

# Bus Buffer with 3-State Output NL17SG125

The NL17SG125 MiniGate<sup>™</sup> is an advanced high-speed CMOS Bus Buffer with 3-State Output in ultra-small footprint.

The NL17SG125 input structures provides protection when voltages up to 3.6 V are applied.

#### **Features**

- Wide Operating V<sub>CC</sub> Range: 0.9 V to 3.6 V
- High Speed:  $t_{PD} = 2.4 \text{ ns}$  (Typ) at  $V_{CC} = 3.0 \text{ V}$ ,  $C_L = 15 \text{ pF}$
- Low Power Dissipation:  $I_{CC} = 0.5 \mu A$  (Max) at  $T_A = 25^{\circ}C$
- 3.6 V Overvoltage Tolerant (OVT) Input Pins
- I<sub>OFF</sub> Supports Partial Power Down Protection
- Ultra-Small Packages
- –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

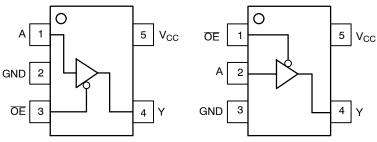



Figure 1. SOT-953 (Top Thru View)

Figure 2. SC-88A (Top View)

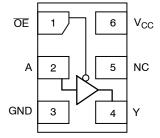







Figure 4. Logic Symbol

#### **PIN ASSIGNMENT**

| Pin Number | SOT-953         | SC-88A          | UDFN6           |
|------------|-----------------|-----------------|-----------------|
| 1          | Α               | ŌĒ              | ŌĒ              |
| 2          | GND             | Α               | Α               |
| 3          | ŌĒ              | GND             | GND             |
| 4          | Υ               | Υ               | Υ               |
| 5          | V <sub>CC</sub> | V <sub>CC</sub> | NC              |
| 6          |                 |                 | V <sub>CC</sub> |

### MARKING DIAGRAMS



SC-88A DF SUFFIX CASE 419A





SOT-953 CASE 527AE





UDFN6 1.0 x 1.0 CASE 517BX





UDFN6 1.45 x 1.0 CASE 517AQ



XX = Specific Device Code

M = Date Code\*■ = Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation and/or position may vary depending upon manufacturing location.

#### **FUNCTION TABLE**

| A Input | OE Input | Y Output |
|---------|----------|----------|
| L       | L        | L        |
| н       | L        | Н        |
| ×       | Н        | Z        |

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

**Table 1. MAXIMUM RATINGS** 

| Symbol                              | Paramet                                   | Value                                                                                             | Unit                                                          |      |
|-------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|
| V <sub>CC</sub>                     | DC Supply Voltage                         |                                                                                                   | -0.5 to +4.3                                                  | V    |
| V <sub>IN</sub>                     | DC Input Voltage                          |                                                                                                   | -0.5 to +4.3                                                  | V    |
| V <sub>OUT</sub>                    | DC Output Voltage                         | Active-Mode (High or Low State)  Tri-State Mode (Note 1)  Power-Down Mode (V <sub>CC</sub> = 0 V) | -0.5 to V <sub>CC</sub> + 0.5<br>-0.5 to +4.3<br>-0.5 to +4.3 | V    |
| I <sub>IK</sub>                     | DC Input Diode Current                    | V <sub>IN</sub> < GND                                                                             | -20                                                           | mA   |
| I <sub>OK</sub>                     | DC Output Diode Current                   | V <sub>OUT</sub> < GND                                                                            | -20                                                           | mA   |
| I <sub>OUT</sub>                    | DC Output Source/Sink Current             | ±20                                                                                               | mA                                                            |      |
| I <sub>CC or</sub> I <sub>GND</sub> | DC Supply Current Per Supply Pin or Grour | nd Pin                                                                                            | ±20                                                           | mA   |
| T <sub>STG</sub>                    | Storage Temperature Range                 |                                                                                                   | -65 to +150                                                   | °C   |
| TL                                  | Lead Temperature, 1 mm from Case for 10   | 260                                                                                               | °C                                                            |      |
| TJ                                  | Junction Temperature Under Bias           |                                                                                                   | +150                                                          | °C   |
| $\theta_{JA}$                       | Thermal Resistance (Note 2)               | SC-88A<br>SOT-953<br>UDFN6                                                                        | 377<br>254<br>154                                             | °C/W |
| P <sub>D</sub>                      | Power Dissipation in Still Air at 85°C    | SC-88A<br>SOT-953<br>UDFN6                                                                        | 332<br>491<br>812                                             | mW   |
| MSL                                 | Moisture Sensitivity                      |                                                                                                   | Level 1                                                       |      |
| F <sub>R</sub>                      | Flammability Rating                       | Oxygen Index: 28 to 34                                                                            | UL 94 V-0 @ 0.125 in                                          |      |
| V <sub>ESD</sub>                    | ESD Withstand Voltage (Note 3)            | Human Body Model<br>Charged Device Model                                                          | 2000<br>1000                                                  | V    |
| I <sub>LATCHUP</sub>                | Latchup Performance (Note 4)              |                                                                                                   | ±100                                                          | mA   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Applicable to devices with outputs that may be tri-stated.
- Applicable to devices with outputs that may be the stated.
   Measured with minimum pad spacing on an FR4 board, using 10 mm by 1inch, 2 ounce copper trace no air flow per JESD51–7.
   HBM tested to EIA / JESD22–A114–A. CDM tested to JESD22–C101–A. JEDEC recommends that ESD qualification to EIA/JESD22–A115A (Machine Model) be discontinued.
  4. Tested to EIA/JESD78 Class II.

