


# LDC1312-Q1, LDC1314-Q1 Multi-Channel 12-Bit Inductance to Digital Converter (LDC) for Inductive Sensing

## 1 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
  - Device Temperature Grade 1:  $-40^{\circ}\text{C}$  to  $+125^{\circ}\text{C}$   
Ambient Operating Temperature Range
  - Device HBM ESD Classification Level 2
  - Device CDM ESD Classification Level C5
- Easy-to-use – Minimal Configuration Required
- Measure up to 4 Sensors with One IC
- Multiple Channels Support Environmental and Aging Compensation
- Multi-Channel Remote Sensing Provides Lowest System Cost
- Pin-Compatible Medium and High-resolution Options
  - LDC1312-Q1/LDC1314-Q1: 2/4-ch 12-bit LDC
  - LDC1612-Q1/LDC1614-Q1: 2/4-ch 28-bit LDC
- Supports Wide Sensor Frequency Range of 1kHz to 10MHz
- Power Consumption:
  - 35  $\mu\text{A}$  Low Power Sleep Mode
  - 200 nA Shutdown Mode
- 3.3V Operation
- Support Internal or External Reference Clock
- Immune to DC Magnetic Fields and Magnets

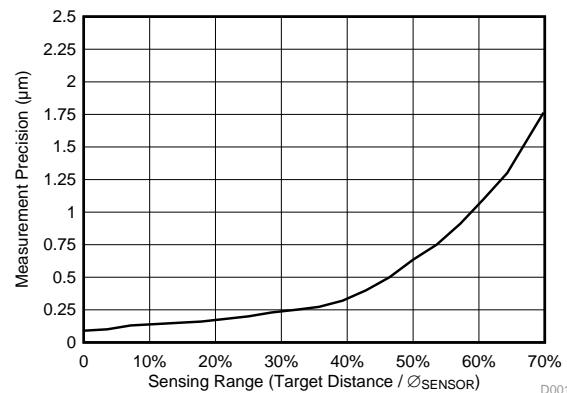
## Simplified Schematic



## 2 Applications

- Automotive Buttons and Knobs
- Linear and Rotational Encoders
- Slider Buttons
- Metal Detection in Industrial and Automotive
- Flow Meters

## 3 Description


The LDC1312-Q1 and LDC1314-Q1 are 2- and 4-channel, 12-bit inductance to digital converters (LDCs) for inductive sensing solutions. With multiple channels and support for remote sensing, the LDC1312-Q1 and LDC1314-Q1 enable the performance and reliability benefits of inductive sensing to be realized at minimal cost and power. The products are easy to use, only requiring that the sensor frequency be within 1 kHz and 10 MHz to begin sensing. The wide 1 kHz to 10 MHz sensor frequency range also enables use of very small PCB coils, further reducing sensing solution cost and size.

## Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE   | BODY SIZE (NOM)   |
|-------------|-----------|-------------------|
| LDC1312-Q1  | WSON (12) | 4.00 mm x 4.00 mm |
| LDC1314-Q1  | WQFN (16) | 4.00 mm x 4.00 mm |

(1) For all available packages, see the orderable addendum at the end of the data sheet.

## Measurement Precision vs. Target Distance



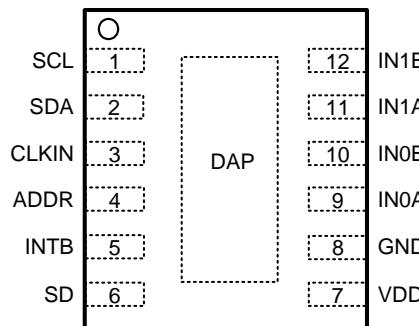
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

## Table of Contents

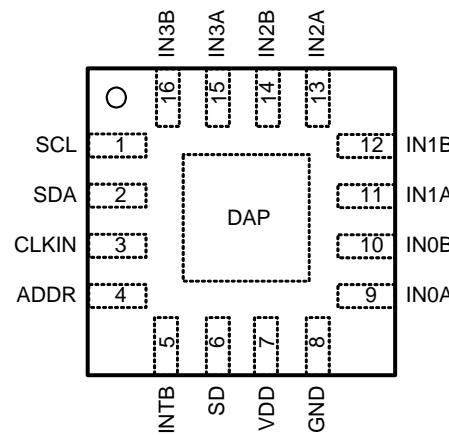
|          |                                                      |    |           |                                                                   |    |
|----------|------------------------------------------------------|----|-----------|-------------------------------------------------------------------|----|
| <b>1</b> | <b>Features</b>                                      | 1  | 8.4       | Device Functional Modes.....                                      | 20 |
| <b>2</b> | <b>Applications</b>                                  | 1  | 8.5       | Programming.....                                                  | 20 |
| <b>3</b> | <b>Description</b>                                   | 1  | 8.6       | Register Maps.....                                                | 22 |
| <b>4</b> | <b>Revision History</b>                              | 2  | <b>9</b>  | <b>Application and Implementation</b>                             | 39 |
| <b>5</b> | <b>Description Continued</b>                         | 3  | 9.1       | Application Information.....                                      | 39 |
| <b>6</b> | <b>Pin Configuration and Functions</b>               | 4  | 9.2       | Typical Application .....                                         | 42 |
| <b>7</b> | <b>Specifications</b> .....                          | 5  | <b>10</b> | <b>Power Supply Recommendations</b> .....                         | 46 |
|          | 7.1 Absolute Maximum Ratings .....                   | 5  | <b>11</b> | <b>Layout</b> .....                                               | 46 |
|          | 7.2 ESD Ratings .....                                | 5  | 11.1      | Layout Guidelines .....                                           | 46 |
|          | 7.3 Recommended Operating Conditions.....            | 5  | 11.2      | Layout Example .....                                              | 46 |
|          | 7.4 Thermal Information .....                        | 5  | <b>12</b> | <b>Device and Documentation Support</b> .....                     | 51 |
|          | 7.5 Electrical Characteristics .....                 | 6  | 12.1      | Device Support.....                                               | 51 |
|          | 7.6 Timing Characteristics .....                     | 7  | 12.2      | Documentation Support .....                                       | 51 |
|          | 7.7 Switching Characteristics - I <sub>C</sub> ..... | 7  | 12.3      | Community Resources.....                                          | 51 |
|          | 7.8 Typical Characteristics .....                    | 8  | 12.4      | Related Links .....                                               | 51 |
| <b>8</b> | <b>Detailed Description</b> .....                    | 10 | 12.5      | Trademarks .....                                                  | 51 |
|          | 8.1 Overview .....                                   | 10 | 12.6      | Electrostatic Discharge Caution .....                             | 51 |
|          | 8.2 Functional Block Diagram .....                   | 10 | 12.7      | Glossary .....                                                    | 51 |
|          | 8.3 Feature Description.....                         | 10 | <b>13</b> | <b>Mechanical, Packaging, and Orderable<br/>Information</b> ..... | 51 |

## 4 Revision History

| DATE       | REVISION | NOTES            |
|------------|----------|------------------|
| April 2016 | *        | Initial release. |


## 5 Description Continued

The LDC1312-Q1 and LDC1314-Q1 offer well-matched channels, which allow for differential and ratiometric measurements. This enables designers to use one channel to compensate their sensing for environmental and aging conditions such as temperature, humidity, and mechanical drift. Given their ease of use, low power, and low system cost these products enable designers to greatly improve on existing sensing solutions and to introduce brand new sensing capabilities to products in all markets, especially consumer and industrial applications. Inductive sensing offers better performance, reliability, and flexibility than competitive sensing technologies at lower system cost and power.


The LDC1312-Q1 and LDC1314-Q1 are easily configured via an I<sub>2</sub>C interface. The two-channel LDC1312-Q1 is available in a WSON-12 package and the four-channel LDC1314-Q1 is available in a WQFN-16 package.

## 6 Pin Configuration and Functions

LDC1312-Q1 DNT  
12 pin WSON  
Top View



LDC1314-Q1 RGH  
16 pin WQFN  
Top View



### Pin Functions

| PIN |                    | TYPE <sup>(1)</sup> | DESCRIPTION                                                                                                                         |
|-----|--------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| NO. | NAME               |                     |                                                                                                                                     |
| 1   | SCL                | I                   | I <sup>2</sup> C Clock input                                                                                                        |
| 2   | SDA                | I/O                 | I <sup>2</sup> C Data input/output                                                                                                  |
| 3   | CLKIN              | I                   | Master Clock input. Tie this pin to GND if internal oscillator is selected                                                          |
| 4   | ADDR               | I                   | I <sup>2</sup> C Address selection pin: when ADDR=L, I <sup>2</sup> C address = 0x2A, when ADDR=H, I <sup>2</sup> C address = 0x2B. |
| 5   | INTB               | O                   | Configurable Interrupt output pin                                                                                                   |
| 6   | SD                 | I                   | Shutdown input                                                                                                                      |
| 7   | VDD                | P                   | Power Supply                                                                                                                        |
| 8   | GND                | G                   | Ground                                                                                                                              |
| 9   | IN0A               | A                   | External LC sensor 0 connection                                                                                                     |
| 10  | IN0B               | A                   | External LC sensor 0 connection                                                                                                     |
| 11  | IN1A               | A                   | External LC sensor 1 connection                                                                                                     |
| 12  | IN1B               | A                   | External LC sensor 1 connection                                                                                                     |
| 13  | IN2A               | A                   | External LC sensor 2 connection (LDC1314 only)                                                                                      |
| 14  | IN2B               | A                   | External LC sensor 2 connection (LDC1314 only)                                                                                      |
| 15  | IN3A               | A                   | External LC sensor 3 connection (LDC1314 only)                                                                                      |
| 16  | IN3B               | A                   | External LC sensor 3 connection (LDC1314 only)                                                                                      |
| DAP | DAP <sup>(2)</sup> | N/A                 | Connect to Ground                                                                                                                   |

(1) I = Input, O = Output, P=Power, G=Ground, A=Analog

(2) There is an internal electrical connection between the exposed Die Attach Pad (DAP) and the GND pin of the device. Although the DAP can be left floating, for best performance the DAP should be connected to the same potential as the device's GND pin. Do not use the DAP as the primary ground for the device. The device GND pin must always be connected to ground.

## 7 Specifications

### 7.1 Absolute Maximum Ratings

|                  |                                          | MIN  | MAX     | UNIT |
|------------------|------------------------------------------|------|---------|------|
| V <sub>DD</sub>  | Supply Voltage                           |      | 5       | V    |
| V <sub>i</sub>   | Voltage on any pin                       | -0.3 | VDD+0.3 | V    |
| I <sub>A</sub>   | Input current on any IN <sub>x</sub> pin | -8   | 8       | mA   |
| I <sub>D</sub>   | Input current on any Digital pin         | -5   | 5       | mA   |
| T <sub>j</sub>   | Junction Temperature                     | -55  | 150     | °C   |
| T <sub>stg</sub> | Storage temperature range                | -65  | 150     | °C   |

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

### 7.2 ESD Ratings

|                    |                         | VALUE                                                   | UNIT  |
|--------------------|-------------------------|---------------------------------------------------------|-------|
| V <sub>(ESD)</sub> | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002 <sup>(1)</sup> | ±2000 |
|                    |                         | Charged-device model (CDM), per AEC Q100-011            | ±750  |

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

### 7.3 Recommended Operating Conditions

Unless otherwise specified, all limits ensured for T<sub>A</sub> = 25°C, VDD = 3.3 V

|                |                       | MIN | NOM | MAX | UNIT |
|----------------|-----------------------|-----|-----|-----|------|
| VDD            | Supply Voltage        | 2.7 |     | 3.6 | V    |
| T <sub>A</sub> | Operating Temperature | -40 |     | 125 | °C   |

### 7.4 Thermal Information

| THERMAL METRIC <sup>(1)</sup>                                      | LDC1312    | LDC1314    | UNIT |
|--------------------------------------------------------------------|------------|------------|------|
|                                                                    | DNT (WSON) | RGH (WQFN) |      |
|                                                                    | 12 PINS    | 16 PINS    |      |
| R <sub>θJA</sub> Junction-to-ambient thermal resistance            | 36.7       | 35.6       | °C/W |
| R <sub>θJC(top)</sub> Junction-to-case (top) thermal resistance    | 36.2       | 36.2       | °C/W |
| R <sub>θJB</sub> Junction-to-board thermal resistance              | 14         | 13.4       | °C/W |
| Ψ <sub>JT</sub> Junction-to-top characterization parameter         | 0.4        | 0.4        | °C/W |
| Ψ <sub>JB</sub> Junction-to-board characterization parameter       | 14.2       | 13.4       | °C/W |
| R <sub>θJC(bot)</sub> Junction-to-case (bottom) thermal resistance | 3.5        | 3.5        | °C/W |

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

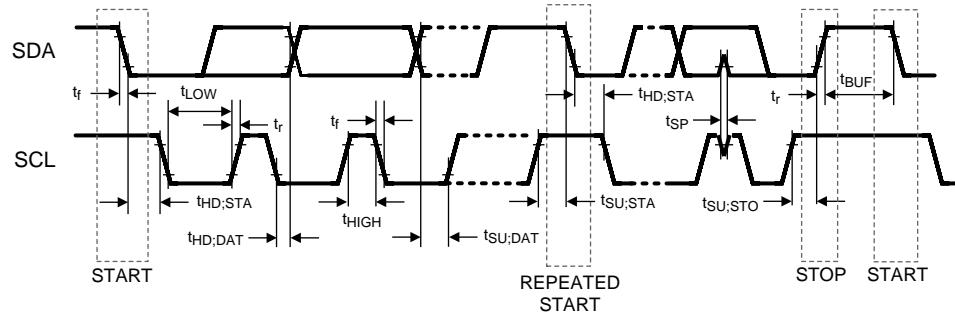
## 7.5 Electrical Characteristics <sup>(1)</sup>

Unless otherwise specified, all limits ensured for  $T_A = 25^\circ\text{C}$ ,  $VDD = 3.3\text{ V}$

| PARAMETER                         | TEST CONDITIONS <sup>(2)</sup>                               | MIN <sup>(3)</sup>                                                                                 | TYP <sup>(4)</sup> | MAX <sup>(3)</sup> | UNIT                        |
|-----------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------|
| <b>POWER</b>                      |                                                              |                                                                                                    |                    |                    |                             |
| $V_{DD}$                          | Supply Voltage                                               | $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$                                                  | 2.7                | 3.6                | V                           |
| $I_{DD}$                          | Supply Current (not including sensor current) <sup>(5)</sup> | $\text{CLKIN} = 10\text{MHz}$ <sup>(6)</sup>                                                       | 2.1                |                    | mA                          |
| $I_{DDSL}$                        | Sleep Mode Supply Current <sup>(5)</sup>                     |                                                                                                    | 35                 | 60                 | $\mu\text{A}$               |
| $I_{SD}$                          | Shutdown Mode Supply Current <sup>(5)</sup>                  |                                                                                                    | 0.2                | 1                  | $\mu\text{A}$               |
| <b>SENSOR</b>                     |                                                              |                                                                                                    |                    |                    |                             |
| $I_{SENSORMAX}$                   | Sensor Maximum Current drive                                 | $\text{HIGH\_CURRENT\_DRV} = \text{b}0$<br>$\text{DRIVE\_CURRENT\_CHx} = 0xF800$                   | 1.5                |                    | mA                          |
| $R_P$                             | Sensor $R_P$                                                 |                                                                                                    | 1                  | 100                | $\text{k}\Omega$            |
| $I_{HDSENSORMAX}$                 | High current sensor drive mode: Sensor Maximum Current       | $\text{HIGH\_CURRENT\_DRV} = \text{b}1$<br>$\text{DRIVE\_CURRENT\_CH0} = 0xF800$<br>Channel 0 only | 6                  |                    | mA                          |
| $R_{P\_HD\_MIN}$                  | Minimum sensor $R_P$                                         |                                                                                                    | 250                |                    | $\Omega$                    |
| $f_{SENSOR}$                      | Sensor Resonance Frequency                                   | $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$                                                  | 0.001              | 10                 | MHz                         |
| $V_{SENSORMAX}$                   | Maximum oscillation amplitude (peak)                         |                                                                                                    | 1.8                |                    | V                           |
| $N_{BITS}$                        | Number of bits                                               | $\text{RESET\_DEV.OUTPUT\_GAIN} = \text{b}00$<br>$\text{RCOUNT} \geq 0x0400$                       |                    | 12                 | bits                        |
| $f_{CS}$                          | Maximum Channel Sample Rate                                  | single active channel continuous conversion, $\text{SCL}=400\text{kHz}$                            |                    | 13.3               | kSPS                        |
| $C_{IN}$                          | Sensor Pin input capacitance                                 |                                                                                                    | 4                  |                    | $\text{pF}$                 |
| <b>MASTER CLOCK</b>               |                                                              |                                                                                                    |                    |                    |                             |
| $f_{CLKIN}$                       | External Master Clock Input Frequency (CLKIN)                | $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$                                                  | 2                  | 40                 | MHz                         |
| $\text{CLKIN}_{\text{DUTY\_MIN}}$ | External Master Clock minimum acceptable duty cycle (CLKIN)  |                                                                                                    | 40%                |                    |                             |
| $\text{CLKIN}_{\text{DUTY\_MAX}}$ | External Master Clock maximum acceptable duty cycle (CLKIN)  |                                                                                                    | 60%                |                    |                             |
| $V_{CLKIN\_LO}$                   | CLKIN low voltage threshold                                  |                                                                                                    |                    | $0.3 \times VDD$   | V                           |
| $V_{CLKIN\_HI}$                   | CLKIN high voltage threshold                                 |                                                                                                    |                    | $0.7 \times VDD$   | V                           |
| $f_{INTCLK}$                      | Internal Master Clock Frequency range                        |                                                                                                    | 35                 | 43.4               | MHz                         |
| $T_{Cf\_int\_μ}$                  | Internal Master Clock Temperature Coefficient mean           |                                                                                                    |                    | -13                | $\text{ppm}/^\circ\text{C}$ |

- (1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that  $T_J = T_A$ . Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
- (2) Register values are represented as either binary (b is the prefix to the digits), or hexadecimal (0x is the prefix to the digits). Decimal values have no prefix.
- (3) Limits are ensured by testing, design, or statistical analysis at  $25^\circ\text{C}$ . Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (4) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
- (5) I<sup>2</sup>C read/write communication and pullup resistors current through SCL, SDA not included.
- (6) Sensor inductor: 2 layer, 32 turns/layer, 14mm diameter, PCB inductor with  $L=19.4\text{ }\mu\text{H}$ ,  $R_P=5.7\text{ k}\Omega$  at 2MHz Sensor capacitor: 330 pF 1% COG/NP0 Target: Aluminum, 1.5mm thickness Channel = Channel 0 (continuous mode)  $\text{CLKIN} = 40\text{ MHz}$ ,  $\text{CHx\_FIN\_DIVIDER} = \text{b}0000$ ,  $\text{CHx\_FREF\_DIVIDER} = \text{b}00\ 0000\ 0001$   $\text{CH0\_RCOUNT} = 0xFFFF$ ,  $\text{SETTLECOUNT\_CH0} = 0x0100$   $\text{RP\_ OVERRIDE} = \text{b}1$ ,  $\text{AUTO\_AMP\_DIS} = \text{b}1$ ,  $\text{DRIVE\_CURRENT\_CH0} = 0x9800$

## 7.6 Timing Characteristics


|                  |                                                          | MIN | NOM | MAX | UNIT |
|------------------|----------------------------------------------------------|-----|-----|-----|------|
| $t_{WAKEUP}$     | Wake-up Time from SD high-low transition to I2C readback |     |     | 2   | ms   |
| $t_{WD-TIMEOUT}$ | Sensor recovery time (after watchdog timeout)            |     | 5.2 |     | ms   |

## 7.7 Switching Characteristics - I2C

Unless otherwise specified, all limits ensured for  $T_A = 25^\circ\text{C}$ ,  $V_{DD} = 3.3\text{ V}$

| PARAMETER                         | TEST CONDITIONS                                                                  | MIN                                                   | TYP                 | MAX                 | UNIT          |
|-----------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|---------------------|---------------|
| <b>VOLTAGE LEVELS</b>             |                                                                                  |                                                       |                     |                     |               |
| $V_{IH}$                          | Input High Voltage                                                               |                                                       | $0.7 \times V_{DD}$ |                     | V             |
| $V_{IL}$                          | Input Low Voltage                                                                |                                                       |                     | $0.3 \times V_{DD}$ | V             |
| $V_{OL}$                          | Output Low Voltage (3mA sink current)                                            |                                                       |                     | 0.4                 | V             |
| HYS                               | Hysteresis                                                                       |                                                       | $0.1 \times V_{DD}$ |                     | V             |
| <b>I2C TIMING CHARACTERISTICS</b> |                                                                                  |                                                       |                     |                     |               |
| $f_{SCL}$                         | Clock Frequency                                                                  | 10                                                    | 400                 | 400                 | kHz           |
| $t_{LOW}$                         | Clock Low Time                                                                   | 1.3                                                   |                     |                     | $\mu\text{s}$ |
| $t_{HIGH}$                        | Clock High Time                                                                  | 0.6                                                   |                     |                     | $\mu\text{s}$ |
| $t_{HD;STA}$                      | Hold Time (repeated) START condition                                             | After this period, the first clock pulse is generated | 0.6                 |                     | $\mu\text{s}$ |
| $t_{SU;STA}$                      | Set-up time for a repeated START condition                                       |                                                       | 0.6                 |                     | $\mu\text{s}$ |
| $t_{HD;DAT}$                      | Data hold time                                                                   | 0                                                     |                     |                     | $\mu\text{s}$ |
| $t_{SU;DAT}$                      | Data setup time                                                                  | 100                                                   |                     |                     | ns            |
| $t_{SU;STO}$                      | Set-up time for STOP condition                                                   | 0.6                                                   |                     |                     | $\mu\text{s}$ |
| $t_{BUF}$                         | Bus free time between a STOP and START condition                                 |                                                       | 1.3                 |                     | $\mu\text{s}$ |
| $t_{VD;DAT}$                      | Data valid time                                                                  |                                                       |                     | 0.9                 | $\mu\text{s}$ |
| $t_{VD;ACK}$                      | Data valid acknowledge time                                                      |                                                       |                     | 0.9                 | $\mu\text{s}$ |
| $t_{SP}$                          | Pulse width of spikes that must be suppressed by the input filter <sup>(1)</sup> |                                                       |                     | 50                  | ns            |

(1) This parameter is specified by design and/or characterization and is not tested in production.



