz

Low Input Bias Current: 2pA (TYP)

• Rail-to-Rail Input and Output

Support Single or Dual Power Supplies:
 2.5V to 5.5V or ±1.25V to ±2.75V

Quiescent Current: 4.5mA/Amplifier (TYP)

• Thermal Shutdown

• -40°C to +125°C Operating Temperature Range

• Small Packaging:

SGM80581 Available in Green SOT-23-5 and SOIC-8 Packages

SGM80582 Available in Green MSOP-8 and

SOIC-8 Packages

SGM80584 Available in a Green SOIC-14 Package

APPLICATIONS

Video Line Driver

Photodiode Amplifier

ADC Input

DAC Output

High-Speed Integrator

Active Filter

Ultrasound

Barcode Scanner

Optical Network

Tunable Laser

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SCM00501	SOT-23-5	-40°C to +125°C	SGM80581XN5G/TR	SU1XX	Tape and Reel, 3000
SGM80581	SOIC-8	-40°C to +125°C	SGM80581XS8G/TR	SGM 80581XS8 XXXXX	Tape and Reel, 2500
SCM90593	MSOP-8	-40°C to +125°C	SGM80582XMS8G/TR	SGM80582 XMS8 XXXXX	Tape and Reel, 4000
SGM80582	SOIC-8	-40°C to +125°C	SGM80582XS8G/TR	SGM 80582XS8 XXXXX	Tape and Reel, 2500
SGM80584	SOIC-14	-40°C to +125°C	SGM80584XS14G/TR	SGM80584XS14 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XX = Date Code. XXXXX = Date Code and Vendor Code.

SOT-23-5

SOIC-8/MSOP-8/SOIC-14

YYY X X

Date Code - Week
Date Code - Year
Serial Number

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

SGM80581/SGM80582 SGM80584

220MHz, Rail-to-Rail I/O, CMOS Operational Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage Range	
(-V _S) -	$0.3V$ to $(+V_S) + 0.3V$
Output Short-Circuit	Continuous
Package Thermal Resistance	
SOT-23-5, θ _{JA}	158.3°C/W
SOT-23-5, θ _{JB}	38.7°C/W
SOIC-8, θ _{JA} (SGM80581)	143.1°C/W
SOIC-8, θ _{JB} (SGM80581)	87.1°C/W
SOIC-8, θ _{JA} (SGM80582)	125.7°C/W
SOIC-8, θ _{JB} (SGM80582)	72.8°C/W
MSOP-8, θ _{JA}	144.7°C/W
MSOP-8, θ _{JB}	85.1°C/W
SOIC-14, θ _{JA}	93.2°C/W
SOIC-14, θ _{JB}	47.7°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility (1) (2)	
HBM	±6000V
MM	±400V
CDM	±1000V

NOTES:

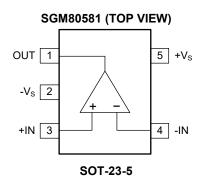
- 1. For human body model (HBM), all pins comply with ANSI/ESDA/JEDEC JS-001 specifications.
- 2. For charged device model (CDM), all pins comply with ANSI/ESDA/JEDEC JS-002 specifications.

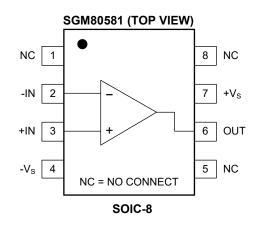
RECOMMENDED OPERATING CONDITIONS

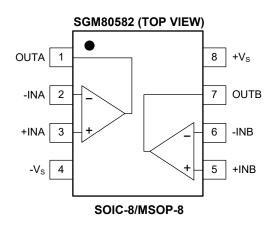
Specified Voltage Range	2.7V to 5.5V
Operating Temperature Range	-40°C to +125°C

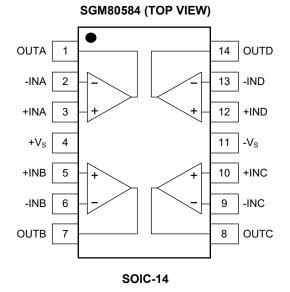
OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