**Table 2. RECOMMENDED OPERATING CONDITIONS** 

| Symbol                          | Parameter                          |                                         | Min | Max             | Unit |
|---------------------------------|------------------------------------|-----------------------------------------|-----|-----------------|------|
| V <sub>CC</sub>                 | Positive DC Supply Voltage         |                                         | 0.9 | 3.6             | V    |
| V <sub>IN</sub>                 | Digital Input Voltage              |                                         | 0   | 3.6             | V    |
| V <sub>OUT</sub>                | Output Voltage                     | Active Mode (High or Low State)         | 0   | V <sub>CC</sub> | V    |
|                                 |                                    | Tri-State Mode (Note 1)                 | 0   | 3.6             |      |
|                                 |                                    | Power Down Mode (V <sub>CC</sub> = 0 V) | 0   | 3.6             |      |
| T <sub>A</sub>                  | Operating Free-Air Temperature     |                                         | -55 | +125            | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Transition Rise or Fall Rate | $V_{CC}$ = 3.3 V $\pm$ 0.3 V            | 0   | 10              | nS/V |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

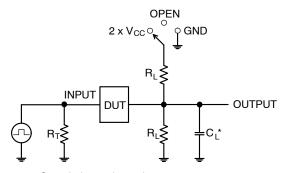
Table 3. DC ELECTRICAL CHARACTERISTICS

|                  |                                      |                                                                                      |                     | 7                      | T <sub>A</sub> = 25°C |                        | T <sub>A</sub> = -55°C | to +125°C              |      |
|------------------|--------------------------------------|--------------------------------------------------------------------------------------|---------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|------|
| Symbol           | Parameter                            | Conditions                                                                           | V <sub>CC</sub> (V) | Min                    | Тур                   | Max                    | Min                    | Max                    | Unit |
| V <sub>IH</sub>  | High-Level Input                     |                                                                                      | 0.9                 | -                      | $V_{CC}$              | -                      | -                      | _                      | V    |
|                  | Voltage                              |                                                                                      | 1.1 to 1.3          | 0.7 x V <sub>CC</sub>  | -                     | -                      | 0.7 x V <sub>CC</sub>  | _                      |      |
|                  |                                      |                                                                                      | 1.4 to 1.6          | 0.65 x V <sub>CC</sub> | -                     | -                      | 0.65 x V <sub>CC</sub> | _                      |      |
|                  |                                      |                                                                                      | 1.65 to 1.95        | 0.65 x V <sub>CC</sub> | -                     | -                      | 0.65 x V <sub>CC</sub> | _                      |      |
|                  |                                      |                                                                                      | 2.3 to 2.7          | 1.7                    | -                     | -                      | 1.7                    | _                      |      |
|                  |                                      |                                                                                      | 3.0 to 3.6          | 2.0                    | -                     | -                      | 2.0                    | _                      |      |
| V <sub>IL</sub>  | Low-Level Input                      |                                                                                      | 0.9                 | -                      | GND                   | -                      | -                      | _                      | V    |
|                  | Voltage                              |                                                                                      | 1.1 to 1.3          | -                      | -                     | 0.3 x V <sub>CC</sub>  | -                      | 0.3 x V <sub>CC</sub>  |      |
|                  |                                      |                                                                                      | 1.4 to 1.6          | -                      | -                     | 0.35 x V <sub>CC</sub> | -                      | 0.35 x V <sub>CC</sub> |      |
|                  |                                      |                                                                                      | 1.65 to 1.95        | -                      | -                     | 0.35 x V <sub>CC</sub> | -                      | 0.35 x V <sub>CC</sub> |      |
|                  |                                      |                                                                                      | 2.3 to 2.7          | -                      | -                     | 0.7                    | -                      | 0.7                    |      |
