
P-CHANNEL MOSFET

Qualified per **MIL-PRF-19500/595**

Qualified Levels:
JAN, JANTX, and
JANTXV

DESCRIPTION

This 2N7236U switching transistor is military qualified up to the JANTXV level for high-reliability applications. This device is also available in a TO-254AA leaded package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- Surface mount equivalent of JEDEC registered 2N7236 number.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/595.
(See [part nomenclature](#) for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low-profile design.
- Military and other high-reliability applications.

**U (SMD-1 or
TO-267AB)
Package**

Also available in:

TO-254AA package

MAXIMUM RATINGS @ $T_A = +25^\circ\text{C}$ unless otherwise stated

Parameters / Test Conditions	Symbol	Value	Unit
Operating & Storage Junction Temperature Range	T_J & T_{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case	R_{ejc}	1.0	°C/W
Total Power Dissipation @ $T_A = +25^\circ\text{C}$ @ $T_C = +25^\circ\text{C}$ ⁽¹⁾	P_T	4 125	W
Gate-Source Voltage, dc	V_{GS}	± 20	V
Drain Current, dc @ $T_C = +25^\circ\text{C}$ ⁽²⁾	I_{D1}	-18	A
Drain Current, dc @ $T_C = +100^\circ\text{C}$ ⁽²⁾	I_{D2}	-11	A
Off-State Current (Peak Total Value) ⁽³⁾	I_{DM}	-72	A (pk)
Source Current	I_S	-18	A

NOTES:

1. Derate linearly by 1.0 W/°C for $T_C > +25^\circ\text{C}$.
2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:

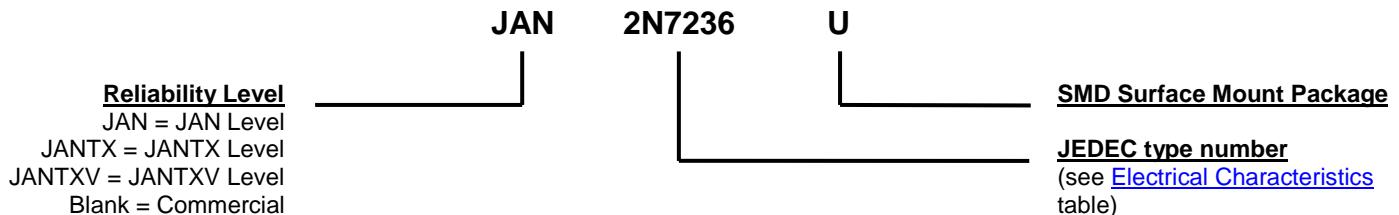
$$I_D = \sqrt{\frac{T_J(\text{max}) - T_C}{R_{\text{ejc}} \times R_{DS(\text{on})} @ T_J(\text{max})}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803

MSC – Ireland


Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Manufacturer's ID, part number, and date code.
- WEIGHT: 0.9 grams.
- See [Package Dimensions](#) on last page.

PART NOMENCLATURE

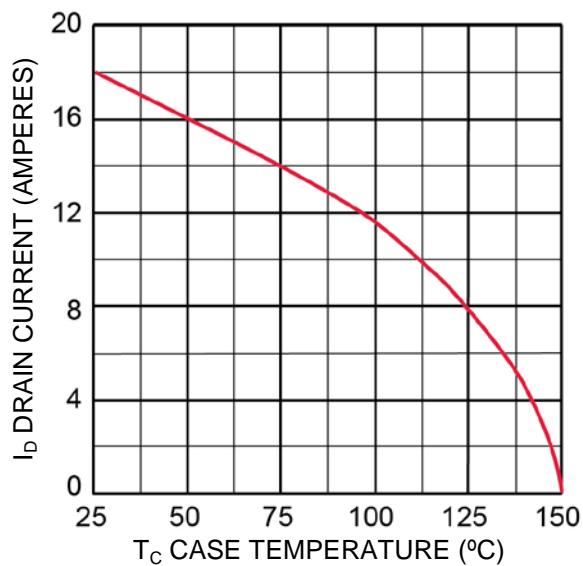
SYMBOLS & DEFINITIONS

Symbol	Definition
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.
I_F	Forward current
R_G	Gate drive impedance
V_{DD}	Drain supply voltage
V_{DS}	Drain source voltage, dc
V_{GS}	Gate source voltage, dc