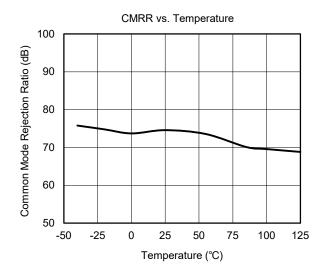

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

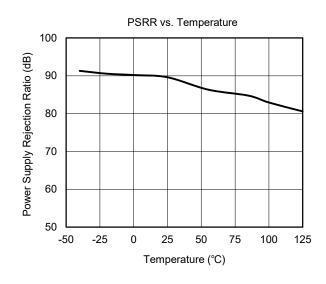
PIN CONFIGURATIONS

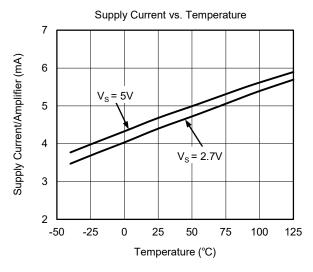
ELECTRICAL CHARACTERISTICS

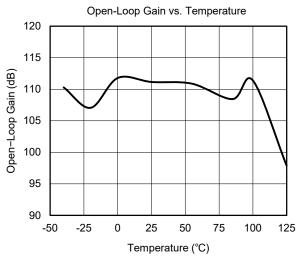
(At T_A = +25°C, V_S = 2.7V to 5.5V, V_{CM} = $V_S/2$, V_{OUT} = $V_S/2$, R_L = 1k Ω connected to $V_S/2$, unless otherwise noted.)

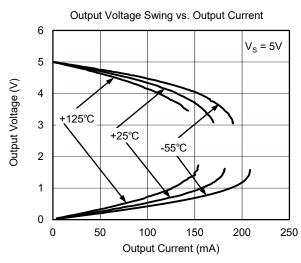
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Characteristics						
	V _S = 5V		1.0	3.0	.,	
Input Offset Voltage (Vos)	-40°C ≤ T _A ≤ +125°C			6.5	mV	
Input Offset Voltage Drift (ΔV _{OS} /ΔT)	-40°C ≤ T _A ≤ +125°C		6.5		μV/°C	
Input Bias Current (I _B)			2		pА	
Input Offset Current (I _{OS})			0.1		pА	
Input Common Mode Voltage Range (V _{CM})		(-V _S) - 0.1		(+V _S) + 0.1	V	
	V _S = 5.5V, -0.1V < V _{CM} < 5.6V	56	71			
Common Made Delegation Detic (CMDD)	-40°C ≤ T _A ≤ +125°C	53			40	
Common Mode Rejection Ratio (CMRR)	V _S = 5.5V, -0.1V < V _{CM} < 3.5V	60	71		dB	
	-40°C ≤ T _A ≤ +125°C	58				
	$(-V_S) + 0.3V < V_{OUT} < (+V_S) - 0.3V, R_L = 1k\Omega$	89	109			
Open-Loop Voltage Gain (A _{OL})	$(-V_S) + 0.4V < V_{OUT} < (+V_S) - 0.4V, R_L = 1k\Omega$	89	109		dB	
	-40°C ≤ T _A ≤ +125°C	84				
Input Impedance						
Differential			10 ¹² 4		Ω pF	
Common Mode			10 ¹² 6		Ω pF	
Output Characteristics						
Output Voltage Swing from Rail	$V_S = 5V$, $R_L = 1k\Omega$		15	62	mV	
Outros to Chart Cinevit Comment ()	V _S = 5V	110	150		A	
Output Short-Circuit Current (I _{SC})	V _S = 3V		90		mA	
Closed-Loop Output Impedance	f < 100kHz		0.1		Ω	
Dynamic Performance				•		
2dD Creat Cinnal Dandwidth (f.)	$G = +1, V_{OUT} = 100 \text{mV}_{P-P}, R_F = 25 \Omega$	25Ω			N 41 1-	
-3dB Small-Signal Bandwidth (f _{-3dB})	G = +2, V _{OUT} = 100mV _{P-P}		106		MHz	
Gain-Bandwidth Product (GBP)	G = +10, V _{OUT} = 100mV _{P-P}		100		MHz	
Bandwidth for 0.1dB Gain Flatness	G = +2, V _{OUT} = 100mV _{P-P}		30		MHz	
Claur Bata (CB)	V _S = 5V, V _{OUT} = 2V _{P-P}		160		\//uo	
Slew Rate (SR)	V _S = 5V, V _{OUT} = 4V _{P-P}		170		V/µs	
Discound Fall Time	G = +1, V _{OUT} = 200mV _{P-P} , 10% to 90%		3.5			
Rise-and-Fall Time	G = +1, V _{OUT} = 2V _{P-P} , 10% to 90%		12		ns	
Sattling Time to 0.19/	V _{OUT} = 2V _{P-P}		75		20	
Settling Time to 0.1%	$V_{OUT} = 4V_{P-P}$		35		ns	
Overload Recovery Time	$V_{IN} \times G = V_{S}$		18		ns	
Crosstalk (SGM80582/4)	f = 5MHz		-110		dB	