|                  |                                      |                                                                                      | 3.0 to 3.6          | -                      | -                     | 0.8                    | -                      | 0.8                    |      |
| V <sub>OH</sub>  | High-Level Output                    | $V_{IN} = V_{IH}$ or $V_{IL}$                                                        |                     |                        |                       |                        |                        |                        | V    |
|                  | Voltage                              | I <sub>OH</sub> = -20 μA                                                             | 0.9                 | -                      | 0.75                  | -                      | -                      | -                      |      |
|                  |                                      | I <sub>OH</sub> = -0.3 mA                                                            | 1.1 to 1.3          | 0.75 x V <sub>CC</sub> | -                     | -                      | 0.75 x V <sub>CC</sub> | -                      |      |
|                  |                                      | I <sub>OH</sub> = −1.7 mA                                                            | 1.4 to 1.6          | 0.75 x V <sub>CC</sub> | -                     | -                      | 0.75 x V <sub>CC</sub> | -                      |      |
|                  |                                      | I <sub>OH</sub> = -3.0 mA                                                            | 1.65 to 1.95        | V <sub>CC</sub> - 0.45 | -                     | -                      | V <sub>CC</sub> - 0.45 | _                      |      |
|                  |                                      | I <sub>OH</sub> = -4.0 mA                                                            | 2.3 to 2.7          | 2.0                    | -                     | -                      | 2.0                    | _                      |      |
|                  |                                      | I <sub>OH</sub> = -8.0 mA                                                            | 3.0 to 3.6          | 2.48                   | -                     | -                      | 2.48                   | _                      |      |
| V <sub>OL</sub>  | Low-Level Output                     | $V_{IN} = V_{IH}$ or $V_{IL}$                                                        |                     |                        |                       |                        |                        |                        | V    |
|                  | Voltage                              | I <sub>OL</sub> = 20 μA                                                              | 0.9                 | -                      | 0.1                   | -                      | -                      | -                      |      |
|                  |                                      | I <sub>OL</sub> = 0.3 mA                                                             | 1.1 to 1.3          | =                      | -                     | 0.25 x V <sub>CC</sub> | =                      | 0.25 x V <sub>CC</sub> |      |
|                  |                                      | I <sub>OL</sub> = 1.7 mA                                                             | 1.4 to 1.6          | =                      | -                     | 0.25 x V <sub>CC</sub> | =                      | 0.25 x V <sub>CC</sub> |      |
|                  |                                      | I <sub>OL</sub> = 3.0 mA                                                             | 1.65 to 1.95        | =                      | -                     | 0.45                   | =                      | 0.45                   |      |
|                  |                                      | I <sub>OL</sub> = 4.0 mA                                                             | 2.3 to 2.7          | =                      | -                     | 0.4                    | =                      | 0.4                    |      |
|                  |                                      | I <sub>OL</sub> = 8.0 mA                                                             | 2.7 to 3.6          | =                      | -                     | 0.4                    | =                      | 0.4                    |      |
| I <sub>IN</sub>  | Input Leakage<br>Current             | V <sub>IN</sub> = 0 V to 3.6 V                                                       | 0.9 to 3.6          | -                      | -                     | ±0.1                   | -                      | ±1.0                   | μА   |
| I <sub>OFF</sub> | Power Off<br>Leakage Current         | V <sub>IN</sub> = 0 V to 3.6 V;<br>V <sub>OUT</sub> = 0 V to 3.6 V                   | 0                   | -                      | -                     | 1.0                    | -                      | 10.0                   | μΑ   |
| I <sub>CC</sub>  | Quiescent Supply<br>Current          | V <sub>IN</sub> = V <sub>CC</sub> or GND                                             | 0.9 to 3.6          | -                      | -                     | 1.0                    | -                      | 10.0                   | μΑ   |
| I <sub>OZ</sub>  | 3-State Output<br>Leakage<br>Current | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub><br>V <sub>OUT</sub> = 0 to 3.6V | 0.9 to 3.6          | -                      | -                     | 1.0                    | -                      | 10.0                   | μΑ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