**Figure 1. I2C Timing**

## 7.8 Typical Characteristics

Common test conditions (unless specified otherwise): Sensor inductor: 2 layer, 32 turns/layer, 14 mm diameter, PCB inductor with  $L=19.4 \mu\text{H}$ ,  $R_P=5.7 \text{ k}\Omega$  at 2 MHz; Sensor capacitor: 330 pF 1% COG/NP0; Target: Aluminum, 1.5mm thickness; Channel = Channel 0 (continuous mode); CLKIN = 40 MHz, CHx\_FIN\_DIVIDER = 0x1, CHx\_FREF\_DIVIDER = 0x001, CH0\_RCOUNT = 0xFFFF, SETTLECOUNT\_CH0 = 0x0100, RP\_OVERRIDE = 1, AUTO\_AMP\_DIS = 1, DRIVE\_CURRENT\_CH0 = 0x9800

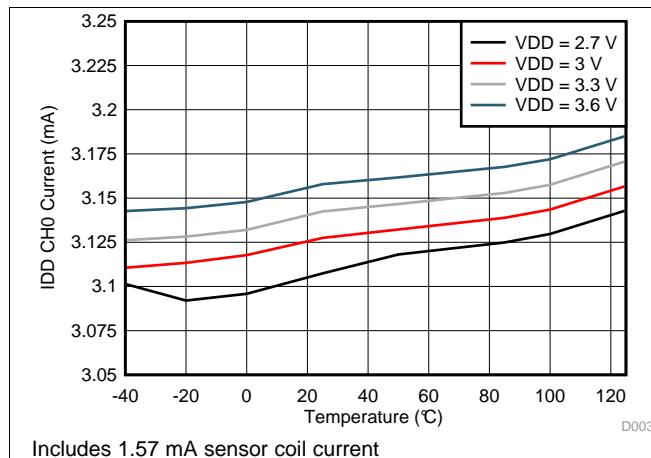



Figure 2. Active Mode  $I_{DD}$  vs. Temperature

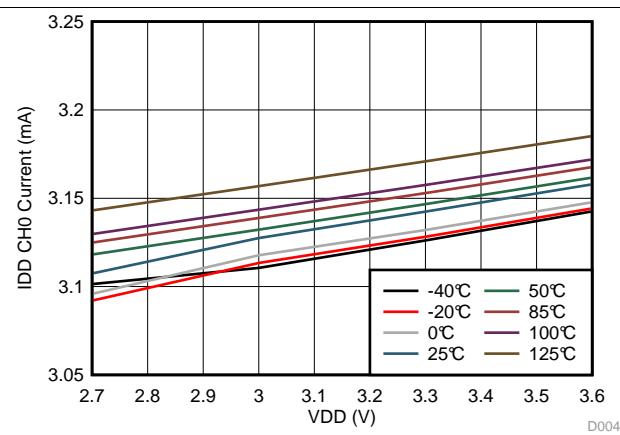



Figure 3. Active Mode  $I_{DD}$  vs.  $V_{DD}$

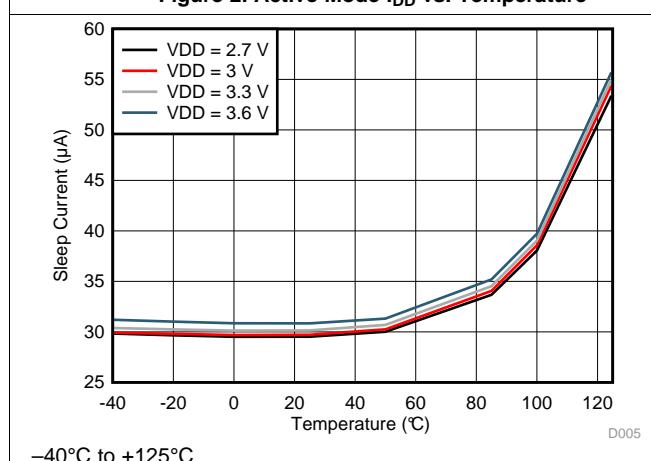



Figure 4. Sleep Mode  $I_{DD}$  vs. Temperature

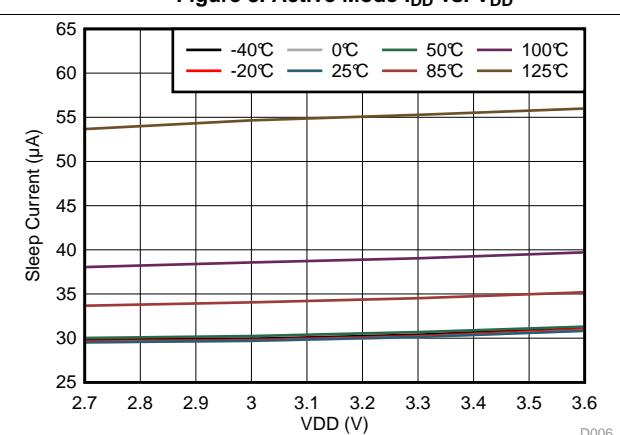



Figure 5. Sleep Mode  $I_{DD}$  vs.  $V_{DD}$

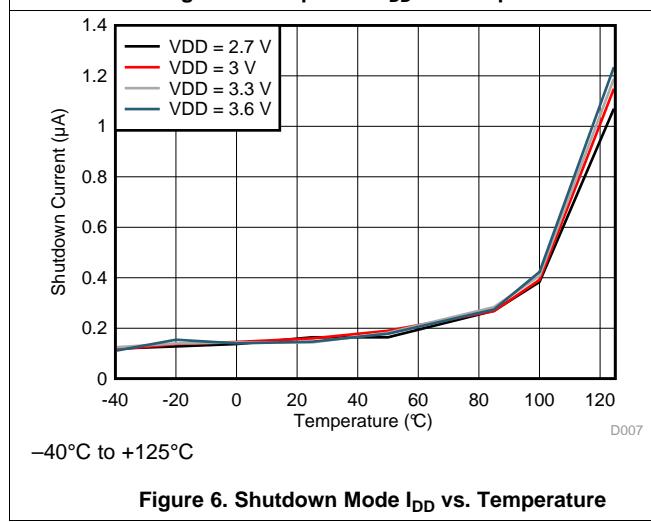



Figure 6. Shutdown Mode  $I_{DD}$  vs. Temperature

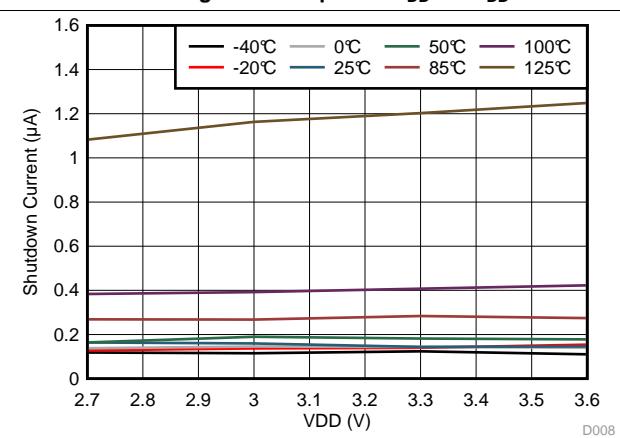
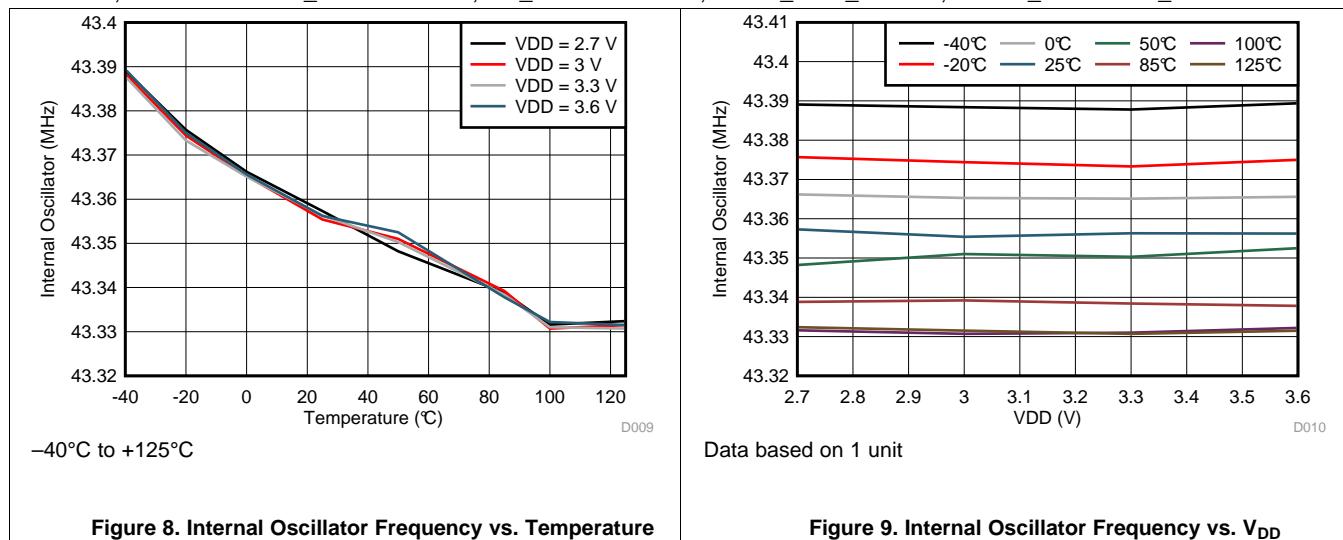
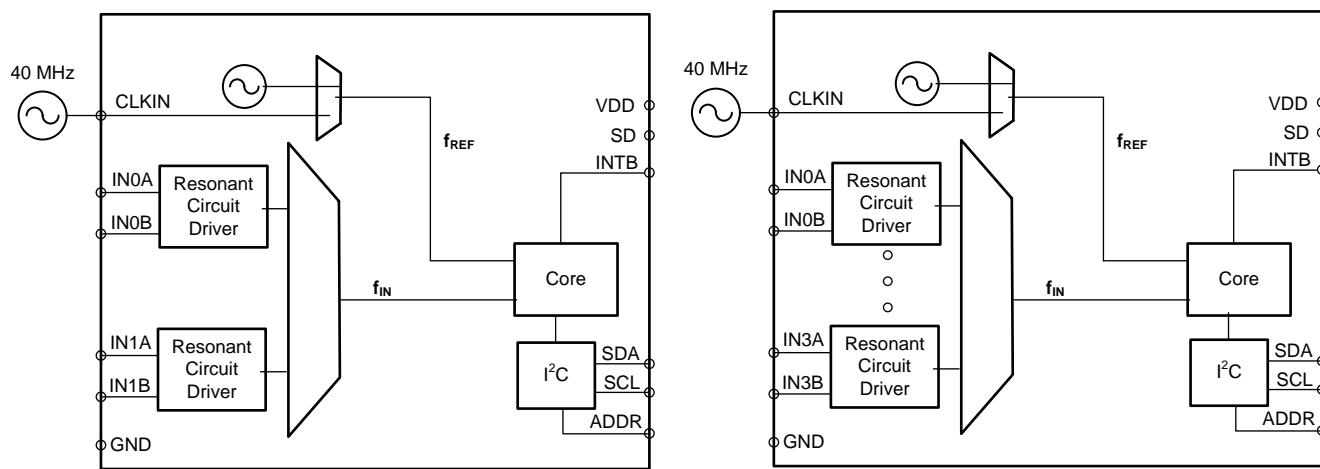




Figure 7. Shutdown Mode  $I_{DD}$  vs.  $V_{DD}$

## Typical Characteristics (continued)

Common test conditions (unless specified otherwise): Sensor inductor: 2 layer, 32 turns/layer, 14 mm diameter, PCB inductor with  $L=19.4\ \mu\text{H}$ ,  $R_P=5.7\ \text{k}\Omega$  at 2 MHz; Sensor capacitor: 330 pF 1% COG/NP0; Target: Aluminum, 1.5mm thickness; Channel = Channel 0 (continuous mode); CLKIN = 40 MHz, CHx\_FIN\_DIVIDER = 0x1, CHx\_FREF\_DIVIDER = 0x001, CH0\_RCOUNT = 0xFFFF, SETTLECOUNT\_CH0 = 0x0100, RP\_OVERRIDE = 1, AUTO\_AMP\_DIS = 1, DRIVE\_CURRENT\_CH0 = 0x9800




## 8 Detailed Description

### 8.1 Overview

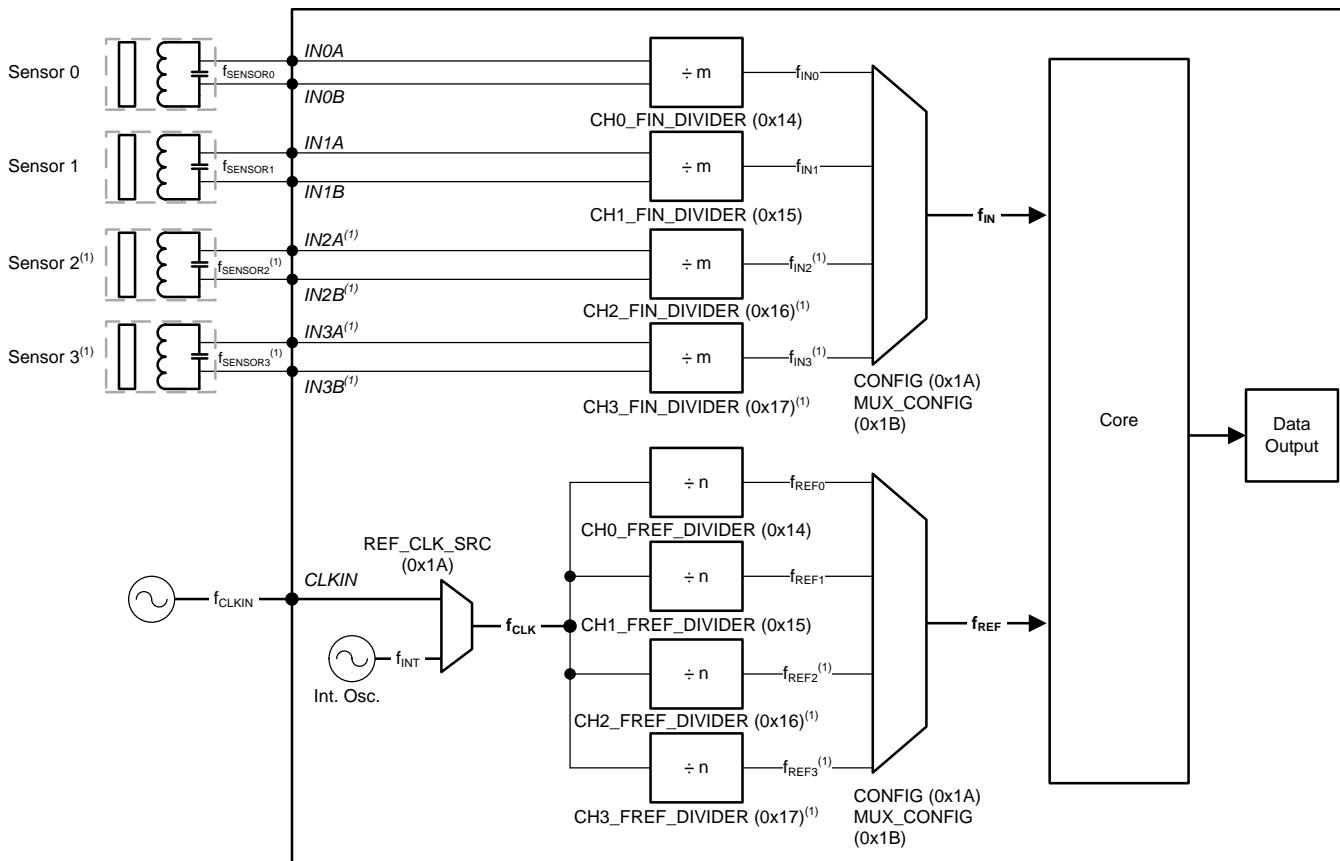
Conductive objects brought in contact with an AC electromagnetic (EM) field will induce field changes that can be detected using a sensor such as an inductor. Conveniently, an inductor, along with a capacitor, can be used to construct an L-C resonator, also known as an L-C tank, which can be used to produce an EM field. In the case of an L-C tank, the effect of the field disturbance is an apparent shift in the inductance of the sensor, which can be observed as a shift in the resonant frequency. Using this principle, the LDC1312/1314 is an inductance-to-digital converter (LDC) that measures the oscillation frequency of an LC resonator. The device outputs a digital value that is proportional to frequency. This frequency measurement can be converted to an equivalent inductance.

### 8.2 Functional Block Diagram



Copyright © 2016, Texas Instruments Incorporated

**Figure 10. Block Diagrams for the LDC1312 (Left) and LDC1314 (Right)**


The LDC1312/LDC1314 is composed of front-end resonant circuit drivers, followed by a multiplexer that sequences through the active channels, connecting them to the core that measures and digitizes the sensor frequency ( $f_{SENSOR}$ ). The core uses a reference frequency ( $f_{REF}$ ) to measure the sensor frequency.  $f_{REF}$  is derived from either an internal reference clock (oscillator), or an externally supplied clock. The digitized output for each channel is proportional to the ratio of  $f_{SENSOR}/f_{REF}$ . The I<sup>2</sup>C interface is used to support device configuration and to transmit the digitized frequency values to a host processor. The LDC can be placed in shutdown mode, saving current, using the SD pin. The INTB pin may be configured to notify the host of changes in system status.

### 8.3 Feature Description

#### 8.3.1 Clocking Architecture

Figure 11 shows the clock dividers and multiplexers of the LDC.

## Feature Description (continued)



Copyright © 2016, Texas Instruments Incorporated

**Figure 11. Clocking Diagram**

### (1) LDC1314 only

In Figure 11, the key clocks are  $f_{IN}$ ,  $f_{REF}$ , and  $f_{CLK}$ .  $f_{CLK}$  is selected from either the internal clock source or external clock source (CLKIN). The frequency measurement reference clock,  $f_{REF}$ , is derived from the  $f_{CLK}$  source. TI recommends that precision applications use an external master clock that offers the stability and accuracy requirements needed for the application. The internal oscillator may be used in applications that require low cost and do not require high precision. The  $f_{INx}$  clock is derived from sensor frequency for a channel  $x$ ,  $f_{SENSORx}$ .  $f_{REFx}$  and  $f_{INx}$  must meet the requirements listed in Table 1, depending on whether  $f_{CLK}$  (master clock) is the internal or external clock.

**Table 1. Clock Configuration Requirements**

| MODE <sup>(1)</sup> | CLKIN SOURCE                | VALID $f_{REFx}$ RANGE (MHz) | VALID $f_{INx}$ RANGE | SET CHx_FIN_DIVIDER to      | SET CHx_SETTLECOUNT to | SET CHx_RCOUNT to |
|---------------------|-----------------------------|------------------------------|-----------------------|-----------------------------|------------------------|-------------------|
| Multi-Channel       | Internal                    | $f_{REFx} < 55$              | $< f_{REFx} / 4$      | $\geq b0001$ <sup>(2)</sup> | $> 3$                  | $> 8$             |
|                     | External                    | $f_{REFx} < 40$              |                       |                             |                        |                   |
| Single-Channel      | Either external or internal | $f_{REFx} < 35$              |                       |                             |                        |                   |

(1) Channels 2 and 3 are only available for LDC1314

(2) If  $f_{SENSOR} \geq 8.75$  MHz, then CHx\_FIN\_DIVIDER must be  $\geq 2$

Table 2 shows the clock configuration registers for all channels.

**Table 2. Clock Configuration Registers**

| CHANNEL <sup>(1)</sup> | CLOCK                           | REGISTER                       | FIELD [ BIT(S) ]        | VALUE                                                                                                          |
|------------------------|---------------------------------|--------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|
| All                    | $f_{CLK}$ = Master Clock Source | CONFIG, addr 0x1A              | REF_CLK_SRC [9]         | b0 = internal oscillator is used as the master clock<br>b1 = external clock source is used as the master clock |
| 0                      | $f_{REF0}$                      | CLOCK_DIVIDER_S_CH0, addr 0x14 | CH0_FREF_DIVIDER [9:0]  | $f_{REF0} = f_{CLK} / CH0_FREF_DIVIDER$                                                                        |
| 1                      | $f_{REF1}$                      | CLOCK_DIVIDER_S_CH1, addr 0x15 | CH1_FREF_DIVIDER [9:0]  | $f_{REF1} = f_{CLK} / CH1_FREF_DIVIDER$                                                                        |
| 2                      | $f_{REF2}$                      | CLOCK_DIVIDER_S_CH2, addr 0x16 | CH2_FREF_DIVIDER [9:0]  | $f_{REF2} = f_{CLK} / CH2_FREF_DIVIDER$                                                                        |
| 3                      | $f_{REF3}$                      | CLOCK_DIVIDER_S_CH3, addr 0x17 | CH3_FREF_DIVIDER [9:0]  | $f_{REF3} = f_{CLK} / CH3_FREF_DIVIDER$                                                                        |
| 0                      | $f_{IN0}$                       | CLOCK_DIVIDER_S_CH0, addr 0x14 | CH0_FIN_DIVIDER [15:12] | $f_{IN0} = f_{SENSOR0} / CH0_FIN_DIVIDER$                                                                      |
| 1                      | $f_{IN1}$                       | CLOCK_DIVIDER_S_CH1, addr 0x15 | CH1_FIN_DIVIDER [15:12] | $f_{IN1} = f_{SENSOR1} / CH1_FIN_DIVIDER$                                                                      |
| 2                      | $f_{IN2}$                       | CLOCK_DIVIDER_S_CH2, addr 0x16 | CH2_FIN_DIVIDER [15:12] | $f_{IN2} = f_{SENSOR2} / CH2_FIN_DIVIDER$                                                                      |
| 3                      | $f_{IN3}$                       | CLOCK_DIVIDER_S_CH3, addr 0x17 | CH3_FIN_DIVIDER [15:12] | $f_{IN3} = f_{SENSOR3} / CH3_FIN_DIVIDER$                                                                      |

(1) Channels 2 and 3 are only available for LDC1314

### 8.3.2 Multi-Channel and Single Channel Operation

The multi-channel package of the LDC enables the user to save board space and support flexible system design. For example, temperature drift can often cause a shift in component values, resulting in a shift in resonant frequency of the sensor. Using a 2nd sensor as a reference provides the capability to cancel out a temperature shift. When operated in multi-channel mode, the LDC sequentially samples the active channels. In single channel mode, the LDC samples a single channel, which is selectable. Table 3 shows the registers and values that are used to configure either multi-channel or single channel modes.

**Table 3. Single and Multi-Channel Configuration Registers**

| MODE           | REGISTER             | FIELD [ BIT(S) ]    | VALUE <sup>(1)</sup>                                           |
|----------------|----------------------|---------------------|----------------------------------------------------------------|
| Single channel | CONFIG, addr 0x1A    | ACTIVE_CHAN [15:14] | 00 = chan 0<br>01 = chan 1<br>10 = chan 2<br>11 = chan 3       |
|                | MUX_CONFIG addr 0x1B | AUTOSCAN_EN [15]    | 0 = continuous conversion on a single channel (default)        |
| Multi-channel  | MUX_CONFIG addr 0x1B | AUTOSCAN_EN [15]    | 1 = continuous conversion on multiple channels                 |
|                | MUX_CONFIG addr 0x1B | RR_SEQUENCE [14:13] | 00 = Ch0, Ch1<br>01 = Ch0, Ch1, Ch2<br>10 = Ch0, Ch1, Ch2, Ch3 |

(1) Channels 2 and 3 are only available for LDC1314

The digitized sensor measurement for each channel (DATAx) represents the ratio of the sensor frequency to the reference frequency. The data outputs represent the 12 MSBs of a 16-bit result:

$$DATAx / 2^{12} = f_{SENSORx} / f_{REFx} \quad (1)$$

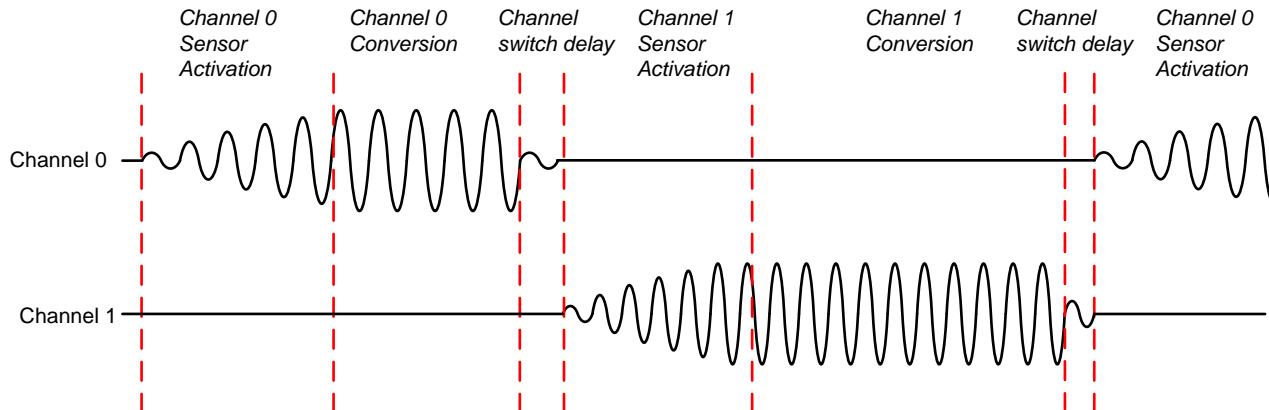
The sensor frequency can be calculated from:

$$f_{sensorx} = \frac{DATAx * f_{REFx}}{2^{12}} \quad (2)$$

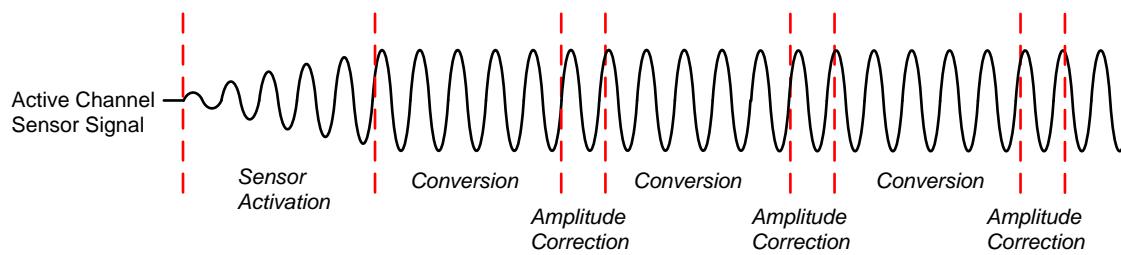
Table 4 shows the registers that contain the fixed point sample values for each channel.