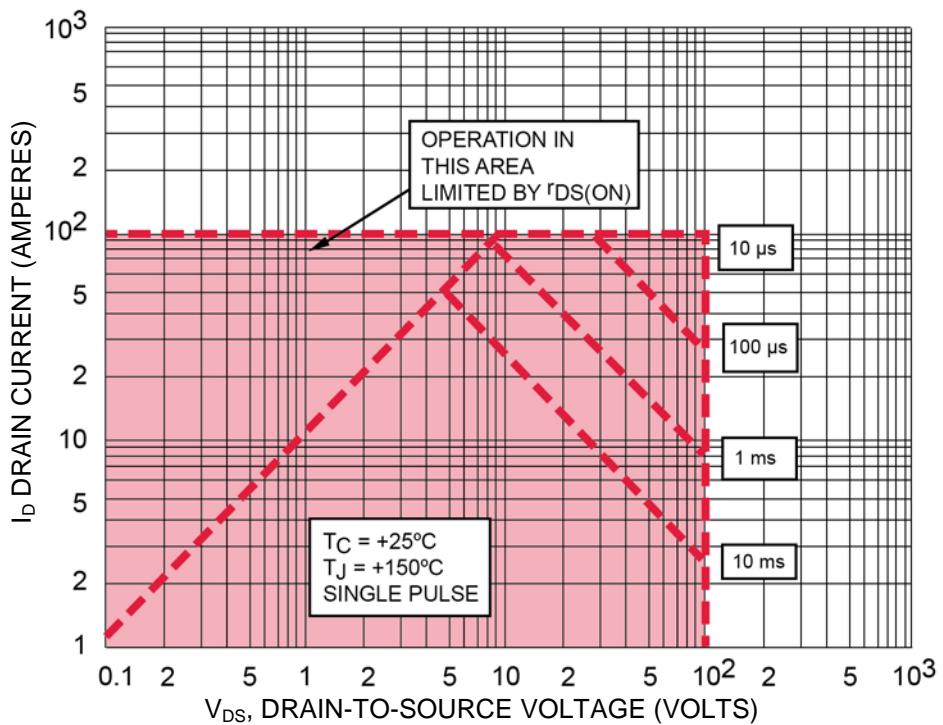
ELECTRICAL CHARACTERISTICS @ $T_A = +25^\circ\text{C}$, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}$, $I_D = 1.0 \text{ mA}$	$V_{(BR)DSS}$	-100		V
Gate-Source Voltage (Threshold) $V_{DS} \geq V_{GS}$, $I_D = -0.25 \text{ mA}$ $V_{DS} \geq V_{GS}$, $I_D = -0.25 \text{ mA}$, $T_J = +125^\circ\text{C}$ $V_{DS} \geq V_{GS}$, $I_D = -0.25 \text{ mA}$, $T_J = -55^\circ\text{C}$	$V_{GS(\text{th})1}$ $V_{GS(\text{th})2}$ $V_{GS(\text{th})3}$	-2.0 -1.0 -5.0	-4.0 -5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}$, $V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}$, $V_{DS} = 0 \text{ V}$, $T_J = +125^\circ\text{C}$	I_{GSS1} I_{GSS2}		± 100 ± 200	nA
Drain Current $V_{GS} = 0 \text{ V}$, $V_{DS} = -80 \text{ V}$	I_{DSS1}		-25	μA
Drain Current $V_{GS} = 0 \text{ V}$, $V_{DS} = -100 \text{ V}$, $T_J = +125^\circ\text{C}$	I_{DSS2}		-1.0	mA
Drain Current $V_{GS} = 0 \text{ V}$, $V_{DS} = -80 \text{ V}$, $T_J = +125^\circ\text{C}$	I_{DSS3}		-0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}$, $I_D = -11.0 \text{ A}$ pulsed	$r_{DS(\text{on})1}$		0.20	Ω
Static Drain-Source On-State Resistance $V_{GS} = -10 \text{ V}$, $I_D = -18.0 \text{ A}$ pulsed	$r_{DS(\text{on})2}$		0.22	Ω
Static Drain-Source On-State Resistance $T_J = +125^\circ\text{C}$ $V_{GS} = -10 \text{ V}$, $I_D = -11.0 \text{ A}$ pulsed	$r_{DS(\text{on})3}$		0.34	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}$, $I_D = -18.0 \text{ A}$ pulsed	V_{SD}		-5.0	V

DYNAMIC CHARACTERISTICS


Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge $V_{GS} = -10 \text{ V}$, $I_D = -18.0 \text{ A}$, $V_{DS} = -50 \text{ V}$	$Q_{g(\text{on})}$		60	nC
Gate to Source Charge $V_{GS} = -10 \text{ V}$, $I_D = -18.0 \text{ A}$, $V_{DS} = -50 \text{ V}$	Q_{gs}		13	nC
Gate to Drain Charge $V_{GS} = -10 \text{ V}$, $I_D = -18.0 \text{ A}$, $V_{DS} = -50 \text{ V}$	Q_{gd}		35.2	nC