**Table 4. AC ELECTRICAL CHARACTERISTICS** 

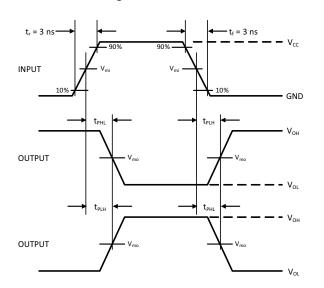
|                    |                     |                           |                     |     | T <sub>A</sub> = 25 °C |      | T <sub>A</sub><br>-55°C to | =<br>+125°C |      |
|--------------------|---------------------|---------------------------|---------------------|-----|------------------------|------|----------------------------|-------------|------|
| Symbol             | Parameter           | Test Condition            | V <sub>CC</sub> (V) | Min | Тур                    | Max  | Min                        | Max         | Unit |
| t <sub>PLH</sub> , | Propagation Delay,  | C <sub>L</sub> = 10 pF,   | 0.9                 | -   | 44.4                   | -    | -                          | -           | ns   |
| t <sub>PHL</sub>   | A to Y              | $R_L = 1 M\Omega$         | 1.1 to 1.3          | -   | 10.8                   | 29.2 | -                          | 33.9        |      |
|                    |                     |                           | 1.4 to 1.6          | -   | 5.0                    | 8.5  | -                          | 10.0        |      |
|                    |                     |                           | 1.65 to 1.95        | -   | 4.0                    | 6.2  | -                          | 6.7         |      |
|                    |                     |                           | 2.3 to 2.7          | -   | 2.6                    | 3.9  | -                          | 4.4         |      |
|                    |                     |                           | 3.0 to 3.6          | -   | 2.1                    | 3.1  | -                          | 3.7         |      |
|                    |                     | C <sub>L</sub> = 15 pF,   | 0.9                 | -   | 44.9                   | _    | -                          | -           | ns   |
|                    |                     | $R_L = 1 M\Omega$         | 1.1 to 1.3          | -   | 11.0                   | 29.9 | -                          | 34.7        |      |
|                    |                     |                           | 1.4 to 1.6          | -   | 5.6                    | 9.3  | -                          | 11.2        |      |
|                    |                     |                           | 1.65 to 1.95        | -   | 4.5                    | 6.9  | -                          | 7.1         |      |
|                    |                     |                           | 2.3 to 2.7          | -   | 2.9                    | 4.4  | -                          | 5.0         |      |
|                    |                     |                           | 3.0 to 3.6          | -   | 2.4                    | 3.4  | -                          | 3.9         |      |
|                    |                     | C <sub>L</sub> = 30 pF,   | 0.9                 | -   | 46.2                   | _    | -                          | -           | ns   |
|                    |                     | $R_L = 1 M\Omega$         | 1.1 to 1.3          | -   | 11.6                   | 32.0 | -                          | 37.1        |      |
|                    |                     |                           | 1.4 to 1.6          | -   | 8.2                    | 13.1 | -                          | 15.9        |      |
|                    |                     |                           | 1.65 to 1.95        | -   | 6                      | 9.2  | -                          | 9.6         |      |
|                    |                     |                           | 2.3 to 2.7          | -   | 4                      | 5.7  | -                          | 6.1         |      |
|                    |                     |                           | 3.0 to 3.6          | -   | 3.3                    | 4.4  | -                          | 4.8         |      |
| t <sub>PZH</sub> , | Output Enable Time, | C <sub>L</sub> = 10 pF;   |                     |     |                        |      |                            |             | ns   |
| $t_{PZL}$          | OE to Y             | $R_L$ = 100 $k\Omega$     | 0.9                 | -   | 43.3                   | _    | -                          | -           |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.1 to 1.3          | -   | 10.5                   | 29.0 | -                          | 33.7        |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.4 to 1.6          | -   | 5.3                    | 7.8  | -                          | 8.3         |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.65 to 1.95        | -   | 3.9                    | 5.5  | -                          | 5.9         |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 2.3 to 2.7          | -   | 2.5                    | 3.5  | -                          | 3.8         |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 3.0 to 3.6          | -   | 2.1                    | 2.7  | -                          | 3           |      |
|                    |                     | C <sub>L</sub> = 15 pF;   |                     |     |                        |      |                            |             | ns   |
|                    |                     | $R_L$ = 100 k $\Omega$    | 0.9                 | -   | 43.8                   | _    | -                          | -           |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.1 to 1.3          | -   | 10.7                   | 29.7 | -                          | 34.5        |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.4 to 1.6          | -   | 5.9                    | 8.9  | -                          | 11          |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.65 to 1.95        | -   | 4.4                    | 6.3  | -                          | 6.5         |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 2.3 to 2.7          | -   | 2.9                    | 3.9  | -                          | 4.2         |      |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 3.0 to 3.6          | -   | 2.3                    | 3    | -                          | 3.3         |      |
|                    |                     | C <sub>L</sub> = 30 pF;   |                     |     |                        |      |                            |             | ns   |
|                    |                     | $R_L$ = 100 k $\Omega$    | 0.9                 | -   | 45.1                   | -    | -                          | -           | 1    |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.1 to 1.3          | -   | 11.2                   | 31.8 | -                          | 36.9        | 1    |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.4 to 1.6          | -   | 8.3                    | 12.2 | -                          | 13.7        | 1    |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 1.65 to 1.95        | -   | 6.1                    | 8.6  | -                          | 9.7         | 1    |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 2.3 to 2.7          | -   | 3.8                    | 5    | -                          | 5.5         | 1    |
|                    |                     | $R_L = 5 \text{ k}\Omega$ | 3.0 to 3.6          | -   | 2.9                    | 3.8  | -                          | 4.2         | 1    |