**Table 4. LDC1314/1312 Sample Data Registers**

| CHANNEL <sup>(1)</sup> | REGISTER                | FIELD NAME [BITS(S)] | VALUE                                                                       |
|------------------------|-------------------------|----------------------|-----------------------------------------------------------------------------|
| 0                      | DATA_MSB_CH0, addr 0x00 | DATA0 [11:0]         | 12 bits of the 16 bit result.<br>0x000 = under range<br>0xffff = over range |
| 1                      | DATA_MSB_CH1, addr 0x02 | DATA1 [11:0]         | 12 bits of the 16 bit result.<br>0x000 = under range<br>0xffff = over range |
| 2                      | DATA_MSB_CH2, addr 0x04 | DATA2 [11:0]         | 12 bits of the 16 bit result.<br>0x000 = under range<br>0xffff = over range |
| 3                      | DATA_MSB_CH3, addr 0x06 | DATA3 [11:0]         | 12 bits of the 16 bit result.<br>0x000 = under range<br>0xffff = over range |


(1) Channels 2 and 3 available for LDC1314 only.

When the LDC sequences through the channels in multi-channel mode, the dwell time interval for each channel is the sum of 3 parts: sensor activation time + conversion time + channel switch delay.


The sensor activation time is the amount of settling time required for the sensor oscillation to stabilize, as shown in Figure 12. The settling wait time is programmable and should be set to a value that is long enough to allow stable oscillation. The settling wait time for channel x is given by:

$$t_{sx} = (\text{CHX\_SETTLECOUNT} \times 16) / f_{\text{REFX}} \quad (3)$$

Table 5 shows the registers and values for configuring the settling time for each channel.



**Figure 12. Multi-channel Mode Sequencing**



**Figure 13. Single-channel Mode Sequencing**

**Table 5. Settling Time Register Configuration**

| CHANNEL <sup>(1)</sup> | REGISTER                   | FIELD                  | CONVERSION TIME <sup>(2)</sup>         |
|------------------------|----------------------------|------------------------|----------------------------------------|
| 0                      | SETTLECOUNT_CH0, addr 0x10 | CH0_SETTLECOUNT (15:0) | (CH0_SETTLECOUNT*16)/f <sub>REF0</sub> |
| 1                      | SETTLECOUNT_CH1, addr 0x11 | CH1_SETTLECOUNT (15:0) | (CH1_SETTLECOUNT*16)/f <sub>REF1</sub> |
| 2                      | SETTLECOUNT_CH2, addr 0x12 | CH2_SETTLECOUNT (15:0) | (CH2_SETTLECOUNT*16)/f <sub>REF2</sub> |
| 3                      | SETTLECOUNT_CH3, addr 0x13 | CH3_SETTLECOUNT (15:0) | (CH3_SETTLECOUNT*16)/f <sub>REF3</sub> |

(1) Channels 2 and 3 are available only in the LDC1314.

(2)  $f_{REFx}$  is the reference frequency configured for the channel.

The SETTLECOUNT for any channel x must satisfy:

$$CHx\_SETTLECOUNT \geq Q_{SENSORx} \times f_{REFx} / (16 \times f_{SENSORx})$$

where

- $f_{SENSORx}$  = Frequency of the Sensor on Channel x
- $f_{REFx}$  = Reference frequency for Channel x
- $Q_{SENSORx}$  = Quality factor of the sensor on Channel x, where Q can be calculated by: (4)

$$Q = R_P \sqrt{\frac{C}{L}} \quad (5)$$

Round the result to the next highest integer (for example, if Equation 4 recommends a minimum value of 6.08, program the register to 7 or higher).

$L$ ,  $R_P$  and  $C$  values can be obtained by using Texas Instrument's [WEBENCH®](#) for the coil design.

The conversion time represents the number of reference clock cycles used to measure the sensor frequency. It is set by the  $CHx\_RCOUNT$  register for the channel. The conversion time for any channel x is:

$$t_{Cx} = (CHx\_RCOUNT \times 16 + 4) / f_{REFx} \quad (6)$$

The reference count value must be chosen to support the required number of effective bits (ENOB). For details, refer to the application note [Optimizing L Measurement Resolution for the LDC161x and LDC1101](#).

**Table 6. Conversion Time Configuration Registers, Channels 0 - 3<sup>(1)</sup>**

| CHANNEL | REGISTER              | FIELD [ BIT(S) ]  | CONVERSION TIME                   |
|---------|-----------------------|-------------------|-----------------------------------|
| 0       | RCOUNT_CH0, addr 0x08 | CH0_RCOUNT (15:0) | (CH0_RCOUNT*16)/f <sub>REF0</sub> |
| 1       | RCOUNT_CH1, addr 0x09 | CH1_RCOUNT (15:0) | (CH1_RCOUNT*16)/f <sub>REF1</sub> |
| 2       | RCOUNT_CH2, addr 0x0A | CH2_RCOUNT (15:0) | (CH2_RCOUNT*16)/f <sub>REF2</sub> |
| 3       | RCOUNT_CH3, addr 0x0B | CH3_RCOUNT (15:0) | (CH3_RCOUNT*16)/f <sub>REF3</sub> |

(1) Channels 2 and 3 are available only for LDC1314.

The typical channel switch delay time between the end of conversion and the beginning of sensor activation of the subsequent channel is:

$$\text{Channel Switch Delay} = 692 \text{ ns} + 5 / f_{ref} \quad (7)$$

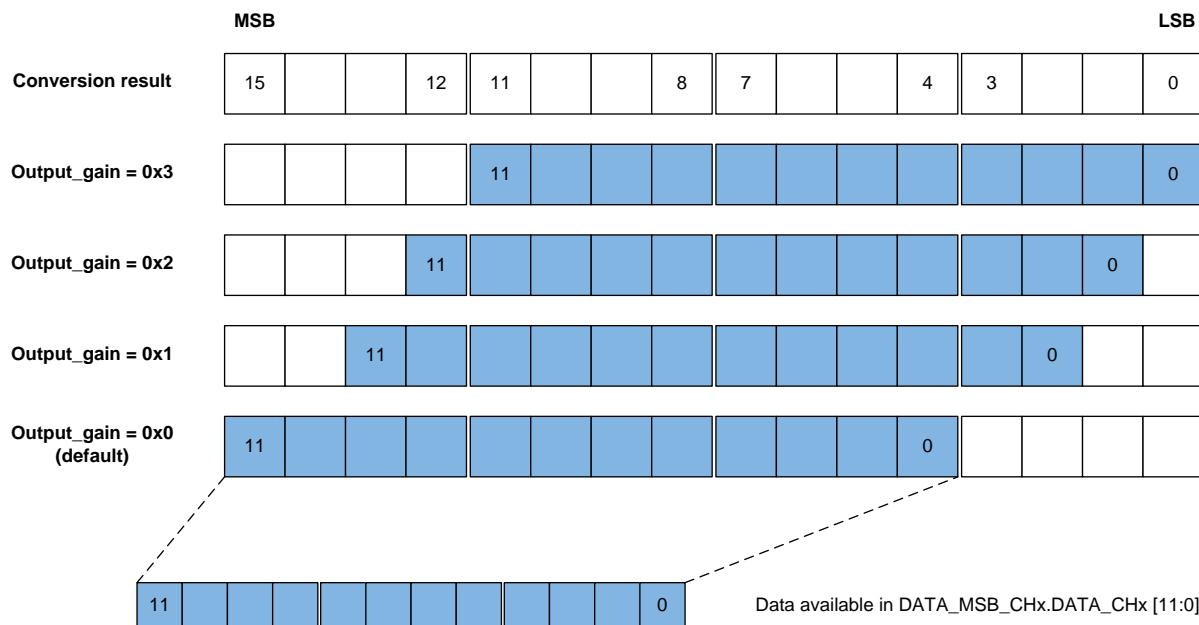
The deterministic conversion time of the LDC allows data polling at a fixed interval. A data ready flag (DRDY) is also available for interrupt driven system designs (see the STATUS register description in [Register Maps](#)).

An offset value may be subtracted from each DATA value to compensate for a frequency offset or maximize the dynamic range of the sample data. The offset values should be  $< f_{SENSORx\_MIN} / f_{REFx}$ . Otherwise, the offset might be so large that it masks the LSBs which are changing.

**Table 7. Frequency Offset Registers**

| CHANNEL<br>(1) | REGISTER              | FIELD [ BIT(S) ]    | VALUE                                           |
|----------------|-----------------------|---------------------|-------------------------------------------------|
| 0              | OFFSET_CH0, addr 0x0C | CH0_OFFSET [ 15:0 ] | $f_{OFFSET0} = CH0\_OFFSET * (f_{REF0}/2^{16})$ |
| 1              | OFFSET_CH1, addr 0x0D | CH1_OFFSET [ 15:0 ] | $f_{OFFSET1} = CH1\_OFFSET * (f_{REF1}/2^{16})$ |
| 2              | OFFSET_CH2, addr 0x0E | CH2_OFFSET [ 15:0 ] | $f_{OFFSET2} = CH2\_OFFSET * (f_{REF2}/2^{16})$ |
| 3              | OFFSET_CH3, addr 0x0F | CH3_OFFSET [ 15:0 ] | $f_{OFFSET3} = CH3\_OFFSET * (f_{REF3}/2^{16})$ |

(1) Channels 2 and 3 are only available for LDC1314


Internally, the LDC measures with 16bits of resolution, while the conversion output word width is only 12bits. For systems in which the sensor signal variation is less than 25% of the full scale range, the LDC can report conversion results with higher resolution by setting the output gain. The output gain is applied to all device channels. An output gain can be used to apply a 2-bit, 3-bit, or 4-bit shift to the output code for all channels, allowing access to the 4LSBs of the original 16-bit result. The MSBs of the sample are shifted out when a gain is applied. Do not use the output gain if the MSBs of any active channel are toggling, as the MSBs for that channel will be lost when gain is applied.

**Table 8. Output Gain Register**

| CHANNEL<br>(1) | REGISTER             | FIELD [ BIT(S) ]     | VALUES                               | EFFECTIVE<br>RESOLUTION (BITS) | OUTPUT RANGE     |
|----------------|----------------------|----------------------|--------------------------------------|--------------------------------|------------------|
| All            | RESET_DEV, addr 0x1C | OUTPUT_GAIN [ 10:9 ] | 00 (default): Gain =1 (0 bits shift) | 12                             | 100% full scale  |
|                |                      |                      | 01: Gain = 4 (2 bits left shift)     | 14                             | 25% full scale   |
|                |                      |                      | 10: Gain = 8 (3 bits left shift)     | 15                             | 12.5% full scale |
|                |                      |                      | 11 : Gain = 16 (4 bits left shift)   | 16                             | 6.25% full scale |

(1) Channels 2 and 3 are available for LDC1314 only.

**Example:** If the conversion result for a channel is 0x07A3, with OUTPUT\_GAIN=0x0, the reported output code is 0x07A. If OUTPUT\_GAIN is set to 0x3 in the same condition, then the reported output code is 0x7A3. The original 4 MSBs (0x0) are no longer accessible. [Figure 14](#) shows the segments of the 16-bit sample that is reported for each possible gain setting.



**Figure 14. Conversion Data Output Gain**

The sensor frequency can be determined by:

$$f_{\text{SENSOR}x} = \text{CHx\_FIN\_DIVIDER} * f_{\text{REF}x} \left( \frac{\text{DATA}x}{2^{(12+\text{OUTPUT\_GAIN})}} + \frac{\text{CHx\_OFFSET}}{2^{16}} \right)$$

where

- DATAx = Conversion result from the DATA\_CHx register
- CHx\_OFFSET = Offset value set in the OFFSET\_CHx register
- OUTPUT\_GAIN = output multiplication factor set in the RESET\_DEVICE.OUTPUT\_GAIN register

(8)

### 8.3.3 Current Drive Control Registers

The registers listed in [Table 9](#) are used to control the sensor drive current. The recommendations listed in the last column of [Table 9](#) should be followed.

Auto-calibration mode is used to determine the optimal sensor drive current for a fixed sensor design. This mode should only be used during system prototyping.

The auto-amplitude correction attempts to maintain the sensor oscillation amplitude between 1.2V and 1.8V by adjusting the sensor drive current between conversions. When auto-amplitude correction is enabled, the output data may show non-monotonic behavior due to an adjustment in drive current. Auto-amplitude correction is only recommended for low-precision applications.

A high sensor current drive mode can be enabled to drive sensor coils with > 1.5mA on channel 0, only in single channel mode. This feature can be used when the sensor  $R_p$  is lower than 1k $\Omega$ . Set the HIGH\_CURRENT\_DRV register bit to b1 to enable this mode.

**Table 9. Current Drive Control Registers**

| CHANNEL <sup>(1)</sup> | REGISTER                     | FIELD [ BIT(S) ]         | VALUE                                                                                                                                                     |
|------------------------|------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| All                    | CONFIG, addr 0x1A            | SENSOR_ACTIVATE_SEL [11] | Sets current drive for sensor activation. Recommended value is b0 (Full Current mode).                                                                    |
|                        |                              | RP_OVERRIDE_EN [12]      | Set to b1 for normal operation (RP override enabled)                                                                                                      |
|                        |                              | AUTO_AMP_DIS [10]        | Disables Automatic amplitude correction. Set to b1 for normal operation (disabled)                                                                        |
| 0                      | CONFIG, addr 0x1A            | HIGH_CURRENT_DRV [6]     | b0 = normal current drive (1.5 mA)<br>b1 = Increased current drive (> 1.5 mA) for Ch 0 in single channel mode only. Cannot be used in multi-channel mode. |
| 0                      | DRIVE_CURRENT_CH0, addr 0x1E | CH0_IDRIVE [15:11]       | Drive current used during the settling and conversion time for Ch. 0 (auto-amplitude correction must be disabled and RP override=1 )                      |
|                        |                              | CH0_INIT_IDRIVE [10:6]   | Initial drive current stored during auto-calibration. Not used for normal operation.                                                                      |
| 1                      | DRIVE_CURRENT_CH1, addr 0x1F | CH1_IDRIVE [15:11]       | Drive current used during the settling and conversion time for Ch. 1 (auto-amplitude correction must be disabled and RP override=1 )                      |
|                        |                              | CH1_INIT_IDRIVE [10:6]   | Initial drive current stored during auto-calibration. Not used for normal operation.                                                                      |
| 2                      | DRIVE_CURRENT_CH2, addr 0x20 | CH2_IDRIVE [15:11]       | Drive current used during the settling and conversion time for Ch. 2 (auto-amplitude correction must be disabled and RP override=1 )                      |
|                        |                              | CH2_INIT_IDRIVE [10:6]   | Initial drive current stored during auto-calibration. Not used for normal operation.                                                                      |

(1) Channels 2 and 3 are available for LDC1314 only.

**Table 9. Current Drive Control Registers (continued)**

| CHANNEL <sup>(1)</sup> | REGISTER                     | FIELD [ BIT(S) ]       | VALUE                                                                                                                                 |
|------------------------|------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 3                      | DRIVE_CURRENT_CH3, addr 0x21 | CH3_IDRIVE [15:11]     | Drive current used during the settling and conversion time for Ch. 3 (auto-amplitude correction must be disabled and RP over ride=1 ) |
|                        |                              | CH3_INIT_IDRIVE [10:6] | Initial drive current stored during auto-calibration. Not used for normal operation.                                                  |

If the  $R_P$  value of the sensor attached to channel x is known, [Table 10](#) can be used to select the 5-bit value to be programmed into the CHx\_IDRIVE field for the channel. If the measured  $R_P$  (at maximum spacing between the sensor and the target) falls between two of the table values, use the current drive value associated with the lower  $R_P$  from [Table 10](#). All channels that use an identical sensor/target configuration should use the same IDRIVE value.

**Table 10. CHx\_IDRIVE Values for Maximum Measured  $R_P$ .**

| MEASURED $R_P$ (k $\Omega$ ) | CHx_IDRIVE REGISTER FIELD VALUE, BINARY (BITS [15:11]) | NOMINAL CURRENT ( $\mu$ A) |
|------------------------------|--------------------------------------------------------|----------------------------|
| 90.0                         | b00000                                                 | 16                         |
| 77.6                         | b00001                                                 | 18                         |
| 66.9                         | b00010                                                 | 20                         |
| 57.6                         | b00011                                                 | 23                         |
| 49.7                         | b00100                                                 | 28                         |
| 42.8                         | b00101                                                 | 32                         |
| 36.9                         | b00110                                                 | 40                         |
| 31.8                         | b00111                                                 | 46                         |
| 27.4                         | b01000                                                 | 52                         |
| 23.3                         | b01001                                                 | 59                         |
| 20.4                         | b01010                                                 | 72                         |
| 17.6                         | b01011                                                 | 82                         |
| 15.1                         | b01100                                                 | 95                         |
| 13.0                         | b01101                                                 | 110                        |
| 11.2                         | b01110                                                 | 127                        |
| 9.7                          | b01111                                                 | 146                        |
| 8.4                          | b10000                                                 | 169                        |
| 7.2                          | b10001                                                 | 195                        |
| 6.2                          | b10010                                                 | 212                        |
| 5.4                          | b10011                                                 | 244                        |
| 4.6                          | b10100                                                 | 297                        |
| 4.0                          | b10101                                                 | 342                        |
| 3.4                          | b10110                                                 | 424                        |
| 3.0                          | b10111                                                 | 489                        |
| 2.5                          | b11000                                                 | 551                        |
| 2.2                          | b11001                                                 | 635                        |
| 1.9                          | b11010                                                 | 763                        |
| 1.6                          | b11011                                                 | 880                        |
| 1.4                          | b11100                                                 | 1017                       |
| 1.2                          | b11101                                                 | 1173                       |
| 1.0                          | b11110                                                 | 1355                       |
| 0.9                          | b11111                                                 | 1563                       |

If the  $R_p$  is not known, the following steps for auto-calibration can be used to configure the needed drive current, either during system prototyping, or during normal startup if feasible:

1. Set target at the maximum planned operating distance from the sensor.
2. Place the device into SLEEP mode by setting CONFIG.SLEEP\_MODE\_EN to b0.
3. Program the desired values of SETTLECOUNT and RCOUNT values for the channel.
4. Enable auto-calibration by setting RP\_OVERDRIVE\_EN to b0.
5. Take the device out of SLEEP mode by setting CONFIG.SLEEP\_MODE\_EN to b1.
6. Allow the device to perform at least one measurement, with the target stable (fixed) at the maximum operating range.
7. Read the channel current drive value from the appropriate DRIVE\_CURRENT\_CHx register (addresses 0x1e, 0x1f, 0x20, or 0x21), in the CHx\_INIT\_DRIVE field (bits 10:6). Save this value.
8. During startup for normal operating mode, write the value saved from the CHx\_INIT\_DRIVE bit field into the Chx\_IDRIVE bit field (bits 15:11).
9. During normal operating mode, the RP\_OVERRIDE\_EN must set to b1 to force the fixed current drive.

If the current drive results in the oscillation amplitude greater than 1.8V, the internal ESD clamping circuit will become active. This may cause the sensor frequency to shift so that the output values no longer represent a valid system state. If the current drive is set at a lower value, the SNR performance of the system will decrease, and at near zero target range, oscillations may completely stop, and the output sample values will be all zeroes.

### 8.3.4 Device Status Registers

The registers listed in [Table 11](#) may be used to read device status.

**Table 11. Status Registers**

| CHANNEL <sup>(1)</sup> | REGISTER                | FIELDS [ BIT(S) ]                                                           | VALUES                                                                                       |
|------------------------|-------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| All                    | STATUS, addr 0x18       | 12 fields are available that contain various status bits [ 15:0 ]           | Refer to Register Maps section for a description of the individual status bits.              |
| All                    | ERROR_CONFIG, addr 0x19 | 12 fields are available that are used to configure error reporting [ 15:0 ] | Refer to Register Maps section for a description of the individual error configuration bits. |

(1) Channels 2 and 3 are available for LDC1314 only.

See the STATUS and ERROR\_CONFIG register description in the Register Map section. These registers can be configured to trigger an interrupt on the INTB pin for certain events. The following conditions must be met:

1. The error or status register must be unmasked by enabling the appropriate register bit in the ERROR\_CONFIG register
2. The INTB function must be enabled by setting CONFIG.INTB\_DIS to 0

When a bit field in the STATUS register is set, the entire STATUS register content is held until read or until the DATA\_CHx register is read. Reading also de-asserts INTB.

Interrupts are cleared by one of the following events:

1. Entering Sleep Mode
2. Power-on reset (POR)
3. Device enters Shutdown Mode (SD is asserted)
4. S/W reset
5. I2C read of the STATUS register: Reading the STATUS register will clear any error status bit set in STATUS along with the ERR\_CHAN field and de-assert INTB

Setting register CONFIG.INTB\_DIS to b1 disables the INTB function and holds the INTB pin high.

### 8.3.5 Input Deglitch Filter

The input deglitch filter suppresses EMI and ringing above the sensor frequency. It does not impact the conversion result as long as its bandwidth is configured to be above the maximum sensor frequency. The input deglitch filter can be configured in MUX\_CONFIG.DEGLITCH register field as shown in [Table 12](#). For optimal performance, TI recommends to select the lowest setting that exceeds the sensor oscillation frequency. For example, if the maximum sensor frequency is 2.0 MHz, choose MUX\_CONFIG.DEGLITCH = b100 (3.3 MHz).

**Table 12. Input deglitch filter register**

| CHANNEL <sup>(1)</sup> | MUX_CONFIG.DEGLITCH REGISTER VALUE | DEGLITCH FREQUENCY |
|------------------------|------------------------------------|--------------------|
| ALL                    | 001                                | 1 MHz              |
| ALL                    | 100                                | 3.3 MHz            |
| ALL                    | 101                                | 10 MHz             |
| ALL                    | 011                                | 33 MHz             |

(1) Channels 2 and 3 are available for LDC1314 only.