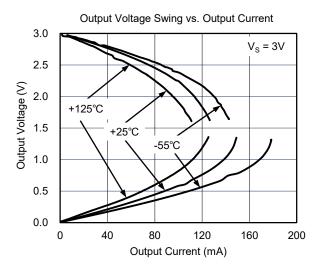

ELECTRICAL CHARACTERISTICS (continued)

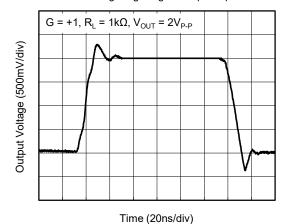

(At T_A = +25°C, V_S = 2.7V to 5.5V, V_{CM} = $V_S/2$, V_{OUT} = $V_S/2$, R_L = 1k Ω connected to $V_S/2$, unless otherwise noted.)

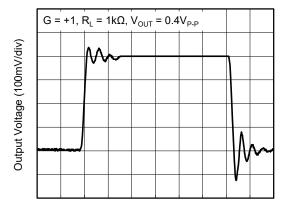

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply		•			•
Specified Voltage Range (V _S)		2.7		5.5	V
Operating Voltage Range		2.5		5.5	V
Dower Supply Pojection Patia (DSPP)	$V_S = 2.7V$ to 5.5V, $V_{CM} = (V_S/2) - 0.55V$		100	540	μV/V
Power Supply Rejection Ratio (PSRR)	-40°C ≤ T _A ≤ +125°C			620	μν/ν
Quiggoot Current/Amplifier (L.)	$V_S = 5V$, $I_{OUT} = 0A$		4.5	7	mA
Quiescent Current/Amplifier (IQ)	-40°C ≤ T _A ≤ +125°C			9	IIIA
Noise/Distortion Performance					
Input Voltage Noise Density (en)	f = 1MHz		7		nV/√Hz
Input Current Noise Density (in)	f = 1MHz		10		fA/√Hz
Differential Gain Error	PAL, $R_L = 150\Omega$		0.01		%
Differential Phase Error	PAL, $R_L = 150\Omega$		0.1		۰
Harmonic Distortion (2nd-Harmonic)	$G = +1$, $f = 1MHz$, $V_{OUT} = 2V_{P-P}$, $V_{CM} = 1.5V$, $R_L = 200\Omega$		-66		dBc
Harmonic Distortion (3rd-Harmonic)	$G = +1$, $f = 1MHz$, $V_{OUT} = 2V_{P-P}$, $V_{CM} = 1.5V$, $R_L = 200\Omega$		-76		dBc
Thermal Shutdown					
Thermal Shutdown			150		°C
Reset from Shutdown			130		°C


TYPICAL PERFORMANCE CHARACTERISTICS


At T_A = +25°C, V_S = 5V, G = +1, R_L = 1k Ω and connected to $V_S/2$, unless otherwise noted.

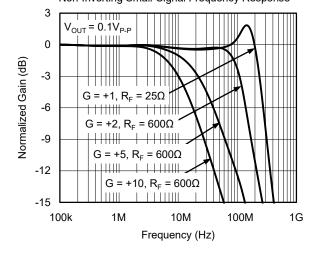




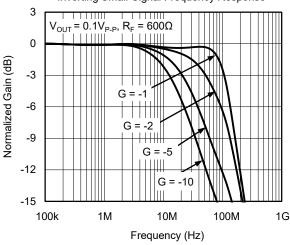

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V, G = +1, R_L = 1k Ω and connected to $V_S/2$, unless otherwise noted.