ELECTRICAL CHARACTERISTICS @ $T_A = +25^\circ\text{C}$, unless otherwise noted (continued)
SWITCHING CHARACTERISTICS


Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time $I_D = -11.0 \text{ A}$, $V_{GS} = -10 \text{ V}$, $R_G = 9.1 \Omega$, $V_{DD} = -50 \text{ V}$	$t_{d(on)}$		35	ns
Rinse time $I_D = -11.0 \text{ A}$, $V_{GS} = -10 \text{ V}$, $R_G = 9.1 \Omega$, $V_{DD} = -50 \text{ V}$	t_r		85	ns
Turn-off delay time $I_D = -11.0 \text{ A}$, $V_{GS} = -10 \text{ V}$, $R_G = 9.1 \Omega$, $V_{DD} = -50 \text{ V}$	$t_{d(off)}$		85	ns
Fall time $I_D = -11.0 \text{ A}$, $V_{GS} = -10 \text{ V}$, $R_G = 9.1 \Omega$, $V_{DD} = -50 \text{ V}$	t_f		65	ns
Diode Reverse Recovery Time $di/dt \leq 100 \text{ A}/\mu\text{s}$, $V_{DD} \leq 30 \text{ V}$, $I_F = -18.0 \text{ A}$	t_{rr}		280	ns

GRAPHS

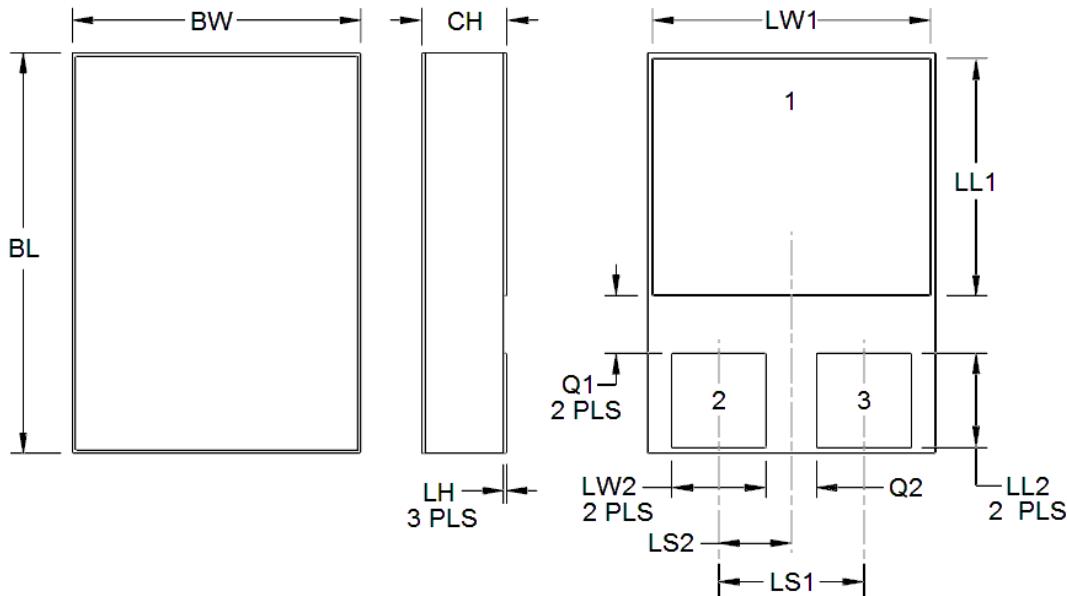


FIGURE 1
Thermal Impedance Curves

FIGURE 2
Maximum Drain Current vs Case Temperature Graphs

GRAPHS (continued)

FIGURE 3
Maximum Safe Operating Area

PACKAGE DIMENSIONS

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. The lid shall be electrically isolated from the drain, gate and source.
4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Symbol	DIMENSIONS			
	INCH		MILLIMETERS	
	Min	Max	Min	Max
BL	.620	.630	15.75	16.00
BW	.445	.455	11.30	11.56
CH	-	.142	-	3.60
LH	.010	.020	.026	.050
LL1	.410	.420	10.41	10.67
LL2	.152	.162	3.86	4.11
LS1	.210 BSC		5.33 BSC	
LS2	.105 BSC		2.67 BSC	
LW1	.370	.380	9.40	9.65
LW2	.135	.145	3.43	3.68
Q1	.030	-	0.76	-
Q2	.035	-	0.89	-
Term 1	Drain			
Term 2	Gate			
Term 3	Source			