## 8.4 Device Functional Modes

### 8.4.1 Startup Mode

When the LDC powers up, it enters into Sleep Mode and will wait for configuration. Once the device is configured, exit Sleep Mode by setting CONFIG.SLEEP\_MODE\_EN to b0.

TI recommends to configure the LDC while in Sleep Mode. If a setting on the LDC needs to be changed, return the device to Sleep Mode, change the appropriate register, and then exit Sleep Mode.

### 8.4.2 Normal (Conversion) Mode

When operating in the normal (conversion) mode, the LDC is periodically sampling the frequency of the sensor(s) and generating sample outputs for the active channel(s).

### 8.4.3 Sleep Mode

Sleep Mode is entered by setting the CONFIG.SLEEP\_MODE\_EN register field to 1. While in this mode, the device configuration is maintained. To exit Sleep Mode, set the CONFIG.SLEEP\_MODE\_EN register field to 0. After setting CONFIG.SLEEP\_MODE\_EN to b0, sensor activation for the first conversion will begin after 16,384  $f_{INT}$  clock cycles. While in Sleep Mode the I2C interface is functional so that register reads and writes can be performed. While in Sleep Mode, no conversions are performed. In addition, entering Sleep Mode will clear conversion results, any error condition and de-assert the INTB pin.

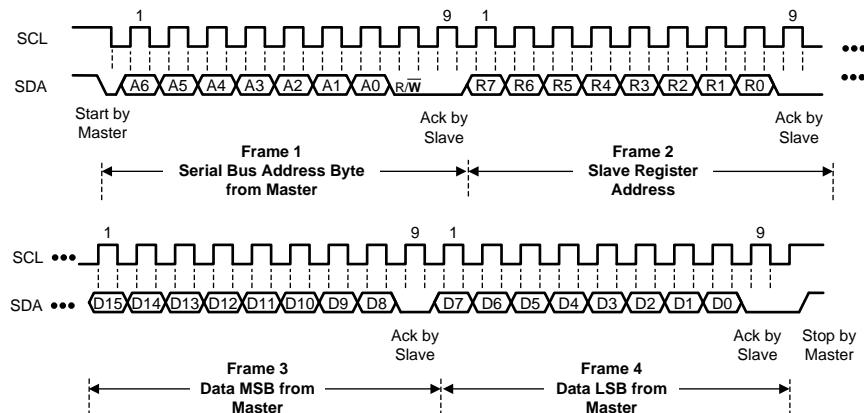
### 8.4.4 Shutdown Mode

When the SD pin is set to high, the LDC will enter Shutdown Mode. Shutdown Mode is the lowest power state. To exit Shutdown Mode, set the SD pin to low. Entering Shutdown Mode will return all registers to their default state.

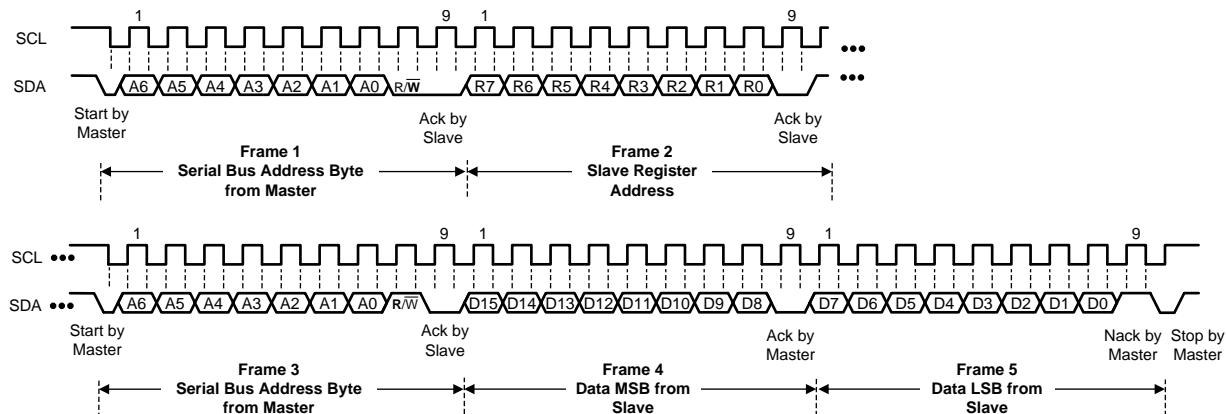
While in Shutdown Mode, no conversions are performed. In addition, entering Shutdown Mode will clear any error condition and de-assert the INTB pin. While the device is in Shutdown Mode, is not possible to read to or write from the device via the I2C interface.

#### 8.4.4.1 Reset

The LDC can be reset by writing to RESET\_DEV.RESET\_DEV. Any active conversion will stop and all register values will return to their default value. This register bit will always return 0b when read.


## 8.5 Programming

The LDC device uses an I2C interface to access control and data registers.


### 8.5.1 I2C Interface Specifications

The LDC uses an extended start sequence with I2C for register access. The maximum speed of the I2C interface is 400kbit/s. This sequence follows the standard I2C 7bit slave address followed by an 8bit pointer register byte to set the register address. When the ADDR pin is set low, the LDC I2C address is 0x2A; when the ADDR pin is set high, the LDC I2C address is 0x2B. The ADDR pin must not change state after the LDC exits Shutdown Mode.

## Programming (continued)



**Figure 15. I2C Write Register Sequence**



**Figure 16. I2C Read Register Sequence**

## 8.6 Register Maps

### 8.6.1 Register List

Fields indicated with Reserved must be written only with indicated values, otherwise improper device operation may occur. The R/W column indicates the Read-Write status of the corresponding field. A 'R/W' entry indicates read and write capability, a 'R' indicates read-only, and a 'W' indicates write-only.

Figure 17. Register List

| ADDRESS | NAME                | DEFAULT VALUE | DESCRIPTION                                                        |
|---------|---------------------|---------------|--------------------------------------------------------------------|
| 0x00    | DATA_CH0            | 0x0000        | Channel 0 Conversion Result and Error Status                       |
| 0x02    | DATA_CH1            | 0x0000        | Channel 1 Conversion Result and Error Status                       |
| 0x04    | DATA_CH2            | 0x0000        | Channel 2 Conversion Result and Error Status (LDC1314 only)        |
| 0x06    | DATA_CH3            | 0x0000        | Channel 3 Conversion Result and Error Status (LDC1314 only)        |
| 0x08    | RCOUNT_CH0          | 0x0080        | Reference Count setting for Channel 0                              |
| 0x09    | RCOUNT_CH1          | 0x0080        | Reference Count setting for Channel 1                              |
| 0x0A    | RCOUNT_CH2          | 0x0080        | Reference Count setting for Channel 2. (LDC1314 only)              |
| 0x0B    | RCOUNT_CH3          | 0x0080        | Reference Count setting for Channel 3.(LDC1314 only)               |
| 0x0C    | OFFSET_CH0          | 0x0000        | Offset value for Channel 0                                         |
| 0x0D    | OFFSET_CH1          | 0x0000        | Offset value for Channel 1                                         |
| 0x0E    | OFFSET_CH2          | 0x0000        | Offset value for Channel 2 (LDC1314 only)                          |
| 0x0F    | OFFSET_CH3          | 0x0000        | Offset value for Channel 3 (LDC1314 only)                          |
| 0x10    | SETTLECOUNT_CH0     | 0x0000        | Channel 0 Settling Reference Count                                 |
| 0x11    | SETTLECOUNT_CH1     | 0x0000        | Channel 1 Settling Reference Count                                 |
| 0x12    | SETTLECOUNT_CH2     | 0x0000        | Channel 2 Settling Reference Count (LDC1314 only)                  |
| 0x13    | SETTLECOUNT_CH3     | 0x0000        | Channel 3 Settling Reference Count (LDC1314 only)                  |
| 0x14    | CLOCK_DIVIDERS_C_H0 | 0x0000        | Reference and Sensor Divider settings for Channel 0                |
| 0x15    | CLOCK_DIVIDERS_C_H1 | 0x0000        | Reference and Sensor Divider settings for Channel 1                |
| 0x16    | CLOCK_DIVIDERS_C_H2 | 0x0000        | Reference and Sensor Divider settings for Channel 2 (LDC1314 only) |
| 0x17    | CLOCK_DIVIDERS_C_H3 | 0x0000        | Reference and Sensor Divider settings for Channel 3 (LDC1314 only) |
| 0x18    | STATUS              | 0x0000        | Device Status Report                                               |
| 0x19    | ERROR_CONFIG        | 0x0000        | Error Reporting Configuration                                      |
| 0x1A    | CONFIG              | 0x2801        | Conversion Configuration                                           |
| 0x1B    | MUX_CONFIG          | 0x020F        | Channel Multiplexing Configuration                                 |
| 0x1C    | RESET_DEV           | 0x0000        | Reset Device                                                       |
| 0x1E    | DRIVE_CURRENT_CH_0  | 0x0000        | Channel 0 sensor current drive configuration                       |
| 0x1F    | DRIVE_CURRENT_CH_1  | 0x0000        | Channel 1 sensor current drive configuration                       |
| 0x20    | DRIVE_CURRENT_CH_2  | 0x0000        | Channel 2 sensor current drive configuration (LDC1314 only)        |
| 0x21    | DRIVE_CURRENT_CH_3  | 0x0000        | Channel 3 sensor current drive configuration (LDC1314 only)        |
| 0x7E    | MANUFACTURER_ID     | 0x5449        | Manufacturer ID                                                    |
| 0x7F    | DEVICE_ID           | 0x3054        | Device ID                                                          |

### 8.6.2 Address 0x00, DATA\_CH0

**Figure 18. Address 0x00, DATA\_CH0**

| 15         | 14         | 13         | 12         | 11 | 10 | 9 | 8           |
|------------|------------|------------|------------|----|----|---|-------------|
| CH0_ERR UR | CH0_ERR OR | CH0_ERR WD | CH0_ERR AE |    |    |   | DATA0[11:0] |
| 7          | 6          | 5          | 4          | 3  | 2  | 1 | 0           |

DATA0[11:0]

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 13. Address 0x00, DATA\_CH0 Field Descriptions**

| Bit  | Field       | Type | Reset          | Description                                                                   |
|------|-------------|------|----------------|-------------------------------------------------------------------------------|
| 15   | CH0_ERR UR  | R    | 0              | Channel 0 Conversion Under-range Error Flag. Cleared by reading the bit.      |
| 14   | CH0_ERR OR  | R    | 0              | Channel 0 Conversion Over-range Error Flag. Cleared by reading the bit.       |
| 13   | CH0_ERR WD  | R    | 0              | Channel 0 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 12   | CH0_ERR AE  | R    | 0              | Channel 0 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 11:0 | DATA0[11:0] | R    | 0000 0000 0000 | Channel 0 Conversion Result                                                   |

### 8.6.3 Address 0x02, DATA\_CH1

**Figure 19. Address 0x02, DATA\_CH1**

| 15         | 14         | 13         | 12         | 11 | 10 | 9 | 8           |
|------------|------------|------------|------------|----|----|---|-------------|
| CH1_ERR UR | CH1_ERR OR | CH1_ERR WD | CH1_ERR AE |    |    |   | DATA1[11:0] |
| 7          | 6          | 5          | 4          | 3  | 2  | 1 | 0           |

DATA1[11:0]

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 14. Address 0x02, DATA\_CH1 Field Descriptions**

| Bit  | Field       | Type | Reset          | Description                                                                   |
|------|-------------|------|----------------|-------------------------------------------------------------------------------|
| 15   | CH1_ERR UR  | R    | 0              | Channel 1 Conversion Under-range Error Flag. Cleared by reading the bit.      |
| 14   | CH1_ERR OR  | R    | 0              | Channel 1 Conversion Over-range Error Flag. Cleared by reading the bit.       |
| 13   | CH1_ERR WD  | R    | 0              | Channel 1 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 12   | CH1_ERR AE  | R    | 0              | Channel 1 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 11:0 | DATA1[11:0] | R    | 0000 0000 0000 | Channel 1 Conversion Result                                                   |

### 8.6.4 Address 0x04, DATA\_CH2 (LDC1314 only)

Figure 20. Address 0x04, DATA\_CH2

| 15         | 14         | 13         | 12         | 11          | 10 | 9 | 8           |
|------------|------------|------------|------------|-------------|----|---|-------------|
| CH2_ERR UR | CH2_ERR OR | CH2_ERR WD | CH2_ERR AE |             |    |   | DATA2[11:0] |
| 7          | 6          | 5          | 4          | 3           | 2  | 1 | 0           |
|            |            |            |            | DATA2[11:0] |    |   |             |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. Address 0x04, DATA\_CH2 Field Descriptions

| Bit  | Field       | Type | Reset          | Description                                                                   |
|------|-------------|------|----------------|-------------------------------------------------------------------------------|
| 15   | CH2_ERR UR  | R    | 0              | Channel 2 Conversion Under-range Error Flag. Cleared by reading the bit.      |
| 14   | CH2_ERR OR  | R    | 0              | Channel 2 Conversion Over-range Error Flag. Cleared by reading the bit.       |
| 13   | CH2_ERR WD  | R    | 0              | Channel 2 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 12   | CH2_ERR AE  | R    | 0              | Channel 2 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 11:0 | DATA2[11:0] | R    | 0000 0000 0000 | Channel 2 Conversion Result                                                   |

### 8.6.5 Address 0x06, DATA\_CH3 (LDC1314 only)

Figure 21. Address 0x06, DATA\_CH3

| 15         | 14         | 13         | 12         | 11          | 10 | 9 | 8           |
|------------|------------|------------|------------|-------------|----|---|-------------|
| CH3_ERR UR | CH3_ERR OR | CH3_ERR WD | CH3_ERR AE |             |    |   | DATA3[11:0] |
| 7          | 6          | 5          | 4          | 3           | 2  | 1 | 0           |
|            |            |            |            | DATA3[11:0] |    |   |             |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. Address 0x06, DATA\_CH3 Field Descriptions

| Bit  | Field       | Type | Reset          | Description                                                                   |
|------|-------------|------|----------------|-------------------------------------------------------------------------------|
| 15   | CH3_ERR UR  | R    | 0              | Channel 3 Conversion Under-range Error Flag. Cleared by reading the bit.      |
| 14   | CH3_ERR OR  | R    | 0              | Channel 3 Conversion Over-range Error Flag. Cleared by reading the bit.       |
| 13   | CH3_ERR WD  | R    | 0              | Channel 3 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 12   | CH3_ERR AE  | R    | 0              | Channel 3 Conversion Watchdog Timeout Error Flag. Cleared by reading the bit. |
| 11:0 | DATA3[11:0] | R    | 0000 0000 0000 | Channel 3 Conversion Result                                                   |

### 8.6.6 Address 0x08, RCOUNT\_CH0

**Figure 22. Address 0x08, RCOUNT\_CH0**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH0_RCOUNT |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH0_RCOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 17. Address 0x08, RCOUNT\_CH0 Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                                                                                                            |  |  |  |  |
|------|------------|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 15:0 | CH0_RCOUNT | R/W  | 0000 0000<br>1000 0000 | Channel 0 Reference Count Conversion Interval Time<br>0x0000-0x0004: Reserved<br>0x0005-0xFFFF: Conversion Time ( $t_{C0}$ ) =<br>(CH0_RCOUNT $\times$ 16)/ $f_{REF0}$ |  |  |  |  |

### 8.6.7 Address 0x09, RCOUNT\_CH1

**Figure 23. Address 0x09, RCOUNT\_CH1**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH1_RCOUNT |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH1_RCOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 18. Address 0x09, RCOUNT\_CH1 Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                                                                                                            |  |  |  |  |
|------|------------|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 15:0 | CH1_RCOUNT | R/W  | 0000 0000<br>1000 0000 | Channel 1 Reference Count Conversion Interval Time<br>0x0000-0x0004: Reserved<br>0x0005-0xFFFF: Conversion Time ( $t_{C1}$ ) =<br>(CH1_RCOUNT $\times$ 16)/ $f_{REF1}$ |  |  |  |  |

### 8.6.8 Address 0x0A, RCOUNT\_CH2 (LDC1314 only)

**Figure 24. Address 0x0A, RCOUNT\_CH2**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH2_RCOUNT |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH2_RCOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 19. Address 0x0A, RCOUNT\_CH2 Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                                                                                                            |  |  |  |  |
|------|------------|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 15:0 | CH2_RCOUNT | R/W  | 0000 0000<br>1000 0000 | Channel 2 Reference Count Conversion Interval Time<br>0x0000-0x0004: Reserved<br>0x0005-0xFFFF: Conversion Time ( $t_{C2}$ ) =<br>(CH2_RCOUNT $\times$ 16)/ $f_{REF2}$ |  |  |  |  |

### 8.6.9 Address 0x0B, RCOUNT\_CH3 (LDC1314 only)

**Figure 25. Address 0x0B, RCOUNT\_CH3**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH3_RCOUNT |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH3_RCOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 20. Address 0x0B, RCOUNT\_CH3 Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                                                                                                           |  |  |  |  |
|------|------------|------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 15:0 | CH3_RCOUNT | R/W  | 0000 0000<br>1000 0000 | Channel 3 Reference Count Conversion Interval Time<br>0x0000-0x0004: Reserved<br>0x0005-0xFFFF: Conversion Time ( $t_{C3}$ )=<br>(CH3_RCOUNT $\times$ 16)/ $f_{REF3}$ |  |  |  |  |

### 8.6.10 Address 0x0C, OFFSET\_CH0

**Figure 26. Address 0x0C, CH0\_OFFSET**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH0_OFFSET |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH0_OFFSET |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 21. CH0\_OFFSET Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                                       |  |  |  |  |
|------|------------|------|------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| 15:0 | CH0_OFFSET | R/W  | 0000 0000<br>0000 0000 | Channel 0 Conversion Offset. $f_{OFFSET\_0} =$<br>(CH0_OFFSET/2 <sup>16</sup> ) $\times f_{REF0}$ |  |  |  |  |

### 8.6.11 Address 0x0D, OFFSET\_CH1

**Figure 27. Address 0x0D, CH1\_OFFSET**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH1_OFFSET |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH1_OFFSET |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 22. Address 0x0D, OFFSET\_CH1 Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                                       |  |  |  |  |
|------|------------|------|------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| 15:0 | CH1_OFFSET | R/W  | 0000 0000<br>0000 0000 | Channel 1 Conversion Offset. $f_{OFFSET\_1} =$<br>(CH1_OFFSET/2 <sup>16</sup> ) $\times f_{REF1}$ |  |  |  |  |

### 8.6.12 Address 0x0E, OFFSET\_CH2 (LDC1314 only)

**Figure 28. Address 0x0E, OFFSET\_CH2**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH2_OFFSET |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH2_OFFSET |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 23. Address 0x0E, OFFSET\_CH2 Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                    |
|------|------------|------|------------------------|--------------------------------------------------------------------------------|
| 15:0 | CH2_OFFSET | R/W  | 0000 0000<br>0000 0000 | Channel 2 Conversion Offset. $f_{OFFSET\_2} = (CH2\_OFFSET/2^{16}) * f_{REF2}$ |

### 8.6.13 Address 0x0F, OFFSET\_CH3 (LDC1314 only)

**Figure 29. Address 0x0F, OFFSET\_CH3**

|            |    |    |    |    |    |   |   |
|------------|----|----|----|----|----|---|---|
| 15         | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH3_OFFSET |    |    |    |    |    |   |   |
| 7          | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH3_OFFSET |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 24. Address 0x0F, OFFSET\_CH3 Field Descriptions**

| Bit  | Field      | Type | Reset                  | Description                                                                    |
|------|------------|------|------------------------|--------------------------------------------------------------------------------|
| 15:0 | CH3_OFFSET | R/W  | 0000 0000<br>0000 0000 | Channel 3 Conversion Offset. $f_{OFFSET\_3} = (CH3\_OFFSET/2^{16}) * f_{REF3}$ |

### 8.6.14 Address 0x10, SETTLECOUNT\_CH0

**Figure 30. Address 0x10, SETTLECOUNT\_CH0**

|                 |    |    |    |    |    |   |   |
|-----------------|----|----|----|----|----|---|---|
| 15              | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH0_SETTLECOUNT |    |    |    |    |    |   |   |
| 7               | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH0_SETTLECOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 25. Address 0x11, SETTLECOUNT\_CH0 Field Descriptions**

| Bit  | Field           | Type | Reset                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-----------------|------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:0 | CH0_SETTLECOUNT | R/W  | 0000 0000<br>0000 0000 | Channel 0 Conversion Settling<br>The LDC will use this settling time to allow the LC sensor to stabilize before initiation of a conversion on Channel 0.<br>If the amplitude has not settled prior to the conversion start, an Amplitude error will be generated if reporting of this type of error is enabled.<br>0x0000: Settle Time ( $t_{S0}$ )= $32 \div f_{REF0}$<br>0x0001: Settle Time ( $t_{S0}$ )= $32 \div f_{REF0}$<br>0x0002- 0xFFFF: Settle Time ( $t_{S0}$ )= $(CH0\_SETTLECOUNT \times 16) \div f_{REF0}$ |

### 8.6.15 Address 0x11, SETTLECOUNT\_CH1

Figure 31. Address 0x11, SETTLECOUNT\_CH1

|                 |    |    |    |    |    |   |   |
|-----------------|----|----|----|----|----|---|---|
| 15              | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH1_SETTLECOUNT |    |    |    |    |    |   |   |
| 7               | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH1_SETTLECOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 26. Address 0x12, SETTLECOUNT\_CH1 Field Descriptions

| Bit  | Field           | Type | Reset                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|-----------------|------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:0 | CH1_SETTLECOUNT | R/W  | 0000 0000<br>0000 0000 | Channel 1 Conversion Settling<br>The LDC will use this settling time to allow the LC sensor to stabilize before initiation of a conversion on a Channel 1. If the amplitude has not settled prior to the conversion start, an Amplitude error will be generated if reporting of this type of error is enabled.<br>0x0000: Settle Time ( $t_{S1}$ )= $32 \div f_{REF1}$<br>0x0001: Settle Time ( $t_{S1}$ )= $32 \div f_{REF1}$<br>0x0002- 0xFFFF: Settle Time ( $t_{S1}$ )= $(CH1\_SETTLECOUNT \times 16) \div f_{REF1}$ |

### 8.6.16 Address 0x12, SETTLECOUNT\_CH2 (LDC1314 only)

Figure 32. Address 0x12, SETTLECOUNT\_CH2

|                 |    |    |    |    |    |   |   |
|-----------------|----|----|----|----|----|---|---|
| 15              | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH2_SETTLECOUNT |    |    |    |    |    |   |   |
| 7               | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH2_SETTLECOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 27. Address 0x12, SETTLECOUNT\_CH2 Field Descriptions

| Bit  | Field           | Type | Reset                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-----------------|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:0 | CH2_SETTLECOUNT | R/W  | 0000 0000<br>0000 0000 | Channel 2 Conversion Settling<br>The LDC will use this settling time to allow the LC sensor to stabilize before initiation of a conversion on Channel 2. If the amplitude has not settled prior to the conversion start, an Amplitude error will be generated if reporting of this type of error is enabled.<br>0x0000: Settle Time ( $t_{S2}$ )= $32 \div f_{REF2}$<br>0x0001: Settle Time ( $t_{S2}$ )= $32 \div f_{REF2}$<br>0x0002- 0xFFFF: Settle Time ( $t_{S2}$ )= $(CH2\_SETTLECOUNT \times 16) \div f_{REF2}$ |