**Table 4. AC ELECTRICAL CHARACTERISTICS** 

|                    |                                            |                             |                     |     | T <sub>A</sub> = 25 °( |      | T⊿<br>-55°C to | ∆ =<br>D +125°C |      |
|--------------------|--------------------------------------------|-----------------------------|---------------------|-----|------------------------|------|----------------|-----------------|------|
| Symbol             | Parameter                                  | Test Condition              | V <sub>CC</sub> (V) | Min | Тур                    | Max  | Min            | Max             | Unit |
| t <sub>PHZ</sub> , | Output Disable Time,<br><del>OE</del> to Y | C <sub>L</sub> = 10 pF;     |                     |     |                        |      |                |                 | ns   |
| $t_{PLZ}$          | OE 10 Y                                    | $R_L = 100 \text{ k}\Omega$ | 0.9                 | -   | 89.6                   | -    | -              | -               |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.1 to 1.3          | -   | 9.1                    | 16.5 | -              | 22.4            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.4 to 1.6          | -   | 7.1                    | 9.1  | -              | 10.4            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.65 to 1.95        | -   | 6.5                    | 8.3  | -              | 9               |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 2.3 to 2.7          | -   | 5.8                    | 7.3  | -              | 8.8             |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 3.0 to 3.6          | -   | 5.4                    | 10.1 | -              | 10.3            |      |
|                    |                                            | C <sub>L</sub> = 15 pF;     |                     |     |                        |      |                |                 | ns   |
|                    |                                            | $R_L$ = 100 k $\Omega$      | 0.9                 | -   | 117.8                  | -    | -              | -               |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.1 to 1.3          | -   | 9.8                    | 18.4 | -              | 25.1            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.4 to 1.6          | -   | 7.8                    | 9.8  | -              | 11.3            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.65 to 1.95        | -   | 7.2                    | 9.2  | -              | 10.6            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 2.3 to 2.7          | -   | 7                      | 8.2  | -              | 10.3            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 3.0 to 3.6          | -   | 6.6                    | 11.1 | -              | 11.3            |      |
|                    |                                            | C <sub>L</sub> = 30 pF;     |                     |     |                        |      |                |                 | ns   |
|                    |                                            | $R_L = 100 \text{ k}\Omega$ | 0.9                 | -   | 202.1                  | -    | -              | -               |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.1 to 1.3          | -   | 13.2                   | 24.3 | -              | 31.9            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.4 to 1.6          | -   | 12.2                   | 13.5 | -              | 14.9            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 1.65 to 1.95        | -   | 11.4                   | 12.7 | -              | 13.9            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 2.3 to 2.7          | -   | 11.3                   | 12.2 | -              | 13.5            |      |
|                    |                                            | $R_L = 5 \text{ k}\Omega$   | 3.0 to 3.6          | -   | 10.2                   | 14.8 | -              | 15.1            |      |
| C <sub>IN</sub>    | Input Capacitance                          |                             | 0 to 3.6            |     | 3                      | -    | -              | -               | pF   |
| Co                 | Output Capacitance                         | V <sub>O</sub> = GND        | 0                   |     | 3                      | -    | -              | -               | pF   |
| $C_{PD}$           | Power Dissipation<br>Capacitance (Note 5)  | f = 10 MHz                  | 0.9 to 3.6          | -   | 4                      | -    | -              | -               | pF   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