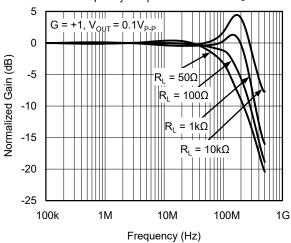
Non-Inverting Large-Signal Step Response

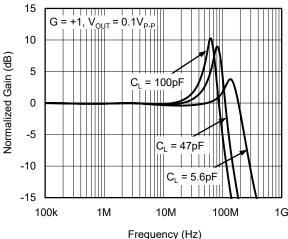


Non-Inverting Small-Signal Step Response

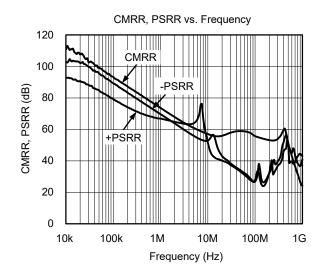


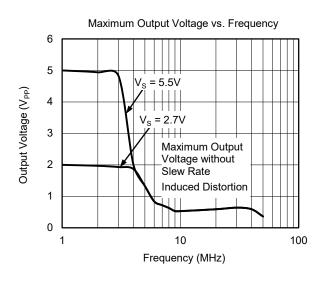
Time (20ns/div)

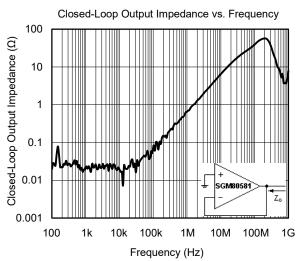

Non-Inverting Small-Signal Frequency Response


Inverting Small-Signal Frequency Response

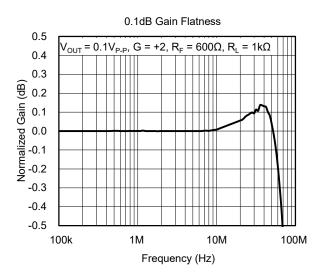
Frequency Response for Various RL

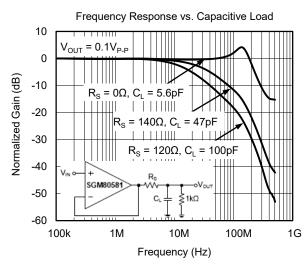


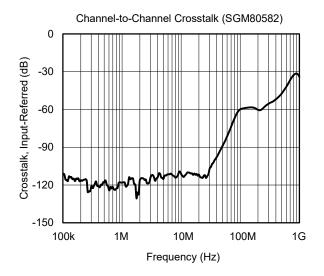

Frequency Response for Various C_L

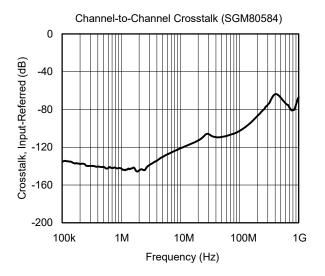


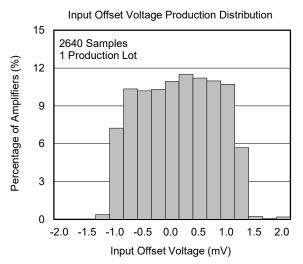

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

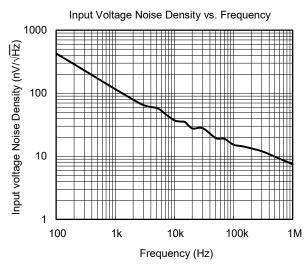

At T_A = +25°C, V_S = 5V, G = +1, R_L = 1k Ω and connected to $V_S/2$, unless otherwise noted.










TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V, G = +1, R_L = 1k Ω and connected to $V_S/2$, unless otherwise noted.

APPLICATION INFORMATION

The SGM80581/2/4 are high-speed, voltage-feedback CMOS operational amplifiers with rail-to-rail input and output capability. These devices are well-suited for applications, such as video processing, medium-to-high-speed ADC driving, as well as a variety of other uses.

The amplifiers exhibit a gain-bandwidth product of 100MHz and a slew rate of $160V/\mu s$. They are unity-gain stable and can function as voltage followers.

Supply Voltage

The SGM80581/2/4 are specified to operate from 2.7V to 5.5V single supply or from ± 1.35 V to ± 2.75 V dual power supplies. However, the operating supply voltage range can extend from 2.5V to 5.5V (± 1.25 V to ± 2.75 V).

The maximum supply voltage of these amplifiers cannot exceed 6V.

Rail-to-Rail I/O

The input stage of the SGM80581/2/4 achieves rail-to-rail input through a configuration consisting of an NMOS differential pair and a PMOS differential pair. Subsequently, the SGM80581/2/4 combine the signals from these input pairs utilizing a double-folded cascade architecture, which effectively transmits the amplified differential signals to the class AB output stage. The rail-to-rail output is achieved by using common-source transistors in the class AB output stage.

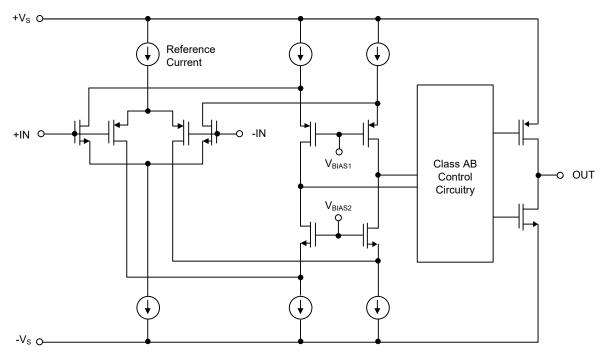


Figure 1. Simplified Schematic

APPLICATION INFORMATION (continued)

Output Drive

The output stage of the SGM80581/2/4 is designed to provide a continuous output current of ± 100 mA. A typical application circuit is illustrated in Figure 2. For reliability, the continuous DC output current of the SGM80581/2/4 should not exceed ± 110 mA in applications. If a continuous output current greater than ± 110 mA is needed, the SGM80581/2/4 can be paralleled to increase the overall output current capability of the circuit, as illustrated in Figure 3.

The built-in thermal shutdown circuit of the chip can provide protection for SGM80581/2/4 when the junction temperature is too high. When the temperature reaches +150°C, the protection circuit will disable the operational amplifier. Normal operation will restart once the junction temperature drops below +130°C.

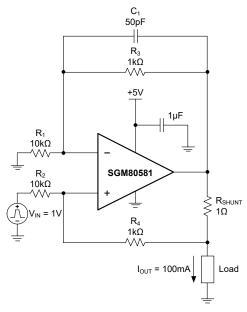


Figure 2. Transconductance Amplifier

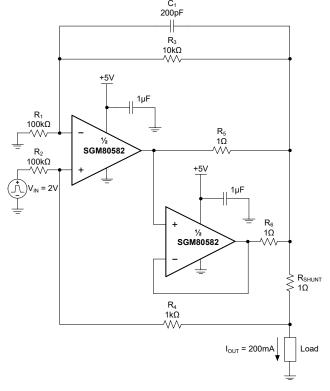


Figure 3. Parallel Operation

Video

The output stage of the SGM80581/2/4 is designed to effectively drive standard back-terminated 75Ω video cables, as illustrated in Figure 4. Additionally, the SGM80581/2/4 can serve as amplifiers for RGB graphic signals. This functionality is achieved by offset adjustment and AC coupling of the signal. For further details, please refer to Figure 5.

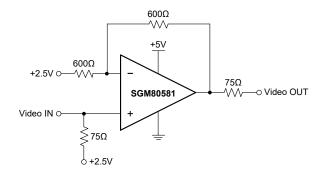


Figure 4. Video Line Driver

APPLICATION INFORMATION (continued)

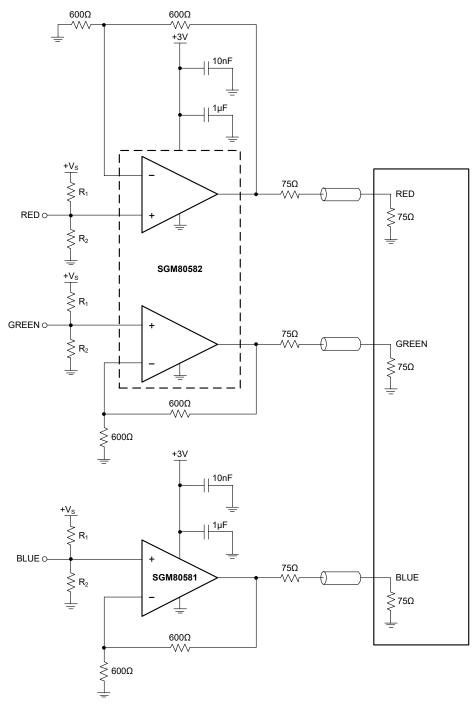


Figure 5. RGB Cable Driver

APPLICATION INFORMATION (continued)

ADC Input Driver

The SGM80581/2/4 have a settling time of 75ns to within 0.1% for 2V output step. They are well-suited for interfacing with medium- and high-speed sampling analog-to-digital converters, as well as reference circuits. Figure 6 shows a typical ADC driver circuit using the SGM80581/2/4. In this configuration, the feedback capacitor, connected in parallel with the feedback resistor, effectively reduces high-frequency noise.