### 8.6.17 Address 0x13, SETTLECOUNT\_CH3 (LDC1314 only)

**Figure 33. Address 0x13, SETTLECOUNT\_CH3**

|                 |    |    |    |    |    |   |   |
|-----------------|----|----|----|----|----|---|---|
| 15              | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| CH3_SETTLECOUNT |    |    |    |    |    |   |   |
| 7               | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| CH3_SETTLECOUNT |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 28. Address 0x13, SETTLECOUNT\_CH3 Field Descriptions**

| Bit  | Field           | Type | Reset                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|-----------------|------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:0 | CH3_SETTLECOUNT | R/W  | 0000 0000<br>0000 0000 | Channel 3 Conversion Settling<br>The LDC will use this settling time to allow the LC sensor to stabilize before initiation of a conversion on Channel 3. If the amplitude has not settled prior to the conversion start, an Amplitude error will be generated if reporting of this type of error is enabled<br>0x0000: Settle Time ( $t_{S3}$ )= $32 \div f_{REF3}$<br>0x0001: Settle Time ( $t_{S3}$ )= $32 \div f_{REF3}$<br>0x0002- 0xFFFF: Settle Time ( $t_{S3}$ )= $(CH3\_SETTLECOUNT \times 16) \div f_{REF3}$ |

### 8.6.18 Address 0x14, CLOCK\_DIVIDERS\_CH0

**Figure 34. Address 0x14, CLOCK\_DIVIDERS\_CH0**

|                  |    |    |    |          |    |                  |   |
|------------------|----|----|----|----------|----|------------------|---|
| 15               | 14 | 13 | 12 | 11       | 10 | 9                | 8 |
| CH0_FIN_DIVIDER  |    |    |    | RESERVED |    | CH0_FREF_DIVIDER |   |
| 7                | 6  | 5  | 4  | 3        | 2  | 1                | 0 |
| CH0_FREF_DIVIDER |    |    |    |          |    |                  |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 29. Address 0x14, CLOCK\_DIVIDERS\_CH0 Field Descriptions**

| Bit   | Field            | Type | Reset           | Description                                                                                                                                                                                                                                              |
|-------|------------------|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:12 | CH0_FIN_DIVIDER  | R/W  | 0000            | Channel 0 Input Divider Sets the divider for Channel 0 input. Must be set to $\geq 2$ if the Sensor frequency is $\geq 8.75\text{MHz}$<br>b0000: Reserved. Do not use.<br>CH0_FIN_DIVIDER $\geq$ b0001:<br>$f_{in0} = f_{SENSOR0} / CH0\_FIN\_DIVIDER$   |
| 11:10 | RESERVED         | R/W  | 00              | Reserved. Set to b00.                                                                                                                                                                                                                                    |
| 9:0   | CH0_FREF_DIVIDER | R/W  | 00 0000<br>0000 | Channel 0 Reference Divider Sets the divider for Channel 0 reference. Use this to scale the maximum conversion frequency.<br>b00'0000'0000: Reserved. Do not use.<br>CH0_FREF_DIVIDER $\geq$ b00'0000'0001:<br>$f_{REF0} = f_{CLK} / CH0\_FREF\_DIVIDER$ |

### 8.6.19 Address 0x15, CLOCK\_DIVIDERS\_CH1

Figure 35. Address 0x15, CLOCK\_DIVIDERS\_CH1

|                  |    |    |    |          |    |                  |   |
|------------------|----|----|----|----------|----|------------------|---|
| 15               | 14 | 13 | 12 | 11       | 10 | 9                | 8 |
| CH1_FIN_DIVIDER  |    |    |    | RESERVED |    | CH1_FREF_DIVIDER |   |
| 7                | 6  | 5  | 4  | 3        | 2  | 1                | 0 |
| CH1_FREF_DIVIDER |    |    |    |          |    |                  |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 30. Address 0x15, CLOCK\_DIVIDERS\_CH1 Field Descriptions

| Bit   | Field            | Type | Reset           | Description                                                                                                                                                                                                                                          |
|-------|------------------|------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:12 | CH1_FIN_DIVIDER  | R/W  | 0000            | Channel 1 Input Divider. Sets the divider for Channel 1 input. Used when the Sensor frequency is greater than the maximum $f_{IN}$ .<br>b0000: Reserved. Do not use.<br>CH1_FIN_DIVIDER $\geq$ b0001: $f_{IN1} = f_{SENSOR1}/CH1\_FIN\_DIVIDER$      |
| 11:10 | RESERVED         | R/W  | 00              | Reserved. Set to b00.                                                                                                                                                                                                                                |
| 9:0   | CH1_FREF_DIVIDER | R/W  | 00 0000<br>0000 | Channel 1 Reference Divider. Sets the divider for Channel 1 reference. Use this to scale the maximum conversion frequency.<br>b00'0000'0000: Reserved. Do not use.<br>CH1_FREF_DIVIDER $\geq$ b00'0000'0001: $f_{REF1} = f_{CLK}/CH1\_FREF\_DIVIDER$ |

### 8.6.20 Address 0x16, CLOCK\_DIVIDERS\_CH2 (LDC1314 only)

Figure 36. Address 0x16, CLOCK\_DIVIDERS\_CH2

|                  |    |    |    |          |    |                  |   |
|------------------|----|----|----|----------|----|------------------|---|
| 15               | 14 | 13 | 12 | 11       | 10 | 9                | 8 |
| CH2_FIN_DIVIDER  |    |    |    | RESERVED |    | CH2_FREF_DIVIDER |   |
| 7                | 6  | 5  | 4  | 3        | 2  | 1                | 0 |
| CH2_FREF_DIVIDER |    |    |    |          |    |                  |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. Address 0x16, CLOCK\_DIVIDERS\_CH2 Field Descriptions

| Bit   | Field            | Type | Reset           | Description                                                                                                                                                                                                                                          |
|-------|------------------|------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:12 | CH2_FIN_DIVIDER  | R/W  | 0000            | Channel 2 Input Divider. Sets the divider for Channel 2 input. Must be set to $\geq 2$ if the Sensor frequency is $\geq 8.75\text{MHz}$ .<br>b0000: Reserved. Do not use.<br>CH2_FIN_DIVIDER $\geq$ b0001: $f_{IN2} = f_{SENSOR2}/CH2\_FIN\_DIVIDER$ |
| 11:10 | RESERVED         | R/W  | 00              | Reserved. Set to b00.                                                                                                                                                                                                                                |
| 9:0   | CH2_FREF_DIVIDER | R/W  | 00 0000<br>0000 | Channel 2 Reference Divider. Sets the divider for Channel 2 reference. Use this to scale the maximum conversion frequency.<br>b00'0000'0000: Reserved. Do not use.<br>CH2_FREF_DIVIDER $\geq$ b00'0000'0001: $f_{REF2} = f_{CLK}/CH2\_FREF\_DIVIDER$ |

### 8.6.21 Address 0x17, CLOCK\_DIVIDERS\_CH3 (LDC1314 only)

**Figure 37. Address 0x17, CLOCK\_DIVIDERS\_CH3**

|                  |    |    |    |          |    |                  |   |
|------------------|----|----|----|----------|----|------------------|---|
| 15               | 14 | 13 | 12 | 11       | 10 | 9                | 8 |
| CH3_FIN_DIVIDER  |    |    |    | RESERVED |    | CH3_FREF_DIVIDER |   |
| 7                | 6  | 5  | 4  | 3        | 2  | 1                | 0 |
| CH3_FREF_DIVIDER |    |    |    |          |    |                  |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 32. Address 0x17, CLOCK\_DIVIDERS\_CH3**

| Bit   | Field            | Type | Reset        | Description                                                                                                                                                                                                                                             |
|-------|------------------|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:12 | CH3_FIN_DIVIDER  | R/W  | 0000         | Channel 3 Input Divider. Sets the divider for Channel 3 input. Must be set to $\geq 2$ if the Sensor frequency is $\geq 8.75\text{MHz}$ .<br>b0000: Reserved. Do not use.<br>CH3_FIN_DIVIDER $\geq$ b0001:<br>$f_{IN3} = f_{SENSOR3}/CH3\_FIN\_DIVIDER$ |
| 11:10 | RESERVED         | R/W  | 00           | Reserved. Set to b00                                                                                                                                                                                                                                    |
| 9:0   | CH3_FREF_DIVIDER | R/W  | 00 0000 0000 | Channel 3 Reference Divider. Sets the divider for Channel 3 reference. Use this to scale the maximum conversion frequency.<br>b00'0000'0000: reserved<br>CH3_FREF_DIVIDER $\geq$ b00'0000'0001: $f_{REF3} = f_{CLK}/CH3\_FREF\_DIVIDER$                 |

### 8.6.22 Address 0x18, STATUS

**Figure 38. Address 0x18, STATUS**

|          |      |          |        |                    |                    |                    |                    |
|----------|------|----------|--------|--------------------|--------------------|--------------------|--------------------|
| 15       | 14   | 13       | 12     | 11                 | 10                 | 9                  | 8                  |
| ERR_CHAN |      | ERR_UR   | ERR_OR | ERR_WD             | ERR_AHE            | ERR_ALE            | ERR_ZC             |
| 7        | 6    | 5        | 4      | 3                  | 2                  | 1                  | 0                  |
| RESERVED | DRDY | RESERVED |        | CH0_UNREA<br>DCONV | CH1_<br>UNREADCONV | CH2_<br>UNREADCONV | CH3_<br>UNREADCONV |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 33. Address 0x18, STATUS Field Descriptions**

| Bit   | Field    | Type | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|----------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:14 | ERR_CHAN | R    | 00    | Error Channel<br>Indicates which channel has generated a Flag or Error. Once flagged, any reported error is latched and maintained until either the STATUS register or the DATA_CHx register corresponding to the Error Channel is read.<br>b00: Channel 0 is source of flag or error.<br>b01: Channel 1 is source of flag or error.<br>b10: Channel 2 is source of flag or error (LDC1314 only).<br>b11: Channel 3 is source of flag or error (LDC1314 only). |
| 13    | ERR_UR   | R    | 0     | Conversion Under-range Error<br>b0: No Conversion Under-range error was recorded since the last read of the STATUS register.<br>b1: An active channel has generated a Conversion Under-range error. Refer to STATUS.ERR_CHAN field to determine which channel is the source of this error.                                                                                                                                                                     |
| 12    | ERR_OR   | R    | 0     | Conversion Over-range Error<br>b0: No Conversion Over-range error was recorded since the last read of the STATUS register.<br>b1: An active channel has generated a Conversion Over-range error. Refer to STATUS.ERR_CHAN field to determine which channel is the source of this error.                                                                                                                                                                        |

Table 33. Address 0x18, STATUS Field Descriptions (continued)

| Bit | Field          | Type | Reset | Description                                                                                                                                                                                                                                                                                                                       |
|-----|----------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11  | ERR_WD         | R    | 0     | Watchdog Timeout Error<br>b0: No Watchdog Timeout error was recorded since the last read of the STATUS register.<br>b1: An active channel has generated a Watchdog Timeout error. Refer to STATUS.ERR_CHAN field to determine which channel is the source of this error.                                                          |
| 10  | ERR_AHE        | R    | 0     | Amplitude High Error<br>b0: No Amplitude High error was recorded since the last read of the STATUS register.<br>b1: An active channel has generated an Amplitude High error. Refer to STATUS.ERR_CHAN field to determine which channel is the source of this error.                                                               |
| 9   | ERR_ALE        | R    | 0     | Amplitude Low Error<br>b0: No Amplitude Low error was recorded since the last read of the STATUS register.<br>b1: An active channel has generated an Amplitude Low error. Refer to STATUS.ERR_CHAN field to determine which channel is the source of this error.                                                                  |
| 8   | ERR_ZC         | R    | 0     | Zero Count Error<br>b0: No Zero Count error was recorded since the last read of the STATUS register.<br>b1: An active channel has generated a Zero Count error. Refer to STATUS.ERR_CHAN field to determine which channel is the source of this error.                                                                            |
| 6   | DRDY           | R    | 0     | Data Ready Flag.<br>b0: No new conversion result was recorded in the STATUS register.<br>b1: A new conversion result is ready. When in Single Channel Conversion, this indicates a single conversion is available. When in sequential mode, this indicates that a new conversion result for all active channels is now available. |
| 3   | CH0_UNREADCONV | R    | 0     | Channel 0 Unread Conversion<br>b0: No unread conversion is present for Channel 0.<br>b1: An unread conversion is present for Channel 0. Read Register DATA_CH0 to retrieve conversion results.                                                                                                                                    |
| 2   | CH1_UNREADCONV | R    | 0     | Channel 1 Unread Conversion<br>b0: No unread conversion is present for Channel 1.<br>b1: An unread conversion is present for Channel 1. Read Register DATA_CH1 to retrieve conversion results.                                                                                                                                    |
| 1   | CH2_UNREADCONV | R    | 0     | Channel 2 Unread Conversion<br>b0: No unread conversion is present for Channel 2.<br>b1: An unread conversion is present for Channel 2. Read Register DATA_CH2 to retrieve conversion results (LDC1314 only)                                                                                                                      |
| 0   | CH3_UNREADCONV | R    | 0     | Channel 3 Unread Conversion<br>b0: No unread conversion is present for Channel 3.<br>b1: An unread conversion is present for Channel 3. Read Register DATA_CH3 to retrieve conversion results (LDC1314 only)                                                                                                                      |

### 8.6.23 Address 0x19, ERROR\_CONFIG

Figure 39. Address 0x19, ERROR\_CONFIG

| 15         | 14         | 13         | 12         | 11         | 10         | 9        | 8         |
|------------|------------|------------|------------|------------|------------|----------|-----------|
| UR_ERR2OUT | OR_ERR2OUT | WD_ERR2OUT | AH_ERR2OUT | AL_ERR2OUT | RESERVED   |          |           |
| 7          | 6          | 5          | 4          | 3          | 2          | 1        | 0         |
| UR_ERR2INT | OR_ERR2INT | WD_ERR2INT | AH_ERR2INT | AL_ERR2INT | ZC_ERR2INT | Reserved | DRDY_2INT |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 34. Address 0x19, ERROR\_CONFIG**

| Bit | Field      | Type | Reset | Description                                                                                                                                                                                                                                              |
|-----|------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | UR_ERR2OUT | R/W  | 0     | Under-range Error to Output Register<br>b0: Do not report Under-range errors in the DATA_CHx registers.<br>b1: Report Under-range errors in the DATA_CHx.CHx_ERR_UR register field corresponding to the channel that generated the error.                |
| 14  | OR_ERR2OUT | R/W  | 0     | Over-range Error to Output Register<br>b0: Do not report Over-range errors in the DATA_CHx registers.<br>b1: Report Over-range errors in the DATA_CHx.CHx_ERR_OR register field corresponding to the channel that generated the error.                   |
| 13  | WD_ERR2OUT | R/W  | 0     | Watchdog Timeout Error to Output Register<br>b0: Do not report Watchdog Timeout errors in the DATA_CHx registers.<br>b1: Report Watchdog Timeout errors in the DATA_CHx.CHx_ERR_WD register field corresponding to the channel that generated the error. |
| 12  | AH_ERR2OUT | R/W  | 0     | Amplitude High Error to Output Register<br>b0: Do not report Amplitude High errors in the DATA_CHx registers.<br>b1: Report Amplitude High errors in the DATA_CHx.CHx_ERR_AE register field corresponding to the channel that generated the error.       |
| 11  | AL_ERR2OUT | R/W  | 0     | Amplitude Low Error to Output Register<br>b0: Do not report Amplitude High errors in the DATA_CHx registers.<br>b1: Report Amplitude High errors in the DATA_CHx.CHx_ERR_AE register field corresponding to the channel that generated the error.        |
| 7   | UR_ERR2INT | R/W  | 0     | Under-range Error to INTB<br>b0: Do not report Under-range errors by asserting INTB pin and STATUS register.<br>b1: Report Under-range errors by asserting INTB pin and updating STATUS.ERR_UR register field.                                           |
| 6   | OR_ERR2INT | R/W  | 0     | Over-range Error to INTB<br>b0: Do not report Over-range errors by asserting INTB pin and STATUS register.<br>b1: Report Over-range errors by asserting INTB pin and updating STATUS.ERR_OR register field.                                              |
| 5   | WD_ERR2INT | R/W  | 0     | Watchdog Timeout Error to INTB<br>b0: Do not report Under-range errors by asserting INTB pin and STATUS register.<br>b1: Report Watchdog Timeout errors by asserting INTB pin and updating STATUS.ERR_WD register field.                                 |
| 4   | AH_ERR2INT | R/W  | 0     | Amplitude High Error to INTB<br>b0: Do not report Amplitude High errors by asserting INTB pin and STATUS register.<br>b1: Report Amplitude High errors by asserting INTB pin and updating STATUS.ERR_AHE register field.                                 |
| 3   | AL_ERR2INT | R/W  | 0     | Amplitude Low Error to INTB<br>b0: Do not report Amplitude Low errors by asserting INTB pin and STATUS register.<br>b1: Report Amplitude Low errors by asserting INTB pin and updating STATUS.ERR_ALE register field.                                    |
| 2   | ZC_ERR2INT | R/W  | 0     | Zero Count Error to INTB<br>b0: Do not report Zero Count errors by asserting INTB pin and STATUS register.<br>b1: Report Zero Count errors by asserting INTB pin and updating STATUS.ERR_ZC register field.                                              |
| 1   | Reserved   | R/W  | 0     | Reserved (set to b0)                                                                                                                                                                                                                                     |
| 0   | DRDY_2INT  | R/W  | 0     | Data Ready Flag to INTB<br>b0: Do not report Data Ready Flag by asserting INTB pin and STATUS register.<br>b1: Report Data Ready Flag by asserting INTB pin and updating STATUS.ERR_DRDY register field.                                                 |

### 8.6.24 Address 0x1A, CONFIG

Figure 40. Address 0x1A, CONFIG

|             |                  |                |                     |              |             |          |   |
|-------------|------------------|----------------|---------------------|--------------|-------------|----------|---|
| 15          | 14               | 13             | 12                  | 11           | 10          | 9        | 8 |
| ACTIVE_CHAN | SLEEP_MODE_EN    | RP_OVERRIDE_EN | SENSOR_ACTIVATE_SEL | AUTO_AMP_DIS | REF_CLK_SRC | RESERVED |   |
| 7           | 6                | 5              | 4                   | 3            | 2           | 1        | 0 |
| INTB_DIS    | HIGH_CURRENT_DRV |                |                     | RESERVED     |             |          |   |
|             |                  |                |                     |              |             |          |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 35. Address 0x1A, CONFIG Field Descriptions

| Bit   | Field               | Type | Reset   | Description                                                                                                                                                                                                                                                                                                                                           |
|-------|---------------------|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:14 | ACTIVE_CHAN         | R/W  | 00      | Active Channel Selection<br>Selects channel for continuous conversions when MUX_CONFIG.SEQUENTIAL is 0.<br>b00: Perform continuous conversions on Channel 0<br>b01: Perform continuous conversions on Channel 1<br>b10: Perform continuous conversions on Channel 2 (LDC1314 only)<br>b11: Perform continuous conversions on Channel 3 (LDC1314 only) |
| 13    | SLEEP_MODE_EN       | R/W  | 1       | Sleep Mode Enable<br>Enter or exit low power Sleep Mode.<br>b0: Device is active.<br>b1: Device is in Sleep Mode.                                                                                                                                                                                                                                     |
| 12    | RP_OVERRIDE_EN      | R/W  | 0       | Sensor R <sub>P</sub> Override Enable<br>Provides control over Sensor current drive used during the conversion time for Ch. x, based on the programmed value in the CHx_IDRIVE field.<br>b0: Override off<br>b1: R <sub>P</sub> Override on                                                                                                           |
| 11    | SENSOR_ACTIVATE_SEL | R/W  | 1       | Sensor Activation Mode Selection.<br>Set the mode for sensor initialization.<br>b0: Full Current Activation Mode – the LDC will drive maximum sensor current for a shorter sensor activation time.<br>b1: Low Power Activation Mode – the LDC uses the value programmed in DRIVE_CURRENT_CHx during sensor activation to minimize power consumption.  |
| 10    | AUTO_AMP_DIS        | R/W  | 0       | Automatic Sensor Amplitude Correction Disable<br>Setting this bit will disable the automatic Amplitude correction algorithm and stop the updating of the CHx_INIT_IDRIVE field.<br>b0: Automatic Amplitude correction enabled<br>b1: Automatic Amplitude correction is disabled. Recommended for precision applications.                              |
| 9     | REF_CLK_SRC         | R/W  | 0       | Select Reference Frequency Source<br>b0: Use Internal oscillator as reference frequency<br>b1: Reference frequency is provided from CLKIN pin.                                                                                                                                                                                                        |
| 8     | RESERVED            | R/W  | 0       | Reserved. Set to b0.                                                                                                                                                                                                                                                                                                                                  |
| 7     | INTB_DIS            | R/W  | 0       | INTB Disable<br>b0: INTB pin will be asserted when status register updates.<br>b1: INTB pin will not be asserted when status register updates                                                                                                                                                                                                         |
| 6     | HIGH_CURRENT_DRV    | R/W  | 0       | High Current Sensor Drive<br>b0: The LDC will drive all channels with normal sensor current (1.5mA max).<br>b1: The LDC will drive channel 0 with current >1.5mA.<br>This mode is not supported if AUTOSCAN_EN = b1 (multi-channel mode)                                                                                                              |
| 5:0   | RESERVED            | R/W  | 00 0001 | Reserved Set to b00'0001                                                                                                                                                                                                                                                                                                                              |

### 8.6.25 Address 0x1B, MUX\_CONFIG

**Figure 41. Address 0x1B, MUX\_CONFIG**

| 15          | 14          | 13 | 12       | 11 | 10       | 9 | 8 |
|-------------|-------------|----|----------|----|----------|---|---|
| AUTOSCAN_EN | RR_SEQUENCE |    | RESERVED |    |          |   |   |
| 7           | 6           | 5  | 4        | 3  | 2        | 1 | 0 |
| RESERVED    |             |    |          |    | DEGLITCH |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 36. Address 0x1B, MUX\_CONFIG Field Descriptions**

| Bit   | Field       | Type | Reset        | Description                                                                                                                                                                                                                                                                                                                  |
|-------|-------------|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | AUTOSCAN_EN | R/W  | 0            | Auto-Scan Mode Enable<br>b0: Continuous conversion on the single channel selected by CONFIG.ACTIVE_CHAN register field.<br>b1: Auto-Scan conversions as selected by MUX_CONFIG.RR_SEQUENCE register field.                                                                                                                   |
| 14:13 | RR_SEQUENCE | R/W  | 00           | Auto-Scan Sequence Configuration<br>Configure multiplexing channel sequence. The LDC will perform a single conversion on each channel in the sequence selected, and then restart the sequence continuously.<br>b00: Ch0, Ch1<br>b01: Ch0, Ch1, Ch2 (LDC1314 only)<br>b10: Ch0, Ch1, Ch2, Ch3 (LDC1314 only)<br>b11: Ch0, Ch1 |
| 12:3  | RESERVED    | R/W  | 00 0100 0001 | Reserved. Must be set to 00 0100 0001                                                                                                                                                                                                                                                                                        |
| 2:0   | DEGLITCH    | R/W  | 111          | Input deglitch filter bandwidth.<br>Select the lowest setting that exceeds the oscillation tank oscillation frequency.<br>b001: 1MHz<br>b100: 3.3MHz<br>b101: 10MHz<br>b111: 33MHz                                                                                                                                           |