performance may not be indicated by the Electrical Characteristics for the listed test conditions.


5. C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I<sub>CC(OPR)</sub> = C<sub>PD</sub> • V<sub>CC</sub> • f<sub>in</sub> + I<sub>CC</sub>. C<sub>PD</sub> is used to determine the no-load dynamic power consumption; P<sub>D</sub> = C<sub>PD</sub> • V<sub>CC</sub><sup>2</sup> • f<sub>in</sub> + I<sub>CC</sub> • V<sub>CC</sub>.



| Test                                | Switch Position     |
|-------------------------------------|---------------------|
| t <sub>PLH</sub> / t <sub>PHL</sub> | Open                |
| t <sub>PLZ</sub> / t <sub>PZL</sub> | 2 x V <sub>CC</sub> |
| t <sub>PHZ</sub> / t <sub>PZH</sub> | GND                 |

 $C_L$  includes probe and jig capacitance  $R_T$  is  $Z_{OUT}$  of pulse generator (typically 50 W)  $f=1\ MHz$ 

Figure 5. Test Circuit



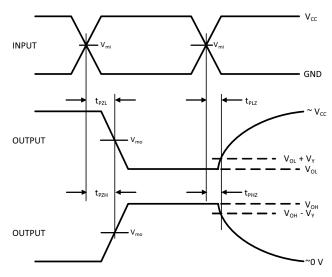
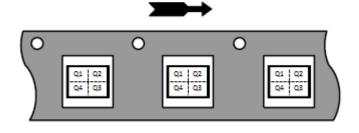



Figure 6. Switching Waveforms

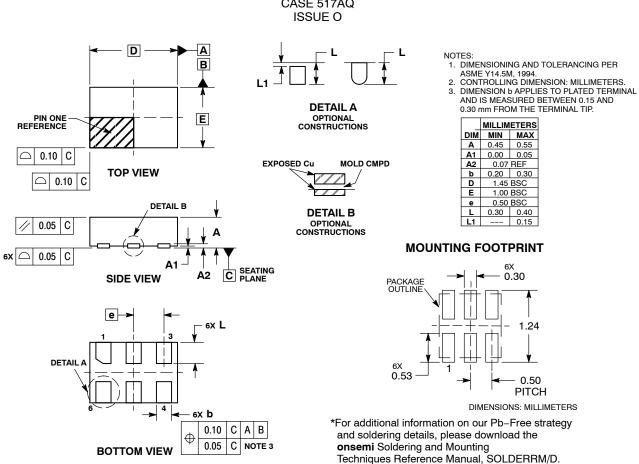

| V <sub>CC</sub> , V | V <sub>mi</sub> , V | $V_{mo}$ , $V$     | V <sub>Y</sub> , V |
|---------------------|---------------------|--------------------|--------------------|
| 0.9                 | V <sub>CC</sub> /2  | V <sub>CC</sub> /2 | 0.1                |
| 1.1 to 1.3          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2 | 0.1                |
| 1.4 to 1.6          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2 | 0.1                |
| 1.65 to 1.95        | V <sub>CC</sub> /2  | V <sub>CC</sub> /2 | 0.15               |
| 2.3 to 2.7          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2 | 0.15               |
| 3.0 to 3.6          | 1.5                 | 1.5                | 0.3                |