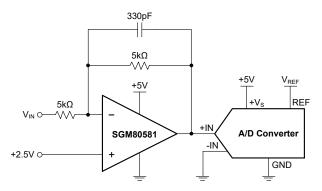


Figure 6. ADC Driver Circuit

Driving Capacitive Loads

The SGM80581/2/4 are capable of driving a wide variety of capacitive loads. For further details, refer to the typical characteristic curve that illustrates the frequency response across various capacitive loads.

The output performance of the circuit can be improved by incorporating an isolation resistor $R_{\rm ISO}$ in series at the output terminal of the operational amplifier when driving a large capacitive load in a unity-gain configuration, as illustrated in Figure 7. Typically, the value of this isolation resistor ranges from several ohms to tens of ohms. However, it is crucial to note that if a resistive load is connected in parallel with a capacitive load, the added isolation resistor will cause a voltage drop across the resistive load, resulting in a DC error at the output. In general, when the isolation resistor is very small, this error remains negligible.

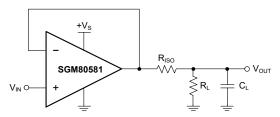


Figure 7. Unity-Gain Buffer with R_{ISO} Stability Compensation

Wideband Transimpedance Amplifier

The SGM80581/2/4 are highly suitable for wideband photodiode transimpedance amplifiers, due to their excellent broadband performance, low input bias current, low input voltage noise, and low current noise. A typical application circuit of the transimpedance amplifier is illustrated in Figure 8.

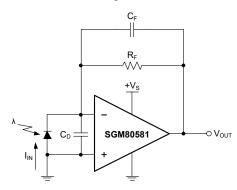


Figure 8. Transimpedance Amplifier

At high frequencies, the parasitic capacitance C_D at the amplifier input introduces a zero in the noise gain of the SGM80581/2/4, resulting in a peak in the closed-loop frequency response. To attain a flat frequency response, a capacitor C_F can be added in parallel with R_F to introduce an additional pole. The feedback pole can be calculated using the following equation.

$$\frac{1}{2\pi R_{\rm F} C_{\rm F}} = \sqrt{\frac{\rm GBP}{4\pi R_{\rm F} C_{\rm D}}} \tag{1}$$

This results in a cutoff frequency f_{-3dB} of approximately.

$$f_{-3dB} = \sqrt{\frac{GBP}{2\pi R_F C_D}} Hz$$
 (2)

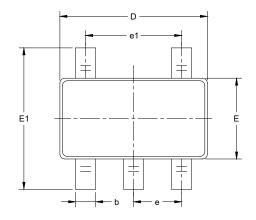
Board Layout

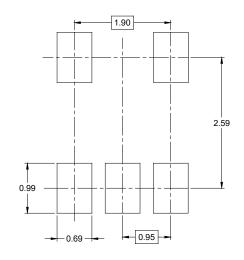
- Use ground planes extensively and ensure signal traces are short and routed directly.
- Place appropriate bypass capacitors close to the power supply pin.
- Cover large areas with copper to enhance heat dissipation.
- Sockets are not recommended for use on printed circuit boards (PCBs).

Power Dissipation

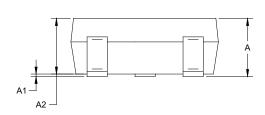
To minimize power dissipation, select the lowest viable power supply voltage that ensures the requisite output voltage swing. In the case of resistive loads, maximum power dissipation takes place when the DC output voltage is equal to half of the power supply voltage.

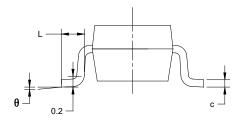
SGM80581/SGM80582 SGM80584


220MHz, Rail-to-Rail I/O, CMOS Operational Amplifiers

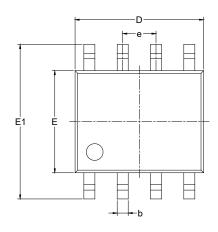

REVISION HISTORY

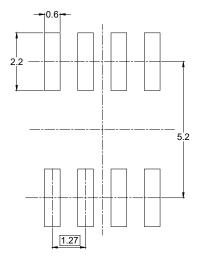
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


JULY 2025 - REV.A.2 to REV.A.3	Page
Updated Absolute Maximum Ratings section	3
OCTOBER 2019 – REV.A.1 to REV.A.2	Page
Updated Marking Information section	2
JUNE 2019 – REV.A to REV.A.1	Page
Updated Electrical Characteristics section	4
Changes from Original (DECEMBER 2016) to REV.A	Page
Changed from product preview to production data	All

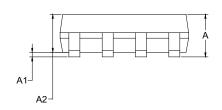

PACKAGE OUTLINE DIMENSIONS SOT-23-5

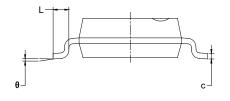
RECOMMENDED LAND PATTERN (Unit: mm)



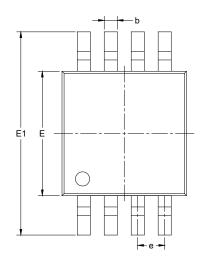

Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.900	BSC	0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

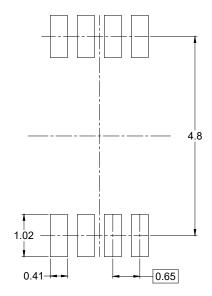
- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.



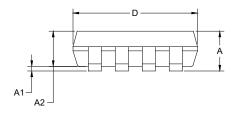

PACKAGE OUTLINE DIMENSIONS SOIC-8

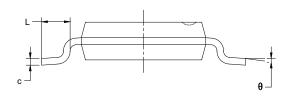
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

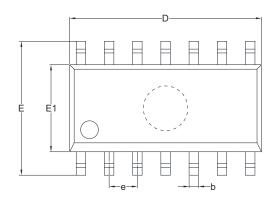

- NOTES:

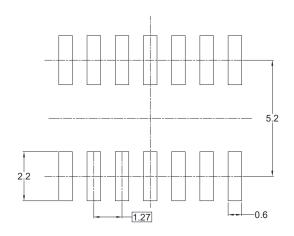
 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.



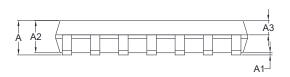

PACKAGE OUTLINE DIMENSIONS MSOP-8

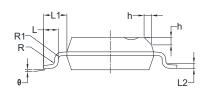
RECOMMENDED LAND PATTERN (Unit: mm)




Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650	0.650 BSC		BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

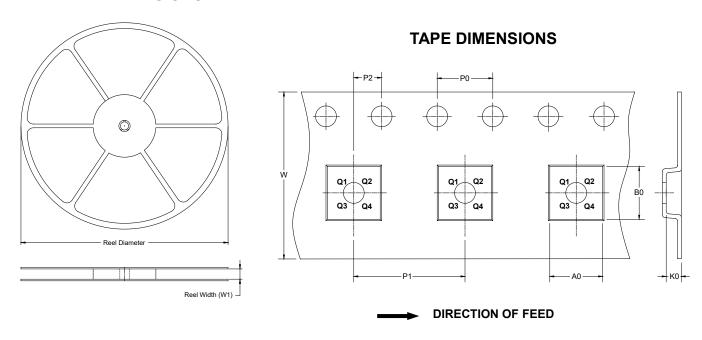
- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.




PACKAGE OUTLINE DIMENSIONS SOIC-14

RECOMMENDED LAND PATTERN (Unit: mm)

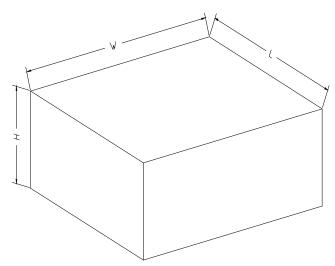
Symbol	_	nsions meters		nsions ches
	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.25	1.65	0.049	0.065
A3	0.55	0.75	0.022	0.030
b	0.36	0.49	0.014	0.019
D	8.53	8.73	0.336	0.344
E	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050	BSC
L	0.45	0.80	0.018	0.032
L1	1.04	REF	0.040	REF
L2	0.25 BSC		0.01	BSC
R	0.07		0.003	
R1	0.07		0.003	
h	0.30	0.50	0.012	0.020
θ	0°	8°	0°	8°


NOTES

- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
SOIC-14	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5