### 8.6.26 Address 0x1C, RESET\_DEV

**Figure 42. Address 0x1C, RESET\_DEV**

| 15        | 14       | 13 | 12 | 11          | 10 | 9        | 8 |
|-----------|----------|----|----|-------------|----|----------|---|
| RESET_DEV | RESERVED |    |    | OUTPUT_GAIN |    | RESERVED |   |
| 7         | 6        | 5  | 4  | 3           | 2  | 1        | 0 |
| RESERVED  |          |    |    |             |    |          |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 37. Address 0x1C, RESET\_DEV Field Descriptions**

| Bit   | Field       | Type | Reset       | Description                                                                                                                                      |
|-------|-------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | RESET_DEV   | R/W  | 0           | Device Reset<br>Write b1 to reset the device. Will always readback 0.                                                                            |
| 14:11 | RESERVED    | R/W  | 0000        | Reserved. Set to b0000                                                                                                                           |
| 10:9  | OUTPUT_GAIN | R/W  | 00          | Output gain control<br>00: Gain = 1 (0 bits shift)<br>01: Gain = 4 (2 bits shift)<br>10: Gain = 8 (3 bits shift)<br>11: Gain = 16 (4 bits shift) |
| 8:0   | RESERVED    | R/W  | 0 0000 0000 | Reserved, Set to b0 0000 0000                                                                                                                    |

### 8.6.27 Address 0x1E, DRIVE\_CURRENT\_CH0

Figure 43. Address 0x1E, DRIVE\_CURRENT\_CH0

|                 |          |    |    |    |    |                 |   |
|-----------------|----------|----|----|----|----|-----------------|---|
| 15              | 14       | 13 | 12 | 11 | 10 | 9               | 8 |
| CH0_IDRIVE      |          |    |    |    |    | CH0_INIT_IDRIVE |   |
| 7               | 6        | 5  | 4  | 3  | 2  | 1               | 0 |
| CH0_INIT_IDRIVE | RESERVED |    |    |    |    |                 |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 38. Address 0x1E, DRIVE\_CURRENT\_CH0 Field Descriptions

| Bit   | Field           | Type | Reset   | Description                                                                                                                                                                                                                                               |
|-------|-----------------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:11 | CH0_IDRIVE      | R/W  | 0 0000  | Channel 0 L-C Sensor drive current<br>This field defines the Drive Current used during the settling + conversion time of Channel 0 sensor clock.<br>RP_OVERRIDE_EN bit must be set to 1.                                                                  |
| 10:6  | CH0_INIT_IDRIVE | R    | 0 0000  | Channel 0 Sensor Current Drive<br>This field stores the Initial Drive Current calculated during the initial Amplitude Calibration phase.<br>It is updated after each Amplitude Correction phase of the sensor clock if the AUTO_AMP_DIS field is NOT set. |
| 5:0   | RESERVED        | -    | 00 0000 | Reserved                                                                                                                                                                                                                                                  |

### 8.6.28 Address 0x1F, DRIVE\_CURRENT\_CH1

Figure 44. Address 0x1F, DRIVE\_CURRENT\_CH1

|                 |          |    |    |    |    |                 |   |
|-----------------|----------|----|----|----|----|-----------------|---|
| 15              | 14       | 13 | 12 | 11 | 10 | 9               | 8 |
| CH1_IDRIVE      |          |    |    |    |    | CH1_INIT_IDRIVE |   |
| 7               | 6        | 5  | 4  | 3  | 2  | 1               | 0 |
| CH1_INIT_IDRIVE | RESERVED |    |    |    |    |                 |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 39. Address 0x1F, DRIVE\_CURRENT\_CH1 Field Descriptions

| Bit   | Field           | Type | Reset   | Description                                                                                                                                                                                                                                               |
|-------|-----------------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:11 | CH1_IDRIVE      | R/W  | 0 0000  | Channel 1 L-C Sensor drive current<br>This field defines the Drive Current used during the settling + conversion time of Channel 1 sensor clock.<br>RP_OVERRIDE_EN bit must be set to 1.                                                                  |
| 10:6  | CH1_INIT_IDRIVE | R    | 0 0000  | Channel 1 Sensor Current Drive<br>This field stores the Initial Drive Current calculated during the initial Amplitude Calibration phase.<br>It is updated after each Amplitude Correction phase of the sensor clock if the AUTO_AMP_DIS field is NOT set. |
| 5:0   | RESERVED        | -    | 00 0000 | Reserved                                                                                                                                                                                                                                                  |

### 8.6.29 Address 0x20, DRIVE\_CURRENT\_CH2 (LDC1314 only)

**Figure 45. Address 0x20, DRIVE\_CURRENT\_CH2**

|                 |    |          |    |    |    |                 |   |
|-----------------|----|----------|----|----|----|-----------------|---|
| 15              | 14 | 13       | 12 | 11 | 10 | 9               | 8 |
| CH2_IDRIVE      |    |          |    |    |    | CH2_INIT_IDRIVE |   |
| 7               | 6  | 5        | 4  | 3  | 2  | 1               | 0 |
| CH2_INIT_IDRIVE |    | RESERVED |    |    |    |                 |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 40. Address 0x20, DRIVE\_CURRENT\_CH2 Field Descriptions**

| Bit   | Field           | Type | Reset   | Description                                                                                                                                                                                                                                               |
|-------|-----------------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:11 | CH2_IDRIVE      | R/W  | 0 0000  | Channel 2 L-C Sensor drive current<br>This field defines the Drive Current to be used during the settling + conversion time of Channel 2 sensor clock.<br>RP_OVERRIDE_EN bit must be set to 1.                                                            |
| 10:6  | CH2_INIT_IDRIVE | R    | 0 0000  | Channel 2 Sensor Current Drive<br>This field stores the Initial Drive Current calculated during the initial Amplitude Calibration phase.<br>It is updated after each Amplitude Correction phase of the sensor clock if the AUTO_AMP_DIS field is NOT set. |
| 5:0   | RESERVED        | –    | 00 0000 | Reserved                                                                                                                                                                                                                                                  |

### 8.6.30 Address 0x21, DRIVE\_CURRENT\_CH3 (LDC1314 only)

**Figure 46. Address 0x21, DRIVE\_CURRENT\_CH3**

|                 |    |          |    |    |    |                 |   |
|-----------------|----|----------|----|----|----|-----------------|---|
| 15              | 14 | 13       | 12 | 11 | 10 | 9               | 8 |
| CH3_IDRIVE      |    |          |    |    |    | CH3_INIT_IDRIVE |   |
| 7               | 6  | 5        | 4  | 3  | 2  | 1               | 0 |
| CH3_INIT_IDRIVE |    | RESERVED |    |    |    |                 |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 41. DRIVE\_CURRENT\_CH3 Field Descriptions**

| Bit   | Field           | Type | Reset   | Description                                                                                                                                                                                                                                               |
|-------|-----------------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:11 | CH3_IDRIVE      | R/W  | 0 0000  | Channel 3 L-C Sensor drive current<br>This field defines the Drive Current to be used during the settling + conversion time of Channel 3 sensor clock.<br>RP_OVERRIDE_EN bit must be set to 1.                                                            |
| 10:6  | CH3_INIT_IDRIVE | R    | 0 0000  | Channel 3 Sensor Current Drive<br>This field stores the Initial Drive Current calculated during the initial Amplitude Calibration phase.<br>It is updated after each Amplitude Correction phase of the sensor clock if the AUTO_AMP_DIS field is NOT set. |
| 5:0   | RESERVED        | –    | 00 0000 | Reserved                                                                                                                                                                                                                                                  |

### 8.6.31 Address 0x7E, MANUFACTURER\_ID

**Figure 47. Address 0x7E, MANUFACTURER\_ID**

|                 |    |    |    |    |    |   |   |
|-----------------|----|----|----|----|----|---|---|
| 15              | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| MANUFACTURER_ID |    |    |    |    |    |   |   |
| 7               | 6  | 5  | 4  | 3  | 2  | 1 | 0 |
| MANUFACTURER_ID |    |    |    |    |    |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 42. Address 0x7E, MANUFACTURER\_ID Field Descriptions**

| Bit  | Field           | Type | Reset                  | Description              |
|------|-----------------|------|------------------------|--------------------------|
| 15:0 | MANUFACTURER_ID | R    | 0101 0100<br>0100 1001 | Manufacturer ID = 0x5449 |

### 8.6.32 Address 0x7F, DEVICE\_ID

**Figure 48. Address 0x7F, DEVICE\_ID**

|           |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|
| 7         | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| DEVICE_ID |   |   |   |   |   |   |   |

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

**Table 43. Address 0x7F, DEVICE\_ID Field Descriptions**

| Bit | Field     | Type | Reset                  | Description        |
|-----|-----------|------|------------------------|--------------------|
| 7:0 | DEVICE_ID | R    | 0011 0000<br>0101 0100 | Device ID = 0x3054 |

## 9 Application and Implementation

### NOTE

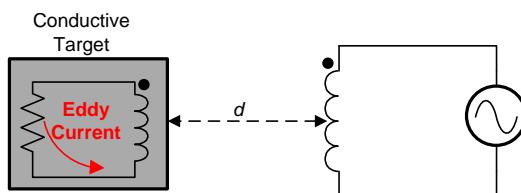
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

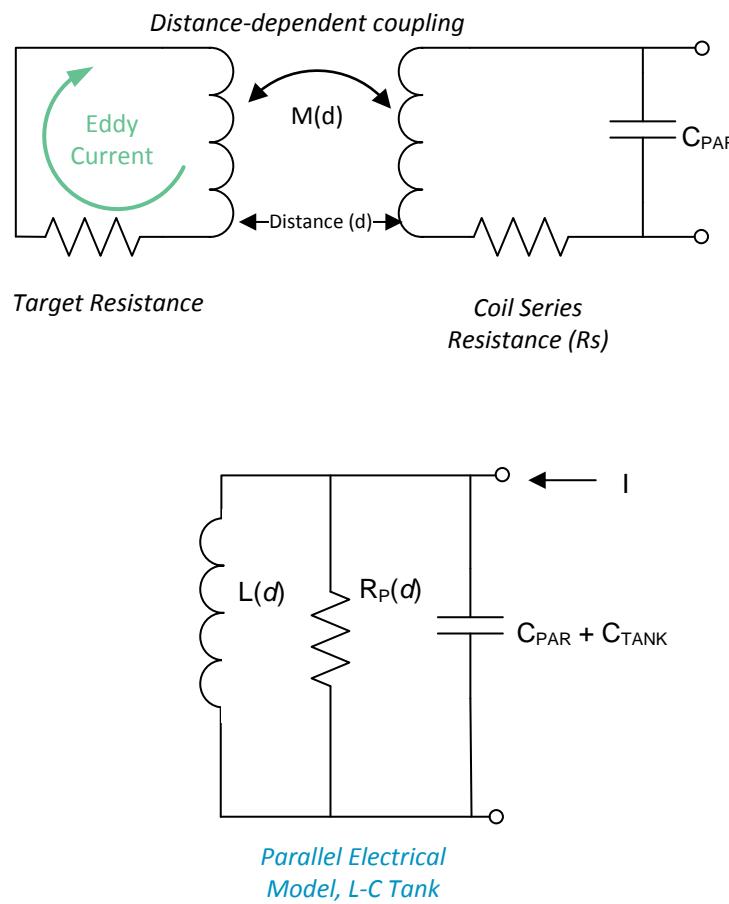
### 9.1 Application Information

#### 9.1.1 Theory of Operation

##### 9.1.1.1 Conductive Objects in an EM Field

An AC current flowing through an inductor will generate an AC magnetic field. If a conductive material, such as a metal object, is brought into the vicinity of the inductor, the magnetic field will induce a circulating current (eddy current) on the surface of the conductor.





Figure 49. Conductor in AC Magnetic Field

The eddy current is a function of the distance, size, and composition of the conductor. The eddy current generates its own magnetic field, which opposes the original field generated by the sensor inductor. This effect is equivalent to a set of coupled inductors, where the sensor inductor is the primary winding and the eddy current in the target object represents the secondary inductor. The coupling between the inductors is a function of the sensor inductor, and the resistivity, distance, size, and shape of the conductive target. The resistance and inductance of the secondary winding caused by the eddy current can be modeled as a distance dependent resistive and inductive component on the primary side (coil). Figure 49 shows a simplified circuit model of the sensor and the target as coupled coils.

##### 9.1.1.2 L-C Resonators

An EM field can be generated using an L-C resonator, or L-C tank. One topology for an L-C tank is a parallel R-L-C construction, as shown in Figure 50.

## Application Information (continued)



Copyright © 2016, Texas Instruments Incorporated

**Figure 50. Electrical Model of the L-C Tank Sensor**

An oscillator can be constructed by combining a frequency selective circuit (resonator) with a gain block in a closed loop. The criteria for oscillation are: (1) loop gain  $> 1$ , and (2) closed loop phase shift of  $2\pi$  radians. The R-L-C resonator provides the frequency selectivity and contributes to the phase shift. At resonance, the impedance of the reactive components (L and C) cancels, leaving only  $R_p$ , the lossy (resistive) element in the circuit. The voltage amplitude is maximized. The  $R_p$  can be used to determine the sensor drive current. A lower  $R_p$  requires a larger sensor current to maintain a constant oscillation amplitude. The sensor oscillation frequency is given by:

$$f_{\text{SENSOR}} = \frac{1}{2\pi\sqrt{LC}} * \sqrt{1 - \frac{1}{Q^2} - \frac{5*10^{-9}}{Q\sqrt{LC}}} \approx \frac{1}{2\pi\sqrt{LC}}$$

where

- C is the sensor capacitance ( $C_{\text{TANK}} + C_{\text{PAR}}$ )
- L is the inductance
- Q is the quality factor of the resonator. Q can be approximated by: (9)

$$Q = R_p \sqrt{\frac{C}{L}}$$

where

- $R_s$  is the AC series resistance of the inductor (10)

## Application Information (continued)

Texas Instruments' WEBENCH design tool can be used for coil design, in which the parameter values for  $R_p$ , L and C are calculated. See <http://www.ti.com/webench>.

$R_p$  is a function of target distance, target material, and sensor characteristics. Figure 51 shows that  $R_p$  is directly proportional to the distance between the sensor and the target. The graph represents a 14-mm diameter PCB coil (23 turns, 4-mil trace width, 4-mil spacing between traces, 1-oz copper thickness, FR4).

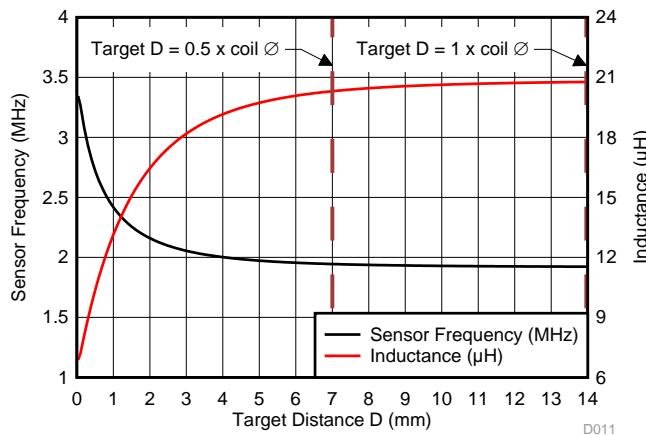


**Figure 51. Example RP vs. Distance with a 14-mm PCB Coil and 2mm Thick Stainless Steel Target**

It is important to configure the LDC current drive so that the sensor will still oscillate at the minimum  $R_p$  value. For example, if the closest target distance in a system with the response shown in Figure 51 is 1mm, then the LDC  $R_p$  value is 5 kΩ. The objective is to maintain a sufficient sensor oscillation voltage so that the sensor frequency can be measured even at the minimum operating distance. See section [Current Drive Control Registers](#) for details on setting the current drive.

The inductance that is measured by the LDC is

$$L(d) = L_{\text{inf}} - M(d) = \frac{1}{(2\pi * f_{\text{SENSOR}})^2 * C}$$


where

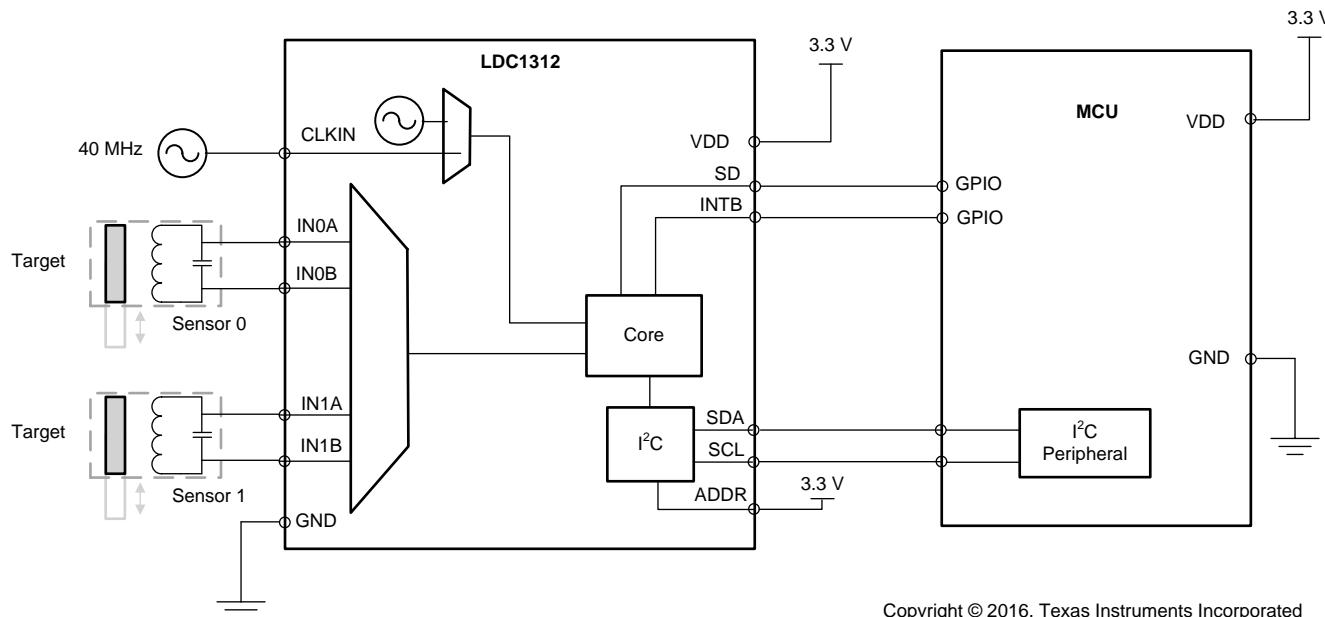
- $L(d)$  is the measured sensor inductance, for a distance  $d$  between the sensor coil and target
- $L_{\text{inf}}$  is the inductance of the sensing coil without a conductive target (target at infinite distance)
- $M(d)$  is the mutual inductance
- $f_{\text{SENSOR}}$  = sensor oscillation frequency for a distance  $d$  between the sensor coil and target
- $C = C_{\text{TANK}} + C_{\text{PAR}}$

(11)

Figure 52 shows an example of variation in sensor frequency and inductance as a function of distance for a 14-mm diameter PCB coil (23 turns, 4-mil trace width, 4-mil spacing between traces, 1-oz copper thickness, FR4).

## Application Information (continued)




**Figure 52. Example Sensor Frequency, Inductance vs. Target Distance with 14-mm PCB Coil and 1.5 mm Thick Aluminum Target**

In the absence of magnetic materials, such as ferrous metals and ferrites, the inductance shift, and therefore the measured frequency shift, depends only on current flow geometries. Temperature drift is dominated by physical expansion of the inductor and other mechanical system components over temperature which alter current flow geometries. Note that the additional temperature drift of the sensor capacitor must also be taken into account.

For additional information on temperature effects and temperature compensation, see *LDC1000 Temperature Compensation (SNA212)*

### 9.2 Typical Application

Example of a multi-channel implementation using the LDC1312. This example is representative of an axial displacement application, in which the target movement is perpendicular to the plane of the coil. The second channel can be used to sense proximity of a second target, or it can be used for temperature compensation by connecting a reference coil.



Copyright © 2016, Texas Instruments Incorporated

**Figure 53. Example Multi-Channel Application - LDC1312**

## Typical Application (continued)

### 9.2.1 Design Requirements

- Design example in which Sensor 0 is used for proximity measurement and Sensor 1 is used for temperature compensation:
- Using WEBENCH for coil design
- Target distance = 0.1 cm
- Distance resolution = 0.2  $\mu$ m
- Target diameter = 1 cm
- Target material = stainless steel (SS416)
- Number of PCB layers for the coil = 2
- The application requires 500SPS ( $T_{SAMPLE} = 2000 \mu$ s)

### 9.2.2 Detailed Design Procedure

The target distance, resolution and diameter are used as inputs to WEBENCH to design the sensor coil. The resulting coil design is a 2 layer coil, with an area of  $2.5 \text{ cm}^2$ , diameter of 1.77 cm, and 39 turns. The values for  $R_P$ , L and C are:  $R_P = 6.6 \text{ k}\Omega$ ,  $L = 43.9 \mu\text{H}$ ,  $C = 100 \text{ pF}$ .

Using L and C,  $f_{SENSOR} = 1/2\pi\sqrt{LC} = 1/2\pi\sqrt{(43.9 \times 10^{-6} \times 100 \times 10^{-12})} = 2.4 \text{ MHz}$

Using a system master clock of 40 MHz applied to the CLKIN pin allows flexibility for setting the internal clock frequencies. The sensor coil is connected to channel 0 (IN0A and IN0B pins).

After powering on the LDC, it will be in Sleep Mode. Program the registers as follows (example sets registers for channel 0 only; channel 1 registers can use equivalent configuration):

1. Set the dividers for channel 0.
  - (a) Because the sensor frequency is less than 8.75 MHz, the sensor divider can be set to 1, which means setting field CH0\_FIN\_DIVIDER to 0x1. By default,  $f_{IN0} = f_{SENSOR} = 2.4 \text{ MHz}$ .
  - (b) The design constraint for  $f_{REF0}$  is  $> 4 \times f_{SENSOR}$ . A 20 MHz reference frequency satisfies this constraint, so the reference divider should be set to 2. This is done by setting the CH0\_FREF\_DIVIDER field to 0x02.
  - (c) The combined value for Chan. 0 divider register (0x14) is 0x1002.
2. Program the settling time for Channel 0. The calculated Q of the coil is 10 (see [Multi-Channel and Single Channel Operation](#)).
  - (a)  $CH0\_SETTLECOUNT \geq Q \times f_{REF0} / (16 \times f_{SENSOR}) \rightarrow 5.2$ , rounded up to 6. To provide margin to account for system tolerances, a higher value of 10 is chosen.
  - (b) Register 0x10 should be programmed to a minimum of 10.
  - (c) The settle time is:  $(10 \times 16)/20,000,000 = 8 \mu\text{s}$
  - (d) The value for Chan. 0 SETTLECOUNT register (0x10) is 0x000A.
3. The channel switching delay is  $\sim 1 \mu\text{s}$  for  $f_{REF} = 20 \text{ MHz}$  (see [Multi-Channel and Single Channel Operation](#))
4. Set the conversion time by programming the reference count for Channel 0. The budget for the conversion time is:  $T_{SAMPLE} - \text{settling time} - \text{channel switching delay} = 1000 - 8 - 1 = 991 \mu\text{s}$ 
  - (a) To determine the conversion time register value, use the following equation and solve for CH0\_RCOUNT: Conversion Time ( $t_{C0}$ ) =  $(CH0\_RCOUNT \times 16)/f_{REF0}$ .
  - (b) This results in CH0\_RCOUNT having a value of 1238 decimal (rounded down)
  - (c) Set the CH0\_RCOUNT register (0x08) to 0x04D6.
5. Use the default values for the ERROR\_CONFIG register (address 0x19). By default, no interrupts are enabled
6. Sensor drive current: to set the CH0\_IDRIVE field value, read the value from [Table 10](#) using  $R_P = 6.6 \text{ k}\Omega$ . In this case the IDRIVE value should be set to 18 (decimal). The INIT\_DRIVE current field should be set to 0x00. The combined value for the DRIVE\_CURRENT\_CH0 register (addr 0x1E) is 0x9000.
7. Program the MUX\_CONFIG register
  - (a) Set the AUTOSCAN\_EN to b1 bit to enable sequential mode
  - (b) Set RR\_SEQUENCE to b00 to enable data conversion on two channels (channel 0, channel 1)
  - (c) Set DEGLITCH to b100 to set the input deglitch filter bandwidth to 3.3MHz, the lowest setting that exceeds the oscillation tank frequency.
  - (d) The combined value for the MUX\_CONFIG register (address 0x1B) is 0x820C

## Typical Application (continued)

8. Finally, program the CONFIG register as follows:

- Set the ACTIVE\_CHAN field to b00 to select channel 0.
- Set SLEEP\_MODE\_EN field to b0 to enable conversion.
- Set RP\_OVERRIDE\_EN to b1 to disable auto-calibration.
- Set SENSOR\_ACTIVATE\_SEL = b0, for full current drive during sensor activation
- Set the AUTO\_AMP\_DIS field to b1 to disable auto-amplitude correction
- Set the REF\_CLK\_SRC field to b1 to use the external clock source.
- Set the other fields to their default values.
- The combined value for the CONFIG register (address 0x1A) is 0x1601.