#### **ORDERING INFORMATION**

| Device                                      | Marking           | Pin 1 Orientation<br>(See below) | Package           | Shipping <sup>†</sup> |
|---------------------------------------------|-------------------|----------------------------------|-------------------|-----------------------|
| NL17SG125DFT2G                              | A4                | Q4                               | SC-88A            | 3000 / Tape & Reel    |
| NL17SG125P5T5G                              | F (Rotated 90°CW) | Q2                               | SOT-953           | 8000 / Tape & Reel    |
| NL17SG125MU1TCG<br>(Contact <b>onsemi</b> ) | TBD               | Q4                               | UDFN6 1.45 x 1 mm | 3000 / Tape & Reel    |
| NL17SG125MU3TCG<br>(Contact <b>onsemi</b> ) | TBD               | Q4                               | UDFN6 1 x 1 mm    | 3000 / Tape & Reel    |

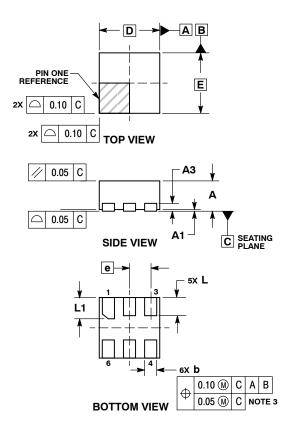
<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# PIN 1 ORIENTATION IN TAPE AND REEL Direction of Feed




MiniGate is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

<sup>\*-</sup>Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


#### **PACKAGE DIMENSIONS**

# UDFN6, 1.45x1.0, 0.5P CASE 517AQ



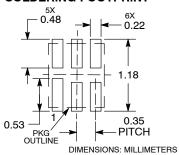
#### **PACKAGE DIMENSIONS**

UDFN6, 1x1, 0.35P CASE 517BX ISSUE O



- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.


  2. CONTROLLING DIMENSION: MILLIMETERS.

  3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.

  4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

|     | MILLIMETERS |      |  |  |  |
|-----|-------------|------|--|--|--|
| DIM | MIN         | MAX  |  |  |  |
| Α   | 0.45        | 0.55 |  |  |  |
| A1  | 0.00        | 0.05 |  |  |  |
| А3  | 0.13        | REF  |  |  |  |
| q   | 0.12        | 0.22 |  |  |  |
| D   | 1.00        | BSC  |  |  |  |
| Е   | 1.00        | BSC  |  |  |  |
| е   | 0.35 BSC    |      |  |  |  |
| L   | 0.25        | 0.35 |  |  |  |
| L1  | 0.30        | 0.40 |  |  |  |

# RECOMMENDED SOLDERING FOOTPRINT\*



\*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting
Techniques Reference Manual, SOLDERRM/D.



0



#### SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M

**DATE 11 APR 2023** 

#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.

|     | МТ             | RS   |      |  |
|-----|----------------|------|------|--|
| DIM |                |      |      |  |
|     | MIN.           | N□M. | MAX. |  |
| А   | 0.80           | 0.95 | 1.10 |  |
| A1  |                |      | 0.10 |  |
| A3  | 0.20 REF       |      |      |  |
| b   | 0.10           | 0.20 | 0.30 |  |
| С   | 0.10           |      | 0.25 |  |
| D   | 1.80           | 2.00 | 2,20 |  |
| Е   | 2.00           | 2.10 | 2,20 |  |
| E1  | 1.15           | 1.25 | 1.35 |  |
| е   | 0.65 BSC       |      |      |  |
| L   | 0.10 0.15 0.30 |      |      |  |

- 419A-01 DBSDLETE, NEW STANDARD 419A-02

|    | A3   |
|----|------|
| 40 | 0.50 |

5X b

◆ 0.2 M B M

#### RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

5. COLLECTOR

## **GENERIC MARKING DIAGRAM\***



\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

| STYLE 1:                             | STYLE 2:                    | STYLE 3:                    | STYLE 4:                   | STYLE 5:                                   |
|--------------------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------------------|
| PIN 1. BASE                          | PIN 1. ANODE                | PIN 1. ANODE 1              | PIN 1. SOURCE 1            | PIN 1. CATHODE                             |
| 2. EMITTER                           | <ol><li>EMITTER</li></ol>   | 2. N/C                      | 2. DRAIN 1/2               | 2. COMMON ANODE                            |
| 3. BASE                              | 3. BASE                     | 3. ANODE 2                  | <ol><li>SOURCE 1</li></ol> | 3. CATHODE 2                               |
| 4. COLLECTOR                         | <ol><li>COLLECTOR</li></ol> | <ol><li>CATHODE 2</li></ol> | 4. GATE 1                  | 4. CATHODE 3                               |
| <ol><li>COLLECTOR</li></ol>          | <ol><li>CATHODE</li></ol>   | <ol><li>CATHODE 1</li></ol> | 5. GATE 2                  | <ol><li>CATHODE 4</li></ol>                |
| 0T) (1 F 0:                          | OT) (1 F. 7:                | OT)// F 0:                  | STYLE 9:                   | Note: Disease refer to detect and for      |
| STYLE 6:                             | STYLE 7:                    | STYLE 8:                    |                            | Note: Please refer to datasheet for        |
| PIN 1. EMITTER 2                     | PIN 1. BASE                 | PIN 1. CATHODE              | PIN 1. ANODE               | style callout. If style type is not called |
| 2. BASE 2                            | <ol><li>EMITTER</li></ol>   | 2. COLLECTOR                | 2. CATHODE                 | , , ,                                      |
| 3. EMITTER 1                         | 3. BASE                     | 3. N/C                      | 3. ANODE                   | out in the datasheet refer to the device   |
| 4. COLLECTOR                         | <ol><li>COLLECTOR</li></ol> | 4. BASE                     | 4. ANODE                   | datachast ningut or nin assignment         |
| <ol><li>COLLECTOR 2/BASE 1</li></ol> | <ol><li>COLLECTOR</li></ol> | 5. EMITTER                  | 5. ANODE                   | datasheet pinout or pin assignment.        |

| DOCUMENT NUMBER: | 98ASB42984B            | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SC-88A (SC-70-5/SOT-35 | 3)                                                                                                                                                                                  | PAGE 1 OF 1 |  |

5. EMITTER

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

5. COLLECTOR 2/BASE 1

MILLIMFTERS

 $N\square M$ 

0.37

0.15

0.12

1.00

0.80

0.35 BSC

1.00

MIN

0.34

0.10

0.07

0.95

0.75

0.95





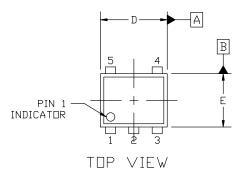
#### SOT-953 1.00x0.80x0.37, 0.35P CASE 527AE **ISSUE F**

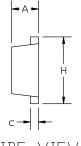
**DATE 17 JAN 2024** 

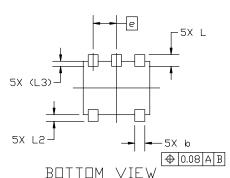
MAX

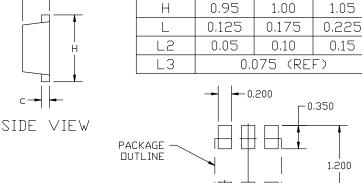
0.40

0.20


0.17


1.05


0.85


#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.









0.350

DIM

Α

b

C

 $\mathbb{D}$ 

E

9 Н

# RECOMMENDED MOUNTING FOOTPRINT

\*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

### **GENERIC MARKING DIAGRAM\***



= Specific Device Code

= Month Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON26457D               | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | SOT-953 1.00x0.80x0.37, 0 | ).35P                                                                                                                                                                               | PAGE 1 OF 1 |

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