We then read the conversion results for channel 0 and channel 1 every 1000  $\mu$ s from register addresses 0x00 and 0x02.

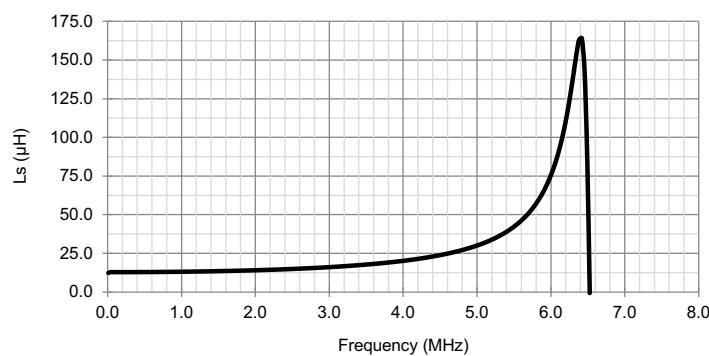
### 9.2.2.1 Recommended Initial Register Configuration Values

Based on the example configuration in section [Detailed Design Procedure](#), the following register write sequence is recommended:

**Table 44. Recommended Initial Register Configuration Values (Single-channel Operation)**

| Address | Value  | Register Name       | Comments                                                                                                                                                                                                                                                                                                                       |
|---------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x08    | 0x04D6 | RCOUNT_CH0          | Reference count calculated from timing requirements (1 kSPS) and resolution requirements                                                                                                                                                                                                                                       |
| 0x10    | 0x000A | SETTLECOUNT_CH0     | Minimum settling time for chosen sensor                                                                                                                                                                                                                                                                                        |
| 0x14    | 0x1002 | CLOCK_DIVIDER_S_CH0 | CH0_FIN_DIVIDER = 1, CH0_FREF_DIVIDER = 2                                                                                                                                                                                                                                                                                      |
| 0x19    | 0x0000 | ERROR_CONFIG        | Can be changed from default to report status and error conditions                                                                                                                                                                                                                                                              |
| 0x1B    | 0x020C | MUX_CONFIG          | Enable Ch 0 (continuous mode), set Input deglitch bandwidth to 3.3MHz                                                                                                                                                                                                                                                          |
| 0x1E    | 0x9000 | DRIVE_CURRENT_T_CH0 | Sets sensor drive current on ch 0                                                                                                                                                                                                                                                                                              |
| 0x1A    | 0x1601 | CONFIG              | Select active channel = ch 0, disable auto-amplitude correction and auto-calibration, enable full current drive during sensor activation, select external clock source, wake up device to start conversion. This register write must occur last because device configuration is not permitted while the LDC is in active mode. |

**Table 45. Recommended Initial Register Configuration Values (Multi-channel Operation)**

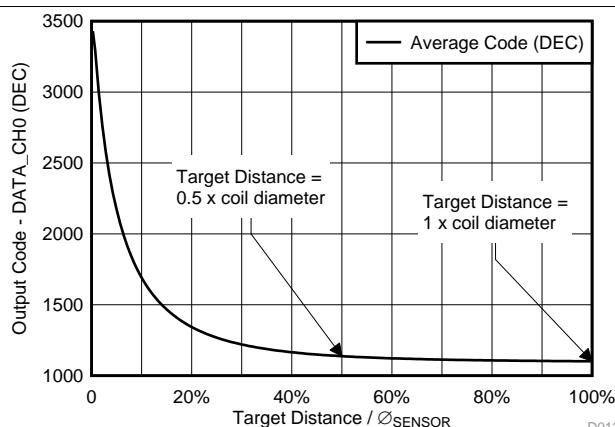

| Address | Value  | Register Name       | Comments                                                                                 |
|---------|--------|---------------------|------------------------------------------------------------------------------------------|
| 0x08    | 0x04D6 | RCOUNT_CH0          | Reference count calculated from timing requirements (1 kSPS) and resolution requirements |
| 0x09    | 0x04D6 | RCOUNT_CH1          | Reference count calculated from timing requirements (1 kSPS) and resolution requirements |
| 0x10    | 0x000A | SETTLECOUNT_CH0     | Minimum settling time for chosen sensor                                                  |
| 0x11    | 0x000A | SETTLECOUNT_CH1     | Minimum settling time for chosen sensor                                                  |
| 0x14    | 0x1002 | CLOCK_DIVIDER_S_CH0 | CH0_FIN_DIVIDER = 1, CH0_FREF_DIVIDER = 2                                                |
| 0x15    | 0x1002 | CLOCK_DIVIDER_S_CH1 | CH1_FIN_DIVIDER = 1, CH1_FREF_DIVIDER = 2                                                |
| 0x19    | 0x0000 | ERROR_CONFIG        | Can be changed from default to report status and error conditions                        |
| 0x1B    | 0x820C | MUX_CONFIG          | Enable Ch 0 and Ch 1 (sequential mode), set Input deglitch bandwidth to 3.3MHz           |
| 0x1E    | 0x9000 | DRIVE_CURRENT_T_CH0 | Sets sensor drive current on ch 0                                                        |
| 0x1F    | 0x9000 | DRIVE_CURRENT_T_CH1 | Sets sensor drive current on ch 1                                                        |

**Table 45. Recommended Initial Register Configuration Values (Multi-channel Operation) (continued)**

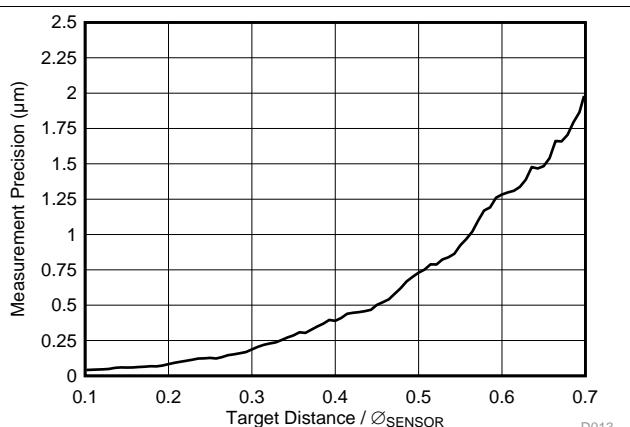
| Address | Value  | Register Name | Comments                                                                                                                                                                                                                                                                                         |
|---------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x1A    | 0x1601 | CONFIG        | disable auto-amplitude correction and auto-calibration, enable full current drive during sensor activation, select external clock source, wake up device to start conversion. This register write must occur last because device configuration is not permitted while the LDC is in active mode. |

### 9.2.2.2 Inductor Self-Resonant Frequency

Every inductor has a distributed parasitic capacitance, which is dependent on construction and geometry. At the Self-Resonant Frequency (SRF), the reactance of the inductor cancels the reactance of the parasitic capacitance. Above the SRF, the inductor will electrically appear to be a capacitor. Because the parasitic capacitance is not well-controlled or stable, TI recommends that:  $f_{SENSOR} < 0.8 \times f_{SR}$ .


**Figure 54. Example Coil Inductance vs. Frequency**

In Figure 54, the inductor has a SRF at 6.38 MHz; therefore the inductor should not be operated above  $0.8 \times 6.38$  MHz, or 5.1 MHz.


### 9.2.3 Application Curves

#### Common test conditions (unless specified otherwise):

- Sensor inductor: 2 layer, 32 turns/layer, 14mm diameter, PCB inductor with  $L=19.4 \mu H$ ,  $R_P=5.7 \text{ k}\Omega$  at 2 MHz
- Sensor capacitor: 330pF 1% COG/NP0
- Target: Aluminum, 1.5 mm thickness
- Channel = Channel 0 (continuous mode)
- CLKIN = 40MHz, CHx\_FIN\_DIVIDER = 0x01, CHx\_FRE\_REF\_DIVIDER = 0x001
- CH0\_RCOUNT = 0xFFFF, SETTLECOUNT\_CH0 = 0x0100
- RP\_OVERRIDE = 1, AUTO\_AMP\_DIS = 1, DRIVE\_CURRENT\_CH0 = 0x9800



**Figure 55. Typical Output Code vs. Target Distance (0 to 14mm)**



**Figure 56. Measurement precision in Distance vs. Target Distance (0 to 10mm)**

## 10 Power Supply Recommendations

- The LDC requires a voltage supply within 2.7 V and 3.6 V. A multilayer ceramic bypass X7R capacitor of  $1\mu\text{F}$  between the VDD and GND pins is recommended. If the supply is located more than a few inches from the LDC, additional bulk capacitance may be required in addition to the ceramic bypass capacitor. An electrolytic capacitor with a value of  $10\mu\text{F}$  is a typical choice.
- The optimum placement is closest to the VDD and GND terminals of the device. Care should be taken to minimize the loop area formed by the bypass capacitor connection, the VDD terminal, and the GND terminal of the IC. See [Figure 57](#) and [Figure 58](#) for a layout example.

## 11 Layout

### 11.1 Layout Guidelines

Avoid long traces to connect the sensor to the LDC. Short traces reduce parasitic capacitances between sensor inductor and offer higher system performance.

### 11.2 Layout Example

[Figure 57](#) to [Figure 60](#) show the LDC1312 evaluation module (EVM) layout.

## Layout Example (continued)

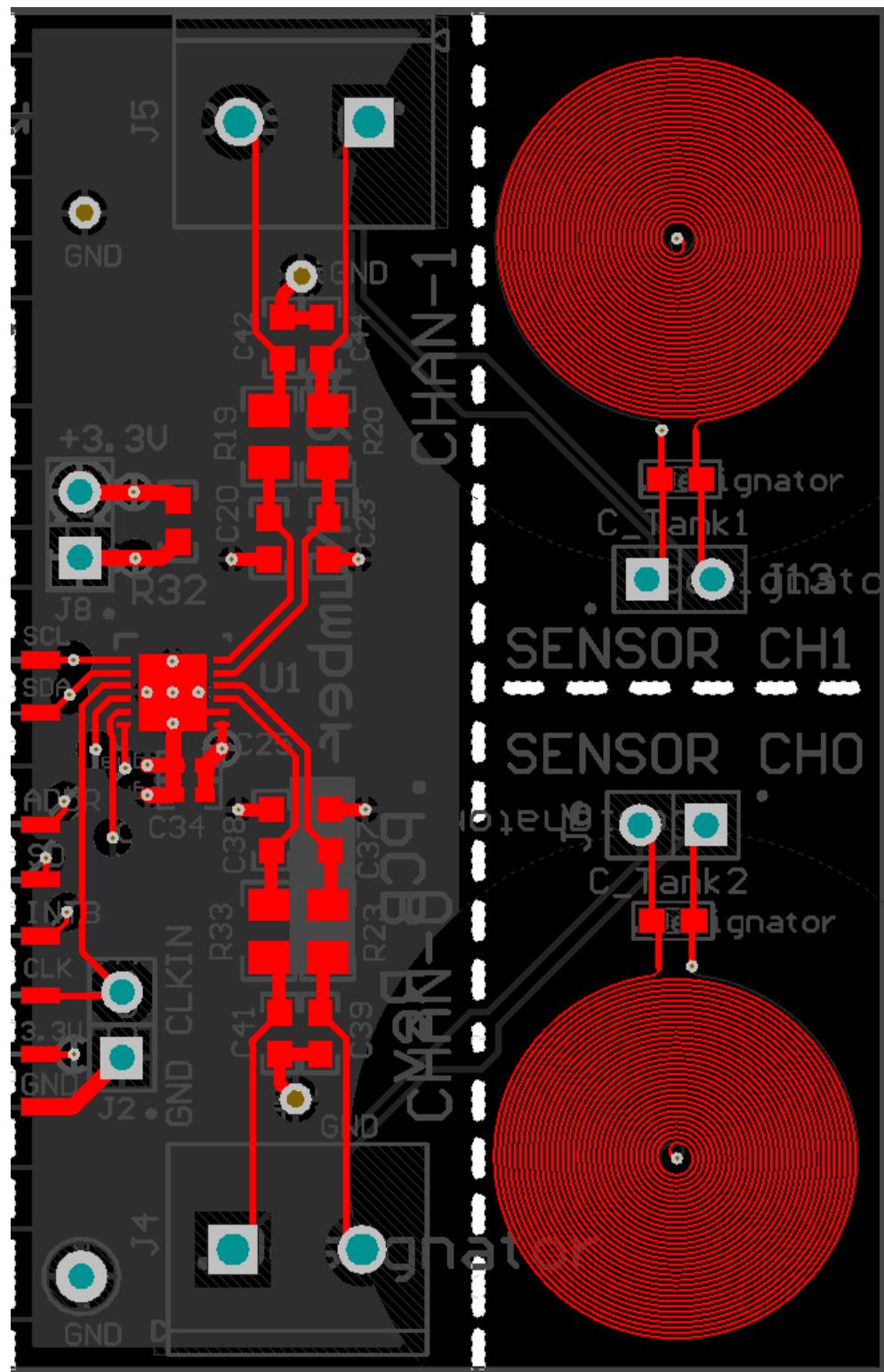
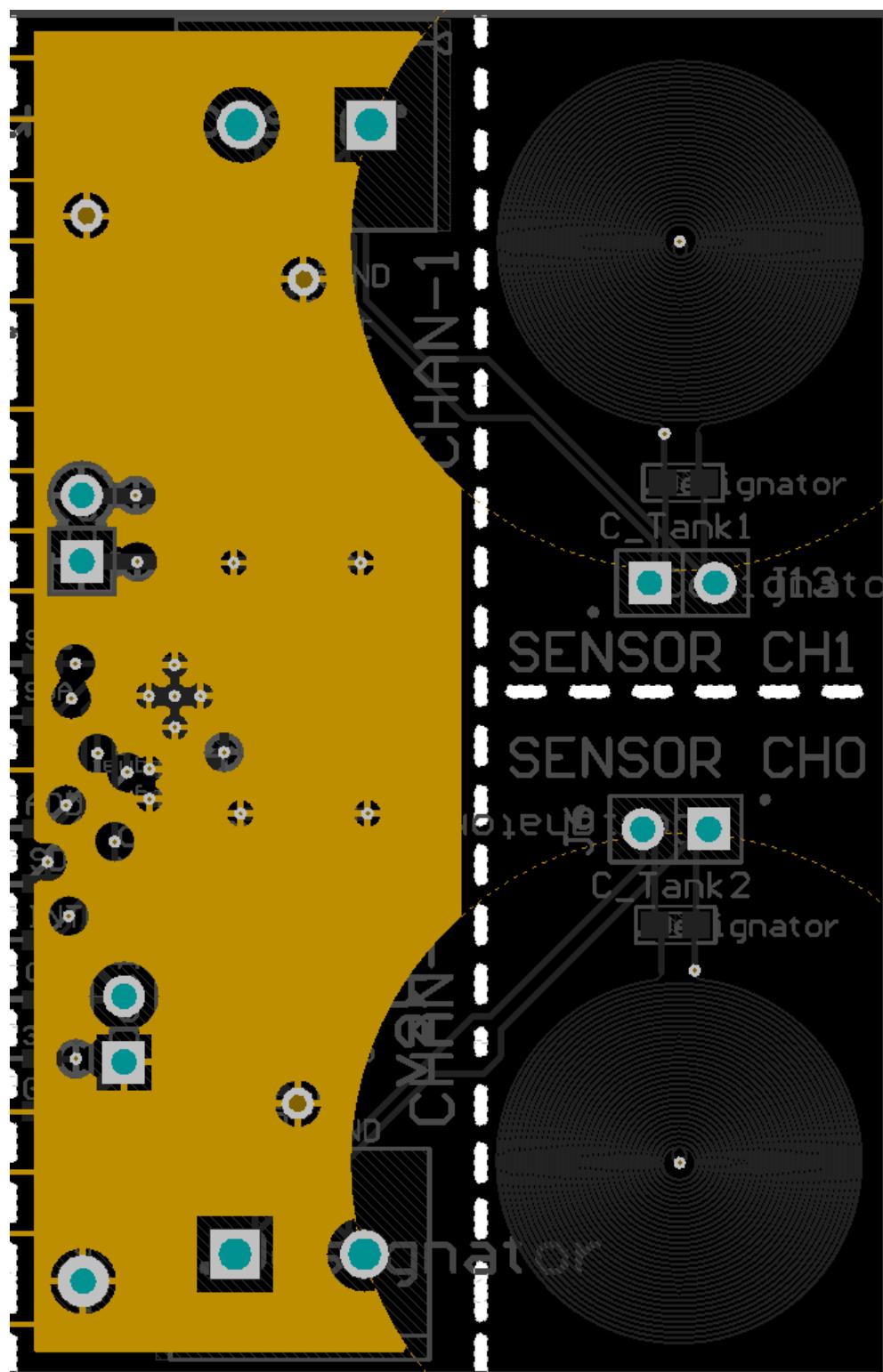




Figure 57. Example PCB Layout: Top Layer (Signal)

**Layout Example (continued)****Figure 58. Example PCB Layout: Mid-layer 1 (GND)**

## Layout Example (continued)

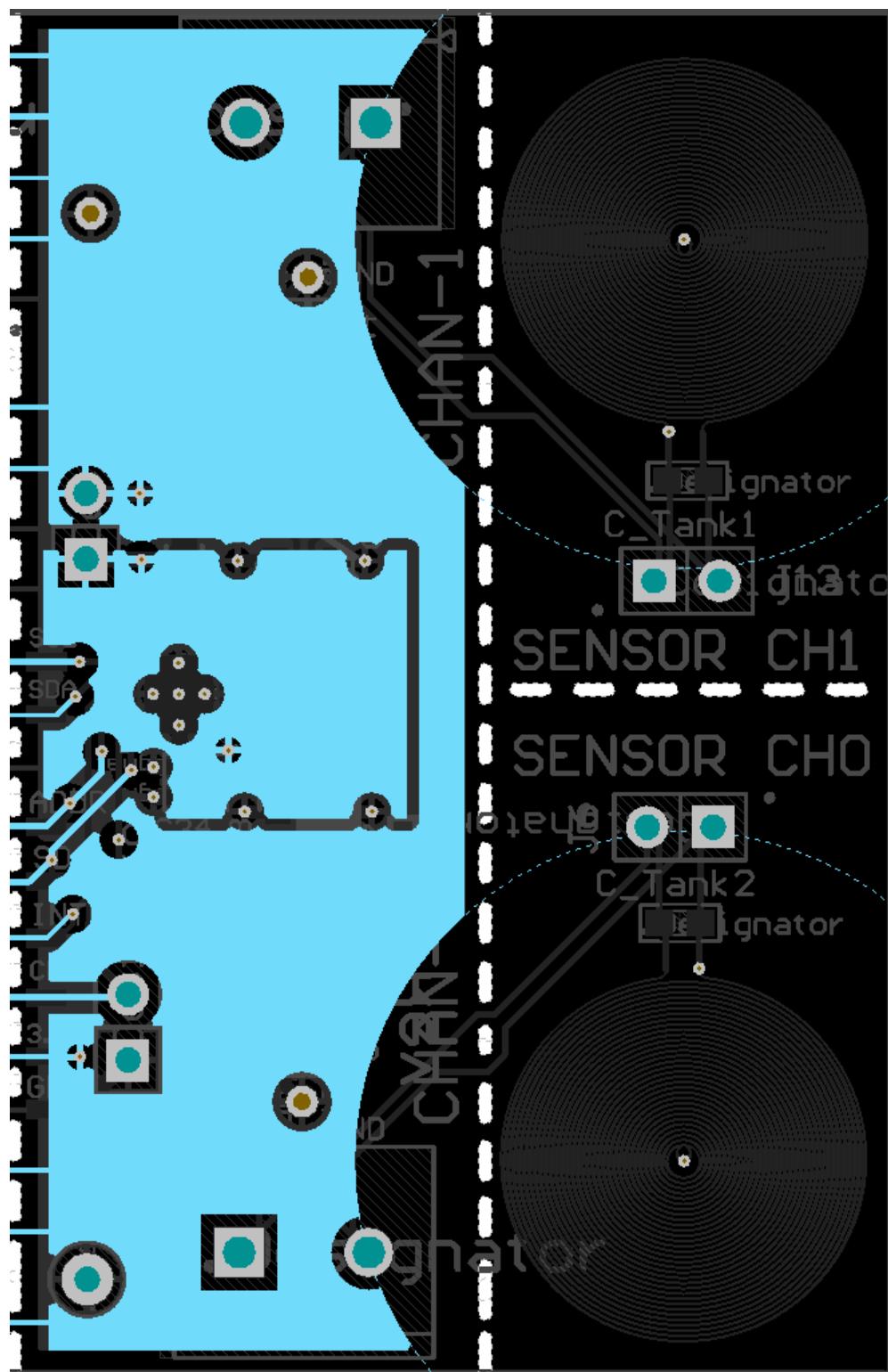
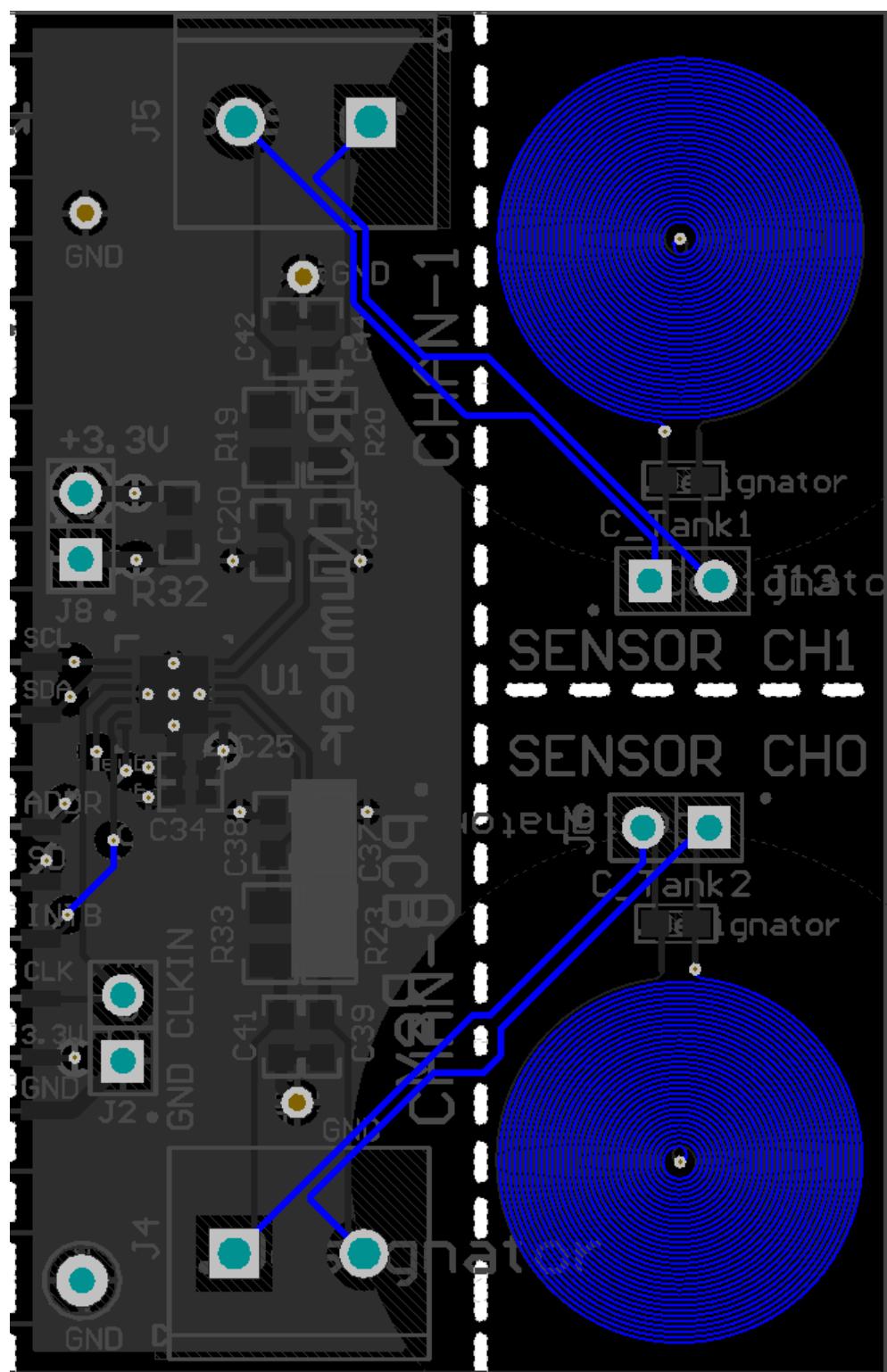




Figure 59. Example PCB Layout: Mid-layer 2 (Power)

**Layout Example (continued)**


**Figure 60. Example PCB Layout: Bottom Layer (Signal)**

## 12 Device and Documentation Support

### 12.1 Device Support

#### 12.1.1 Development Support

For related links, see the following:

- Texas Instruments' WEBENCH tool: <http://www.ti.com/webench>

### 12.2 Documentation Support

#### 12.2.1 Related Documentation

For related documentation, refer to the following:

- *LDC1000 Temperature Compensation (SNA212)*

### 12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

**TI E2E™ Online Community** *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At [e2e.ti.com](http://e2e.ti.com), you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

### 12.4 Related Links

The [Table 46](#) below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

**Table 46. Related Links**

| PARTS      | PRODUCT FOLDER             | SAMPLE & BUY               | TECHNICAL DOCUMENTS        | TOOLS & SOFTWARE           | SUPPORT & COMMUNITY        |
|------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| LDC1312-Q1 | <a href="#">Click here</a> |
| LDC1314-Q1 | <a href="#">Click here</a> |

### 12.5 Trademarks

E2E is a trademark of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

### 12.6 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 12.7 Glossary

[SLY022](#) — *TI Glossary.*

This glossary lists and explains terms, acronyms, and definitions.

## 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

**PACKAGING INFORMATION**

| Orderable Device | Status<br>(1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples                                                                         |
|------------------|---------------|--------------|-----------------|------|-------------|-----------------|--------------------------------------|----------------------|--------------|-------------------------|---------------------------------------------------------------------------------|
| LDC1312QDNTRQ1   | ACTIVE        | WSON         | DNT             | 12   | 4500        | RoHS & Green    | SN                                   | Level-3-260C-168 HR  | -40 to 125   | LC1312Q<br>Q1           | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |
| LDC1312QDNTTQ1   | ACTIVE        | WSON         | DNT             | 12   | 250         | RoHS & Green    | SN                                   | Level-3-260C-168 HR  | -40 to 125   | LDC1312<br>Q1           | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |
| LDC1314QRGHRQ1   | ACTIVE        | WQFN         | RGH             | 16   | 4500        | RoHS & Green    | SN                                   | Level-3-260C-168 HR  | -40 to 125   | LC1314Q                 | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |
| LDC1314QRGHTQ1   | ACTIVE        | WQFN         | RGH             | 16   | 250         | RoHS & Green    | SN                                   | Level-3-260C-168 HR  | -40 to 125   | LC1314Q                 | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBsolete:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and



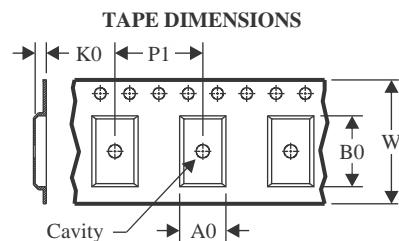
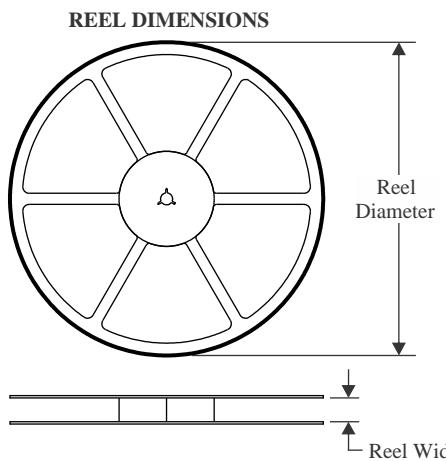
www.ti.com

## PACKAGE OPTION ADDENDUM

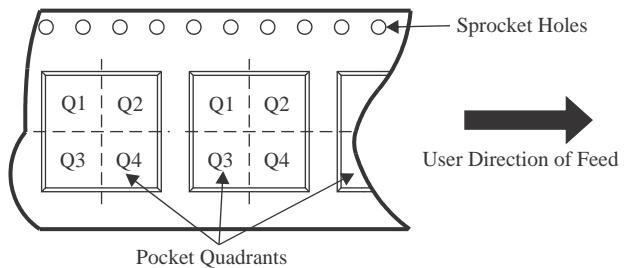
10-Dec-2020

---

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

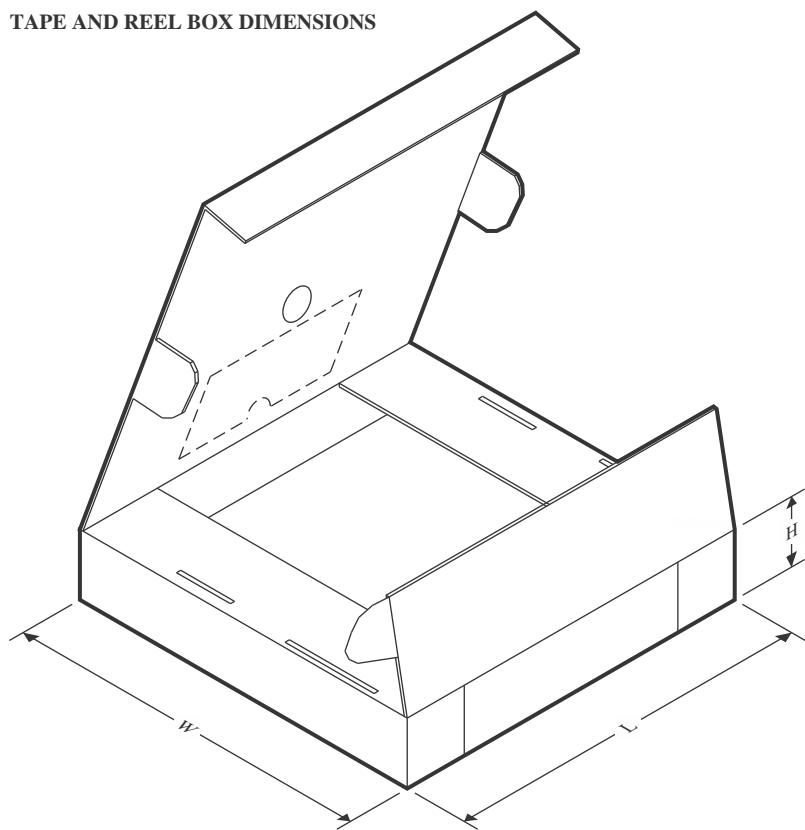


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

**OTHER QUALIFIED VERSIONS OF LDC1312-Q1, LDC1314-Q1 :**


- Catalog: [LDC1312](#), [LDC1314](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product

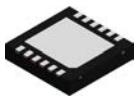

**TAPE AND REEL INFORMATION**


|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**

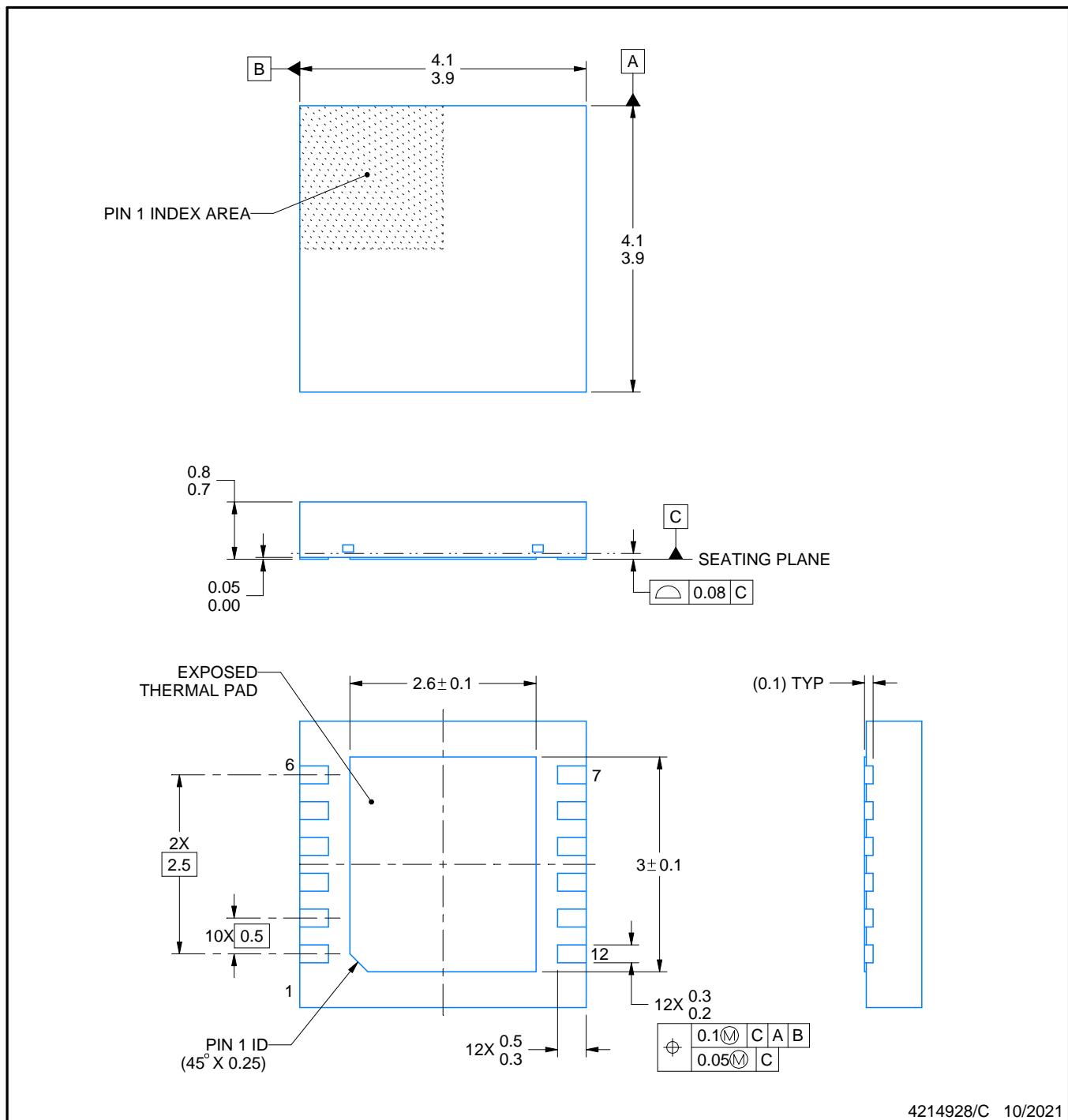

\*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|----------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| LDC1312QDNTRQ1 | WSON         | DNT             | 12   | 4500 | 330.0              | 12.4               | 4.3     | 4.3     | 1.3     | 8.0     | 12.0   | Q1            |
| LDC1312QDNNTQ1 | WSON         | DNT             | 12   | 250  | 178.0              | 12.4               | 4.3     | 4.3     | 1.3     | 8.0     | 12.0   | Q1            |
| LDC1314QRGHRQ1 | WQFN         | RGH             | 16   | 4500 | 330.0              | 12.4               | 4.3     | 4.3     | 1.3     | 8.0     | 12.0   | Q1            |
| LDC1314QRGHTQ1 | WQFN         | RGH             | 16   | 250  | 178.0              | 12.4               | 4.3     | 4.3     | 1.3     | 8.0     | 12.0   | Q1            |


**TAPE AND REEL BOX DIMENSIONS**


\*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| LDC1312QDNTRQ1 | WSON         | DNT             | 12   | 4500 | 356.0       | 356.0      | 35.0        |
| LDC1312QDNTTQ1 | WSON         | DNT             | 12   | 250  | 367.0       | 367.0      | 35.0        |
| LDC1314QRGHRQ1 | WQFN         | RGH             | 16   | 4500 | 356.0       | 356.0      | 35.0        |
| LDC1314QRGHTQ1 | WQFN         | RGH             | 16   | 250  | 208.0       | 191.0      | 35.0        |


## PACKAGE OUTLINE

DNT0012B



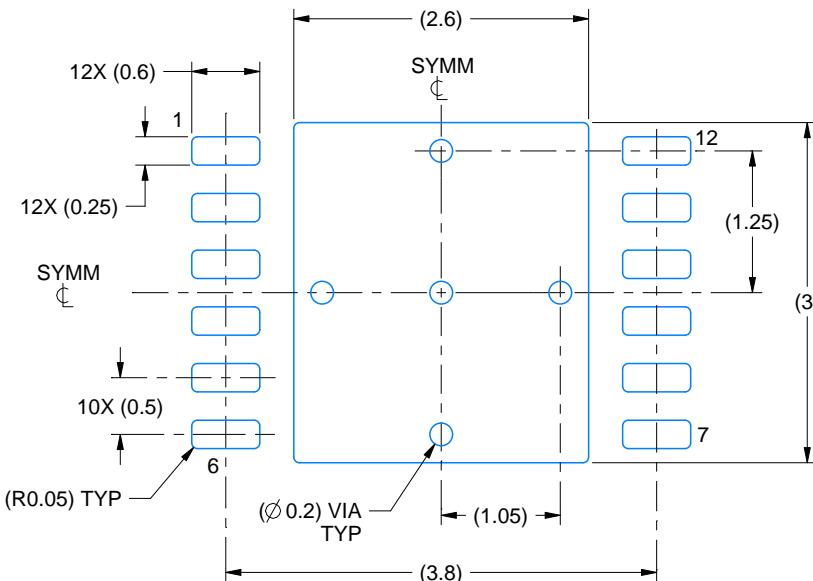
## WSON - 0.8 mm max height

## PLASTIC SMALL OUTLINE - NO LEAD

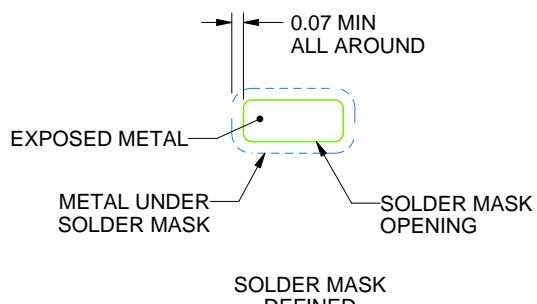
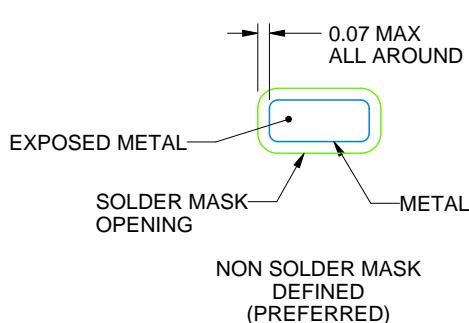


4214928/C 10/2021

## NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

## EXAMPLE BOARD LAYOUT



DNT0012B

## WSON - 0.8 mm max height

## PLASTIC SMALL OUTLINE - NO LEAD



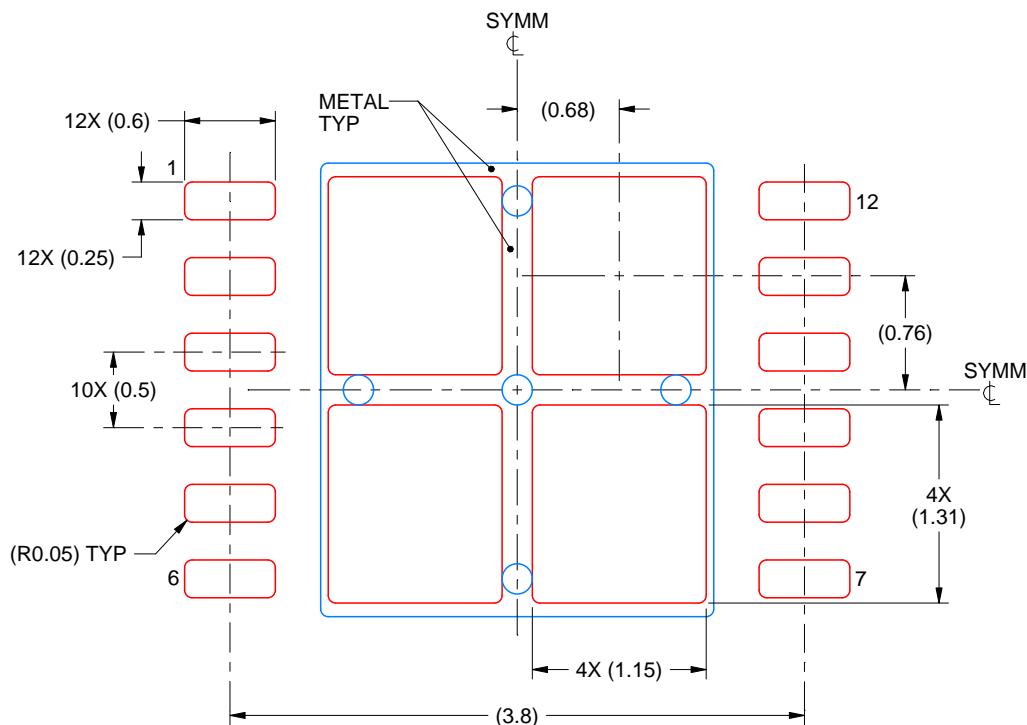
**LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X**



## SOLDER MASK DETAILS

4214928/C 10/2021

#### NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 ([www.ti.com/lit/slua271](http://www.ti.com/lit/slua271)).

# EXAMPLE STENCIL DESIGN

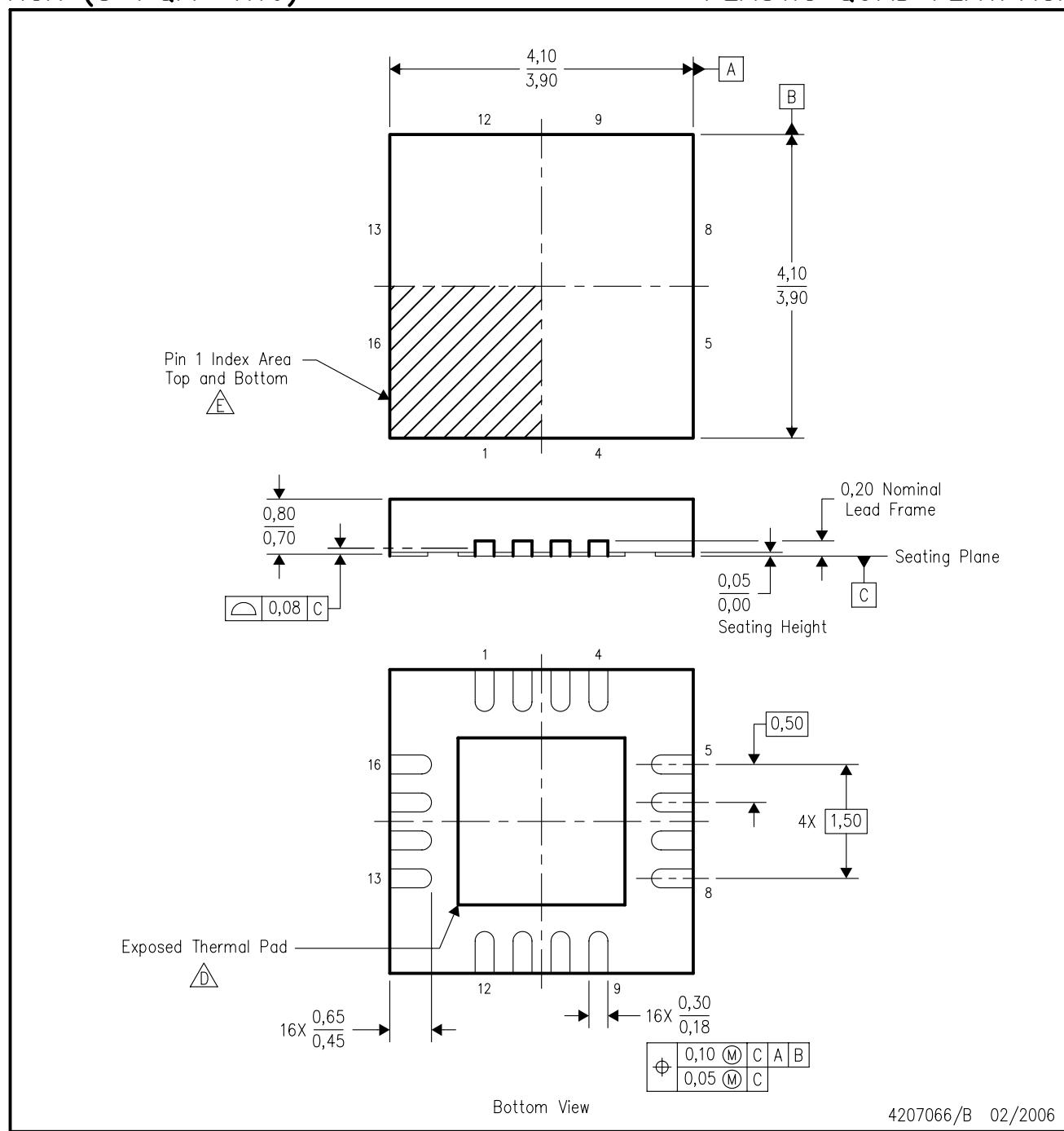
DNT0012B

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD



4214928/C 10/2021


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

## MECHANICAL DATA

RGH (S-PQFP-N16)

PLASTIC QUAD FLATPACK



NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- QFN (Quad Flatpack No-Lead) package configuration.

**D** The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

**E** Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.

F. Complies to JEDEC MO-220 variation WGGD-4.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated