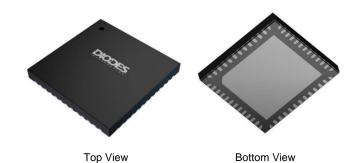


12C/SPI 36-CHANNEL RGB LED DRIVER

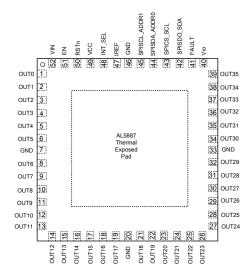
Description

The AL5887 is comprised of 36 programmable LED current channels each with internal 12-bit PWM for color and brightness control through SPI or I2C digital interface. AL5887 is ideal for up to 12 RGB LED modules lighting applications with 3 programmable banks (A, B, C) for software control of each color. An external resistor can set up the global output current of all 36 channels. Each channel current can digitally be configured up to 70mA under the thermal limitation of the package.

Features of the AL5887 are controlled via SPI/I2C digital interface. Using a dedicated pin INT_SEL to select either SPI or I2C protocols. The AL5887 has a 30kHz, 12-bit PWM generator for each channel, as well as channel/module independent color mixing and brightness control registers to enable vivid LED effects with zero audible noise. Users can benefit from the device's ultra-low shutdown IQ Power Saving Mode and easy software programming.


The device operates over -40°C to +85°C ambient temperature range. The AL5887 is available in W-QFN6060-52/SWP (Type A1) package.

Features


- Input Voltage: 2.7V to 5.5V
- 36 Precision LED Current Sinks
 - OUT Pins Voltage Max. 5.5V
 - A Maximum of up to 70mA per Channel Current
 - Device to Device and Channel to Channel Current Accuracy: < 2% at 7mA to 70mA, and < 3.5% at 1mA to 7mA
 - 12-Bit (4096 Steps), 30kHz PWM Generator Integrated for Each Channel
 - PWM Phase Shifting
 - 6-Bit Global Current Dimming
 - Independent Color-Mixing Register per Channel
 - Independent Brightness Control Register per RGB Module
 - Optional Logarithmic- or Linear-Scale Brightness Control
 - Three Programmable Banks (A, B, C)
- Serial Digital Interface (I2C/SPI)
 - Support 400kHz I2C Interface (Default)
 - Two External Hardware Address Pins Allow Connecting up to Four Devices (I2C Only)
 - 4MHz SPI Compatible Digital Interface (INT_SEL Pin = HIGH)
 - Broadcast Slave Address Allows Configuring Multiple **Devices Simultaneously**
 - Auto-Increment Allows Writing or Reading Consecutive Registers Within One Transmission
- Diagnosis and Protections
 - Open Drain Fault Pin for Fault Indication
 - Individual LED Channel Open/Short Detection
 - Pre-UVLO Warning & Undervoltage Lockout (UVLO)
 - Overtemperature Protection (OTP) with Pre-OTP Warning
 - Digital POR Indicator
 - Individual Channel Fault Masking
- **Ultra-Low Quiescent Current:**
 - Shutdown Mode: 1µA (Max.) When EN Low > 25ms
 - Power-Saving Mode: 15µA (Max.) When EN High and All LEDs Off for > 30ms
- Totally Lead-Free & Fully RoHS Compliant (Notes 1& 2)
- Halogen and Antimony Free. "Green" Device (Note 3) For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Pin Assignments

Wettable W-QFN6060-52/SWP (Type A1)

(Top View)

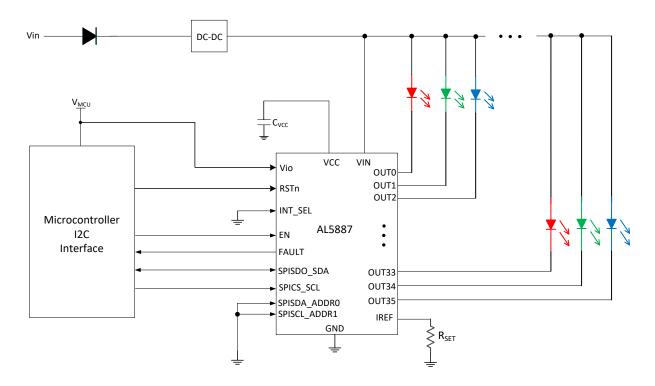
W-QFN6060-52/SWP (Type A1)

Applications

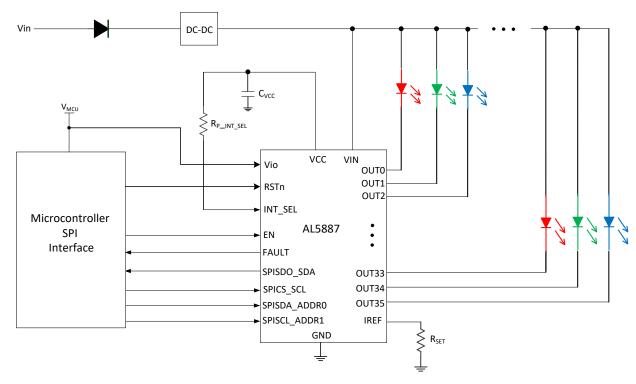
- Smart home appliances
- Electric vehicle charging stations
- Infotainment displays
- IoT information indicators
- Computing hardware

Device Information

Orderable Part Number	Package	Body Size	
AL5887JAZW52-13	W-QFN6060-52/SWP (Type A1)	6mm x 6mm	

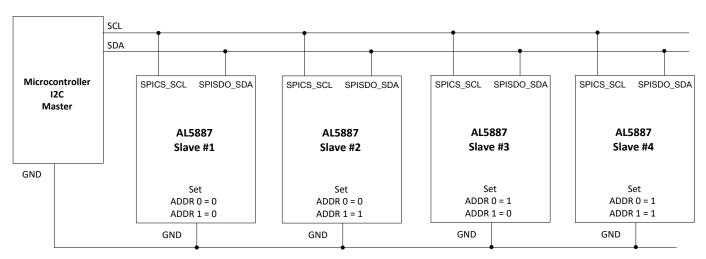

Notes:

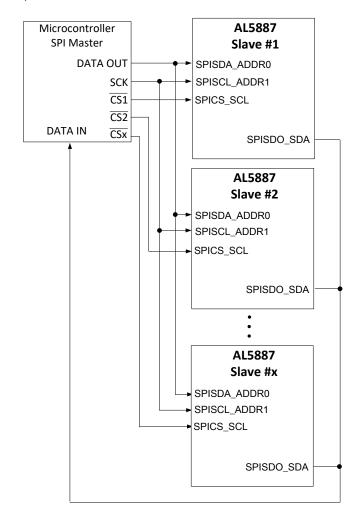
- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.



Typical Applications Circuit

1) For I2C Interface

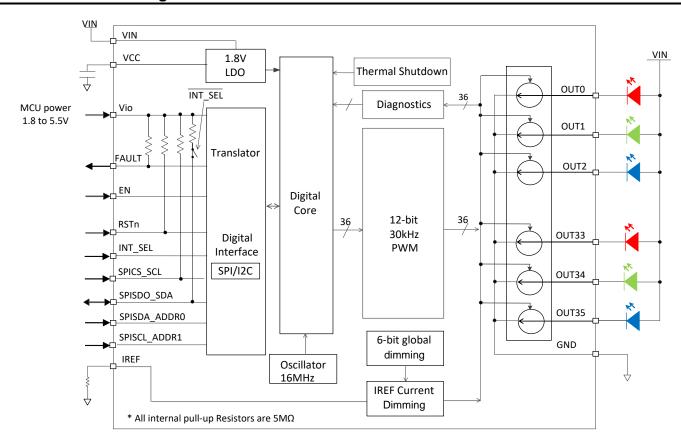

2) For SPI Interface



Typical Applications Circuit (continued)

3) Four AL5887 connected together with external hardware pins setup

4) AL5887 (SPI interface) connected in parallel



Pin Descriptions

Pin Name	Pin Number	Туре	Function
OUT0 to OUT5	1 to 6	0	Current sink output for LED 0 to LED 5
OUT6 to OUT17	8 to 19	0	Current sink output for LED 6 to LED 17
OUT18 to OUT29	21 to 32	0	Current sink output for LED 18 to LED 29
OUT30 to OUT35	34 to 39	0	Current sink output for LED 30 to LED 35
Vio	40	I	Input power from MCU power rail
FAULT	41	0	Analog output with open drain internal pull up $5M\Omega$ resistor to Vio for fault indication
SPISDO_SDA	42	I/O	INT_SEL = HIGH, SPI master input slave output, serial data line INT_SEL = LOW, I2C Data line If not used, this pin must be connected to GND or VIN. (Default = HIGH for I2C)
SPICS_SCL	43	I	INT_SEL = HIGH, SPI active low chip select INT_SEL = LOW, I2C bus clock line If not used, this pin must be connected to GND or VIN. (Default = HIGH)
SPISDA_ADDR0	44	I	INT_SEL = HIGH, SPI master output slave input, serial data line INT_SEL = LOW, I2C slave-address selection pin This pin must not be left floating. (Default = LOW)
SPISCL_ADDR1	45	I	INT_SEL = HIGH, SPI serial clock line from SPI master (FPGA) INT_SEL = LOW, I2C slave-address selection pin This pin must not be left floating. (Default = LOW)
IREF	47	0	Connect an external resistor to regulate all channel output current.
INT_SEL	48	I	Selects the required communication interface. INT_SEL = LOW selects I2C and INT_SEL = HIGH selects SPI. This pin must not be left floating. (Default = LOW)
VCC	49	0	Internal LDO 1.8V output pin, this pin must be connected to a 1µF capacitor to GND.
RSTn	50	I	Resets digital interface only but retains other register values if pulled down for time between 1ms to 20ms. Resets all register values if pulled down for time more than 20ms. Needs to be pulled high for powering up the internal digital block. (Default = HIGH)
EN	51	I	Active low to shut down the chip. (Default = LOW)
VIN	52	Power	Power supply
GND	7, 20, 33, 46	GND	Ground
_	Thermal Exposed Pad	GND	Thermal exposed pad also serves as a ground for the device.

Functional Block Diagram

Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.) (Note 4)

Symbol	Parameter	Rating	Unit
Vin	Input Voltage, Voltage Relative to GND	-0.3 to 6	V
Іоитх	OUTx Output Current	160	mA
V _{OUTx} , EN, FAULT, RSTn, Vio, INT_SEL, SPICS_SCL, SPISDO_SDA, SPISDA_ADDR0, SPISCL_ADDR1, IREF	High-Voltage Pins	-0.3 to 6V	V
VCC	Low-Voltage Pins	-0.3 to 2V	V
TJ	Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C
ESD	НВМ	2000	V
ESD	CDM	1000	V

Note: 4. Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability.

Semiconductor devices are ESD sensitive and may be damaged by exposure to ESD events. Suitable ESD precautions should be taken when handling and transporting these devices.

Package Thermal Data (Note 5)

Package	θ _{JC} Thermal Resistance	θ _{JA} Thermal Resistance	P _{DIS}	
	Junction-to-Case (°C/W)	Junction-to-Ambient (°C/W)	T _A = +25°C, T _J = +105°C	
W-QFN6060-52/SWP (Type A1)	4.13	19.45	4.12W	

Note:

Recommended Operating Conditions (@T_A = -40°C to +85°C, unless otherwise specified.)

Symbol	Parameter	Min	Тур	Max	Unit
V _{IN}	Device supply voltage	2.7		5.5	V
Vio	Input power from MCU rail	1.8	3.3	5.5	V
Іоитх	OUTx output current (Note 6)	_	39	70	mA
T _A	Ambient temperature (Note 6)	-40		+85	°C
TJ	Junction temperature	-40	_	+125	°C

Note: 6. Dependent on ambient temperature, LED voltage, package thermal limitation, and PCB layout.

^{5.} Test condition: Device mounted on FR-4 PCB (51mm x 51mm 2oz copper, minimum recommended pad layout on top layer and thermal vias to bottom layer with maximum area ground plane. For better thermal performance, larger copper pad for heat-sink is needed

Electrical Characteristics (V_{IN} = 3.3V, -40°C < T_A < +85°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
POWER SUPP	LY					
Vin	Supply voltage	_	2.7	3.3	5.5	V
VCC	Internal 1.8V LDO output	_	1.76	1.8	1.84	V
	Shut down supply current	VEN = 0V	_	0.2	6	μA
	Standby supply current	V _{EN} = 3.3V, Chip_EN = 0 (bit)	_	12	25	μA
Ivin	Normal-mode supply current	With 39mA LED current per OUTx	_	7	9	mA
	Power-save mode supply current	VEN = 3.3V, Chip_EN = 1 (bit), Power_Save_EN = 1 (bit), All LEDs turned off for time > 30ms	_	12	25	μΑ
UVLO+	VIN UVLO rising	_	2	2.36	2.5	V
UVLO-	VIN UVLO falling	_	1.8	2.16	2.3	V
UVLO_Hys	_	_	_	0.2	_	V
Viref	Output voltage of IREF pin	_	0.690	0.7	0.710	V
CURRENT SIN	K (Note 7)					
		V _{IN} in full range, R _{SET} = 2.1kΩ *Max_Current_Option = 0, #G5:G0 = 000000	_	29.25	_	mA
	Maximum global output current	V _{IN} in full range, R _{SET} = 2.1kΩ *Max_Current_Option = 1, #G5:G0 = 100000	_	7	_	mA
I _{MAX}	(Channel average current, Color Register = FF, Brightness Register	V _{IN} in full range, R _{SET} = 2.1kΩ *Max_Current_Option = 1 #G5:G0 = 000000	_	39	_	mA
	= FF)	V _{IN} in full range, R _{SET} = 2.1kΩ *Max_Current_Option = 1 #G5:G0 = 011111	_	70	_	mA
Ішм	Internal current limit	V _{IN} = 3.3V *Max_Current_Option = 1, V _{IREF} = 0V #G5:G0 = 011111	_	75	145	mA
I _{D2D} (Note 8)	Device to device (lavg-lset)/lset x 100	VIN = 3.3V. All channels' current set to 10mA. PWM = 100%. Already includes the VIREF and KIREF tolerance	_	_	±5	%
I _{C2C} (Note 9)	Channel to channel (loutx-lavg)/lavg x 100	V _{IN} = 3.3V. All channels' current set to 10mA. PWM = 100%. Already includes the V _{IREF} and K _{IREF} tolerance	_	_	±5	%
I _{Ikg}	LEDx leakage current	PWM = 0%	_	0.01	0.1	μΑ

Notes:

^{*} DEVICE CONFIG1 Register # LED_GLOBAL_DIMMING Register

^{7.} For understanding of PWM generation process, please refer to Section 2.1.3.

^{8.} I_{D2D}: Accuracy of average of all 36 channels current with respect to design target.

^{9.} I_{C2C}: Accuracy of individual channel current with respect to average of all 36 channels current within a device. Channel current: average, or mean current (not RMS current) on a channel.

$\textbf{Electrical Characteristics} \ (V_{IN} = 3.3 \text{V}, -40 ^{\circ}\text{C} < T_{A} < +85 ^{\circ}\text{C}, \text{ unless otherwise specified.}) \ (continued)$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
CURRENT SINE	((continued)							
Vo	Output saturation voltage	V _{IN} in full range, *Max_Current_Option = 0 (bit), R _{SET} = 2.1kΩ, PWM = 100%, the voltage when the LED current has dropped 5%, *G5:G0 = 000000	_	0.15	0.25	V		
VSAT	Output saturation voitage	V_{IN} in full range, *Max_Current_Option = 1 (bit), R _{SET} = 2.1k Ω , PWM=100%, the voltage when the LED current has dropped 5%, *G5:G0 = 000000	_	0.2	0.3	٧		
VOPEN_th_rising	LED open threshold	VIN = 3.3V, VOUTx < VOPEN_th_rising	0.12	0.2	0.34	V		
VSC_th_rising	LED short threshold (V _{IN} - V _{OUTx})	VIN = 3.3V, VIN - VOUTx < VSC_th_rising	0.31	0.62	0.9	V		
PWM GROUP D	DIMMING							
fpwm	PWM frequency	_	26	30	35	kHz		
fosc	Internal oscillator frequency	_	13.5	15.5	17.5	MHz		
tPWMon_min	PWM on time minimum**	_	_	65		ns		
tIOUTx_rise	IOUTx_rise IOUTx rise time** Time for 0% to 90% rise of IOUTx			8	_	ns		
DIGITAL INPUT	LOGIC LEVELS (EN, RSTn, INT_SEL)						
VIL	Input logic low			_	0.4	V		
ViH	Input logic high	Vio = 1.8V	1.4	_	_	V		
INTERNAL PUL	L-UP RESISTOR AT FAULT PIN							
R _{PULLUP}	Internal pull-up resistor between FAULT pin to Vio	_	_	5	_	МΩ		
DIGITAL INTER	FACE LOGIC LEVELS (SPICS_SCL, S	SPISDO_SDA, SPISDA_ADDR0, SPISCL_A	DDR1)					
VIL	Input logic low	Vio = 1.8V	_	_	0.4	V		
V _{IH}	Input logic high	VIO = 1.0V	1.4	_	_	V		
VSDA	SDA output low level	IPULLUP = 5mA	_	_	0.4	V		
PROTECTION	PROTECTION							
T _(PRETSD)	Pre-thermal warning threshold	_	_	+145		°C		
T _(PRETSD_HYS)	Pre-thermal warning hysteresis	_	_	+20	_	°C		
T _{SD}	Thermal shutdown temperature	_	_	+160		°C		
Thys	Thermal shutdown temperature hysteresis	_	_	+20	_	°C		

^{*} DEVICE CONFIG1 Register # LED_GLOBAL_DIMMING Register ** Guaranteed by Design

$\textbf{Electrical Characteristics} \ (V_{IN} = 3.3V, -40^{\circ}C < T_{A} < +85^{\circ}C, \ unless \ otherwise \ specified.) \ (continued)$

Timing Requirements for I2C interface (Note 10)

Symbol	Parameter	Min	Тур	Max	Unit
fscL	I2C clock frequency	_	_	400	kHz
ten_h	EN first rising edge until first I2C access	_	_	500	μs
t _{EN_L}	EN first falling edge until first I2C reset	_	_	3	μs
1	Hold time (repeated) START condition	0.6	_	_	μs
2	Clock low time	1.3	_	_	μs
3	Clock high time	600	_	_	ns
4	Setup time for a repeated START condition	600	_	_	ns
5	Data hold time	0	_	_	ns
6	Data setup time	100	_	_	ns
7	Rise time of SDA and SCL	20 + 0.1 Cb	_	300	ns
8	Fall time of SDA and SCL	15 + 0.1 Cb	_	300	ns
9	Setup time for STOP condition	600	_	_	ns
10	Bus free time between a STOP and a START condition	1.3	_	_	ns
Cb	Capacitive load parameter for each bus line. Load of 1pF corresponds to one nanosecond.	_	_	200	pF

Note: 10. Specified by design & ATE characterized.

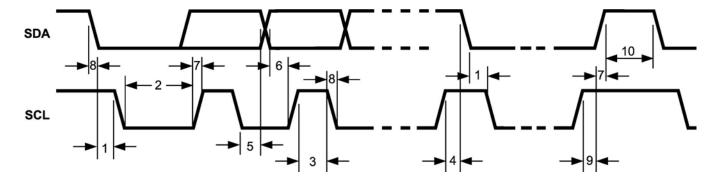


Figure 1. I2C Timing Parameters

$\textbf{Electrical Characteristics} \ (V_{IN} = 3.3 V, \ -40 ^{\circ} C < T_{A} < +85 ^{\circ} C, \ unless \ otherwise \ specified.) \ (continued)$

Timing Requirements for SPI interface (Note 10)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
fsclk	SPI clock frequency	_	_	_	4	MHz
tcss	The time from SPICS_SCL low to SPISCL_ADDR1 high	_	250	_	_	ns
tсsн	The time from SPISCL_ADDR1 low to SPICS_SCL high	_	250	_	_	ns
tos	Data set-up time	_	10	_	_	ns
tрн	Data hold time	_	0	_	_	ns
tcs_HI	Minimum chip select de-asserted HIGH time	_	250	_	_	ns
tD(SDO)	SDO delay time	C _L = 50pF	_	_	20	ns
tLOW	LOW period of SCLK clock	_	125	_	_	ns
thigh	HIGH period of SCLK clock	_	125	_	_	ns

Note:

10. Specified by design & ATE characterized.

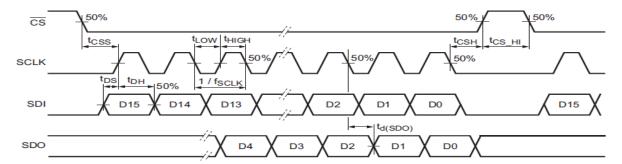
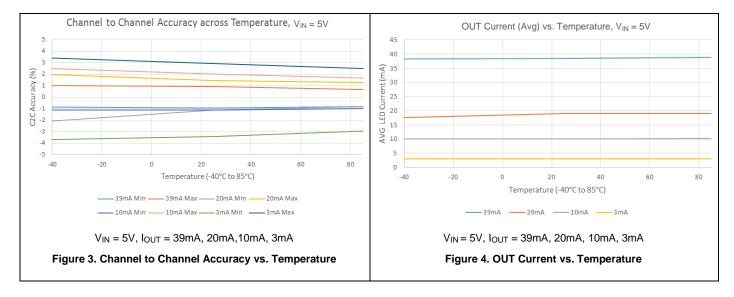
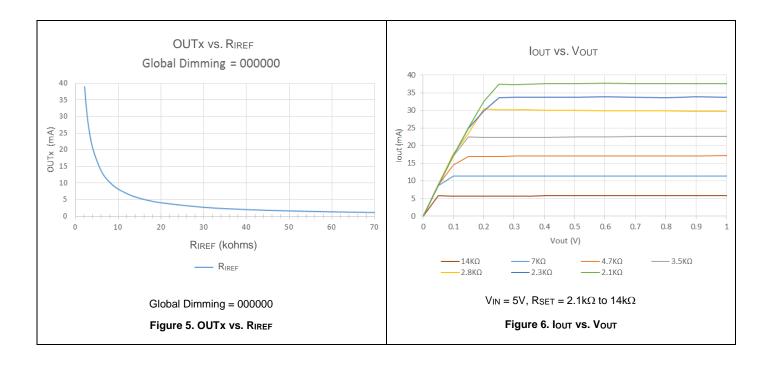




Figure 2. SPI Timing Parameters

Typical Performance Characteristics (VIN = 5V, -40°C < TA < +85°C, unless otherwise specified.)

Functional Descriptions

1. General Operation

One of the I2C or SPI protocols can be selected using INT_SEL pin. Using I2C/SPI interface, AL5887 controls LED's color and brightness through 4 primary mechanisms:

- 1. Use RSET to set full range for LED current IMAX (up to 70mA).
- 2. Set IMAX by using 6-bit global dimming register, which is termed as LED GLOBAL DIMMING in the registers map.
- 3. Set color/brightness registers for LED color and brightness (see Registers Map Description).
- 4. Further select various dimming and protection features described in Registers Map Description.

2. Feature Description

2.1 Each Channel PWM Control

The AL5887 device is designed with independent color mixing and brightness control, which makes it easier to achieve the RGB LED color effects needed. With the inputs of the color-mixing register and the brightness-control register, the final PWM generator output for each channel is 12-bit resolution and 30kHz dimming frequency, which helps achieve a smooth dimming effect and eliminates audible noise. See Figure 7.

For example, yellow color has the red, green and blue components as 255, 255 and 0 respectively. So to get the color yellow for the first RGB LED module, the color registers at the addresses 14h, 15h and 16h need to be configured with the values 255, 255 and 0 respectively. And then the brightness register for first RGB LED module at the address 8h can be configured based on the amount of brightness needed, 255 being the maximum brightness.

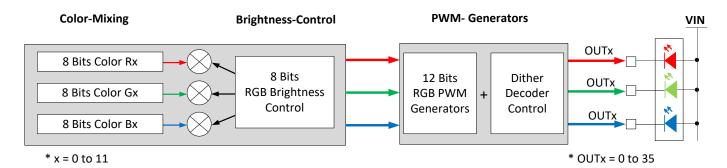


Figure 7. PWM Control Scheme for Each Channel

2.1.1 Independent Color Mixing Per RGB LED Module

Each output channel has its own individual 8-bit color-setting register (OUTx_COLOR). The device allows every RGB LED module to achieve > 16 million (256 x 256 x 256) color-mixing.

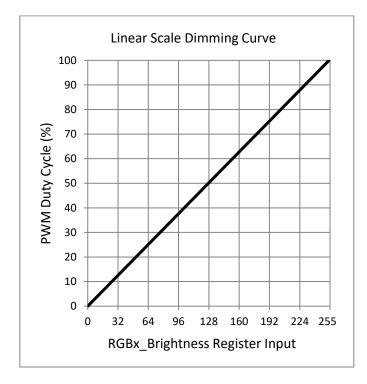
2.1.2 Independent Brightness Control per RGB LED Module

When color is fixed, the independent brightness-control is used to achieve accurate and flexible dimming control for every RGB LED module.

2.1.2.1 Brightness-Control Register Configuration

Every three consecutive output channels are assigned to their respective brightness-control register (RGBx_BRIGHTNESS). For example, LED0, LED1, and LED2 are assigned to RGB0_BRIGHTNESS, so it is recommended to connect the RGB LEDs in the sequence as shown in Table 1. The AL5887 device allows 256-step brightness control for each RGB LED module, which helps achieve a smooth dimming effect.

Keeping FFh (default value) in the RGB0_BRIGHTNESS register results in 100% dimming brightness. With this setting, the users can just configure the color mixing register by channel to achieve the target dimming effect in a single-color LED application.


AL5887 12 of 39 May 2024

Document number: DS45393 Rev. 4 - 2 www.diodes.com © 2024 Copyright Diodes Incorporated. All Rights Reserved.

2.1.2.2 Logarithmic- or Linear-Scale Brightness Control

For human-eye-friendly visual performance, a logarithmic-scale dimming curve is usually implemented in LED drivers. However, for RGB LEDs, if using a single register to achieve both color mixing and brightness control, color distortion can be observed easily when using a logarithmic scale. The AL5887 device, with independent color-mixing and brightness-control registers, implements the logarithmic scale dimming control inside the brightness control function, which solves the color distortion issue effectively (See Figure 8). Also, the AL5887 device allows users to configure the dimming scale either logarithmically or linearly through the global Log_Scale_EN register bit. If a special dimming curve is desired, using the linear scale with software correction is the most flexible approach.

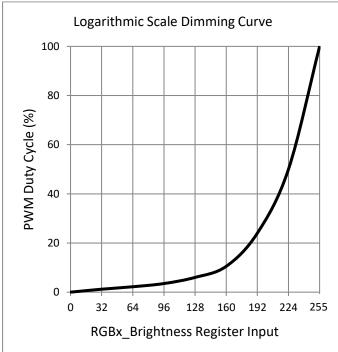


Figure 8. Logarithmic vs Linear Dimming Curve

2.1.3 12-Bit, 30kHz PWM Generator per Channel

With the inputs of the color mixing and the brightness control, the final output PWM duty cycle is defined as the product obtained by multiplying the color-mixing register value by the related brightness-control register value. The final output PWM duty cycle has 12 bits of control resolution, which is achieved by a 9 bits of pure PWM resolution and 3 bits of dithering digital control. The AL5887 device allows the users to enable or disable the dithering function through the PWM_Dithering_EN register. When enabled (default), the output PWM duty-cycle resolution is 12 bits. When disabled, the output PWM duty-cycle resolution is 9 bits. More details about dithering is mentioned in the following paragraph.

When 3-bit dithering is enabled, dither effect is generated with 8 (2³ = 8) possible dither values: "0", "1", "2",...."7", where 0 means no dithering; "1" means every 8th PWM pulse is made 1 LSB longer to increase the final average duty cycle by 1 LSB/8 (duty cycle is termed as DT); "2" means in every group of 8 PWM pulses, the 7th and 8th PWM pulses are both made 1 LSB longer to increase DT by 2 LSB/8, etc. AL5887 uses 512 clocks in a 100% PWM DT period to achieve 9-bit pure PWM resolution (2⁹ = 512), thus 1 LSB PWM DT is 1/512. Therefore dither value "1" adds 1/(8 x 512) = 0.0244% additional DT to pure PWM DT. For example, combining with dither value "1", the pure PWM DT of 25% will actually generate DT = 25.0244% for LED current regulation; while with dither value "2", pure PWM DT of 25% will actually generate DT = 25.05%. Though AL5887 pure PWM resolution is 1/512 = 0.195%, the 3-bit dither scheme enhances PWM resolution to 0.0244%.

2.1.4 PWM Phase-Shifting

A PWM phase-shifting scheme allows delaying the time when each LED driver is active. When the LED drivers are not activated simultaneously, the peak load current from the pre-stage power supply is significantly decreased. The scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases.

- Phase 1 The rising edge of the PWM pulse is fixed. The falling edge of the pulse is changed when the duty cycle changes. Phase 1 is applied to LED0, LED3, ..., LED[3 × (n 1)].
- Phase 2 The middle point of the PWM pulse is fixed. The pulse spreads in both directions when the PWM duty cycle is increased. Phase 2 is applied to LED1, LED4, ..., LED[3 × (n 1) + 1].
- Phase 3 The falling edge of the PWM pulse is fixed. The rising edge of the pulse is changed when the duty cycle changes. Phase 3 is applied to LED2, LED5, ..., LED[3 × (n 1) + 2].

2.2 LED Bank Control

For most LED-animation effects, like blinking and breathing, all the RGB LEDs have the same lighting pattern. Instead of controlling the individual LED separately, which occupies the microcontroller resources heavily, the AL5887 device provides an easy coding approach, the LED bank control. Each channel can be configured as either independent control or bank control through the LEDx_Bank_EN register. When LEDx_Bank_EN = 0 (default), the LED is controlled independently by the related color-mixing and brightness-control registers. When LEDx_Bank_EN = 1, the AL5887 device drives the LED in LED bank-control mode. The LED bank has its own independent PWM control scheme, which is the same structure as the PWM scheme of each channel. When a channel configured as LED bank-control mode, the related color mixing and brightness control is governed by the bank control registers (BANK_A_COLOR, BANK_B_COLOR, BANK_C_COLOR, and BANK_BRIGHTNESS) regardless of the inputs on its own color-mixing and brightness-control registers.

Out Number Bank Number RGB Module Number Out Number Bank Number RGB Module Number OUT0 Bank A OUT18 Bank A OUT1 RGB0 Bank B **OUT19** Bank B RGB6 OUT2 Bank C OUT20 Bank C OUT3 Bank A OUT21 Bank A OUT4 Bank B RGB1 OUT22 Bank B RGB7 OUT5 Bank C OUT23 Bank C OUT6 Bank A OUT24 Bank A OUT7 Bank B RGB2 OUT25 Bank B RGB8 OUT8 Bank C OUT26 Bank C OUT9 Bank A OUT27 Bank A OUT10 Bank B RGB3 OUT28 Bank B RGB9 OUT11 Bank C OUT29 Bank C OUT12 Bank A **OUT30** Bank A **OUT13** Bank B OUT31 Bank B RGB4 RGB10 OUT14 Bank C OUT32 Bank C OUT15 Bank A **OUT33** Bank A **OUT16** Bank B RGB5 OUT34 Bank B RGB11 OUT17 Bank C **OUT35** Bank C

Table 1. Bank Number and RGB Number Assignment

With the bank control configuration, the AL5887 device enables users to achieve smooth and live LED effects globally with an ultra-simple software effort.

For example (as shown in Figure 9), say if we want to configure RGB0 in independent mode and rest of RGB1 to RGB11 in BANK mode, we can do that by configuring LED_CONFIG0 register to FEh and LED_CONFIG1 register to 0Fh. By doing this, the RGB0 module operating in independent mode will be using RGB0_BRIGHTNESS for brightness and R0_COLOR, G0_COLOR and B0_COLOR for R, G, and B colors respectively, while the other RGB modules in bank mode would use BANK_BRIGHTNESS for brightness and BANK A, BANK B, and BANK C for R, G and B colors respectively.

AL5887 14 of 39 May 2024

Document number: DS45393 Rev. 4 - 2 www.diodes.com © 2024 Copyright Diodes Incorporated. All Rights Reserved.

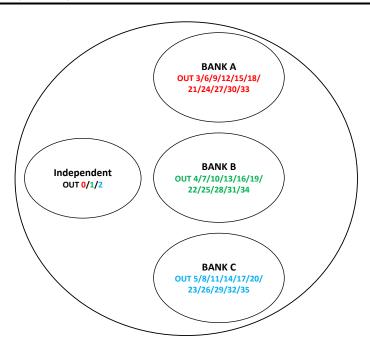


Figure 9. Bank PWM Control Example

2.3 Automatic Power-Save Mode

When all the LED outputs are inactive, the AL5887 device is able to enter power-save mode automatically, thus lowering idle-current consumption down to 25μ A (maximum). Automatic power-save mode is enabled when register bit Power_Save_EN = 1 (default) and all the LEDs are off (both color and brightness registers = 00H) for a duration of > 30ms. Almost all analog blocks are powered down in power-save mode. If any I2C/SPI command to the device occurs, the AL5887 device returns to NORMAL mode.

2.4 Protection Features

2.4.1 LED Open-Circuit Diagnostics

The AL5887 integrates LED open-circuit diagnostics to allow users to monitor LED status real time. The device monitors OUTx voltage to determine if there is any open-circuit failure.

If the voltage V_{OUTx} for any of the channels goes below threshold V_{OPEN_th_rising} and if the open persists for more than t_{FAULT_WAIT}, the AL5887 pulls the FAULT pin low to report fault and also sets flag register Open_Fault_CHx and FLAG_OPEN to 1. Once the open-circuit failure is removed, the controller needs to send CLR_FAULT to clear the FLAG_OPEN after fault removal. The fault delay is decided based on below table.

 FW1
 FW0
 tFAULT_WAIT

 0
 0
 8 PWM clock count

 0
 1
 16 PWM clock count

 1
 0
 24 PWM clock count

 1
 1
 32 PWM clock count

Table 2. Fault Wait Time

2.4.2 LED Short-Circuit Diagnostics

AL5887 monitors voltage difference between supply (VIN) and OUTx to determine if there is any short-circuit failure. If the difference voltage (V_{IN} - V_{OUTx}) for any of the channel falls below threshold (V_{SC_th_rising}) and if the short persists for more than t_{FAULT_WAIT}, the AL5887 pulls the FAULT pin low to report fault and also sets flag register Short_Fault_CHx and FLAG_SHORT to 1. The MCU should turn off the channel that detects a short fault to avoid overstressing device. Once the short-circuit failure is removed, the controller needs to send CLR_FAULT to clear the FLAG_SHORT after fault removal.

2.4.3 Pre-OTP Warning & Thermal Shutdown

The AL5887 has pre-thermal warning threshold of +145°C (typical) and thermal shutdown threshold of +160°C (typical)

When the AL5887 junction temperature rises above pre-thermal warning threshold of +145°C (typical) and if it persists for more than 33µs, the device reports pre-thermal warning by pulling FAULT pin low, and sets the flag register FLAG_PREOTP to 1. The device releases Pre-OTP warning once the temperature goes below +125°C. Once the fault is removed, the controller needs to send CLR_FAULT to clear the flag register after fault removal.

The AL5887 device also implements a thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature further rises to +160°C (typical), the device shuts down all output drivers and pulls the FAULT pin low. The AL5887 device releases thermal shutdown when the junction temperature of the device is reduced to +140°C (typical).

2.4.4 Pre-UVLO Warning

The AL5887 provides Pre-UVLO feature that warns the MCU about supply (VIN) being low and soon UVLO might be triggered. When V_{IN} goes below Pre-UVLO- threshold and if it persists for more than 33 μ s, FAULT pin is pulled low and the flag register FLAG_PREUVLO is set to 1. The device releases Pre-UVLO warning once the V_{IN} goes above Pre-UVLO+ threshold. Once the fault is cleared, the controller needs to send CLR_FAULT to clear the flag register after fault removal.

2.4.5 UVLO

The AL5887 device has an internal comparator that monitors the voltage at VIN. When V_{IN} is below UVLO-, reset is active and the AL5887 device is in the INITIALIZATION state. When V_{IN} supply goes below the UVLO- threshold, FAULT pin is pulled low to indicate the fault.

2.4.6 Digital POR Indicator

The AL5887 device has a digital bit FLAG_POR to indicate the power on reset. The default value of this bit is high to indicate the power on reset of digital block. The controller can set CLR_POR during the start of the operation to reset FLAG_POR so that the next power on reset to digital block can be captured.

2.4.7 Fault Masking

Open_Mask_CHx prevents the output open-circuit fault of individual channels from being reported to FAULT pin while Open_Mask prevents any of the channels open fault from being reported to FAULT pin.

Short_Mask_CHx prevents the output short-circuit fault of individual channels from being reported to FAULT pin while Short_Mask prevents any of the channels short fault from being reported to FAULT pin.

16 of 39

www.diodes.com

Pre_OTP_Mask prevents the Pre_OTP fault from being reported to FAULT pin.

Pre_UVLO_Mask prevents the Pre_UVLO fault from being reported to FAULT pin.

POR_Mask prevents the POR event from being reported to FAULT pin.

Downloaded from Arrow.com.

2.4.8 FAULT Output

The FAULT pin is a fault indicator pin. It can be used as an interrupt output to master controller in case of any fault. The FAULT pin is an NMOS open-drain output with an internal $5M\Omega$ pull-up resistor, pulled to Vio and if additionally, this pin can also be pulled up externally to controller supply using a smaller resistor like $10k\Omega$, as shown in figure below. When one or any of the faults is triggered such as UVLO, OTP, Pre-UVLO, Pre-OTP, channel open, channel short is detected, FAULT pin is pulled low continuously. Once the FAULT pin output is triggered, the controller needs to take necessary action and to deal with the fault and reset the fault flag. AL5887 takes action only for UVLO and OTP faults. For any other fault, AL5887 only reports the fault and controller needs to take the action.

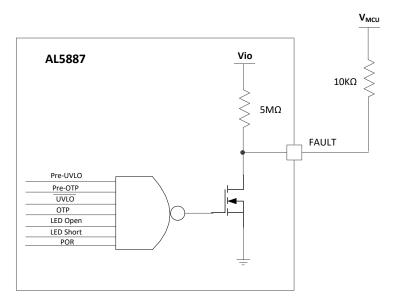


Figure 10. FAULT Internal Block Diagram

2.5 Interface Selection

Interface selection between SPI and I2C is done using an external pin INT_SEL. When tied low, I2C is selected while when connected to high, SPI is selected.

2.6 Digital Communication Enhancements

Pulling the external pin RSTn high enables the internal digital block. Pulling down for time duration between 1ms to 20ms resets only the digital interface and would keep other register values unaltered. Pulling down for time duration more than 20ms would reset all the registers. There is an internal pull up resistor that would by default pull up this pin to HIGH.

2.7 Current Setting for all Channels

The maximum global output current for all 36 channels can be adjusted by the external resistor, R_{SET}, as described below.

IMAX = KIREF x VIREF/RSET x [(Max_Current_Option/4)+(3/4)](1)

where

I_{MAX} = Channel average current, Color Register = FF, Brightness Register = FF

VIREF = 0.7 V

 R_{SET} = External dimming resistor (2.1k Ω recommended)

Max_Current_Option = 1 (default) or 0, see Register Map.

 $K_{IREF} = 21 + (N \times 3)$, is the current multiplication factor which can be programmed using 6-bit global dimming register G5:G0 (Address = 66H), which is analog dimming register and N is the decimal equivalent of $\overline{G5}$ G4 G3 G2 G1 G0.

For example, if all global dimming register bits are 0, the N will be decimal equivalent of 100000 which is 32. Hence, $K_{IREF} = 21 + (32 \times 3) = 117$.

Using equation (1) above, for $R_{SET} = 2.1k\Omega$ and $Max_Current_Option = 1$, below is the table that shows I_{MAX} variation with respect to the global dimming register bits. From Table 3, we can see that the default value = 39mA, minimum value = 7mA and maximum value = 70mA.

Table 3. I_{MAX} vs. Global Dimming @ R_{SET} = $2.1k\Omega$

G5	G4	G3	G2	G1	G0	I _{MAX} (mA)	K _{IREF}
0	0	0	0	0	0	39 (Default)	117 (Default)
0	0	0	0	0	1	40	120
0	0	0	0	1	0	41	123
0	0	0	0	1	1	42	126
		•				•	•
		•				•	•
		•				•	•
0	1	1	1	0	0	67	201
0	1	1	1	0	1	68	204
0	1	1	1	1	0	69	207
0	1	1	1	1	1	70 (Max)	210 (Max)
1	0	0	0	0	0	7 (Min)	21 (Min)
1	0	0	0	0	1	8	24
1	0	0	0	1	0	9	27
1	0	0	0	1	1	10	30
		•				•	•
I		•				•	•
		•	ı	ı	ı	•	•
1	1	1	1	0	1	36	108
1	1	1	1	1	0	37	111
1	1	1	1	1	1	38	114

Similarly, using equation (1) above, for global dimming register setting of 000000H and Max_Current_Option = 1, below is the table that shows I_{MAX} variation with respect to the R_{SET}.

Table 4. IMAX vs. RSET @ G5:G0 = 000000

R _{SET} (kΩ)	I _{MAX} (mA)	Kiref
2.1 (Recommended)	39	117
14.7	5.57	117
36.5	2.24	117

Table 5 shows I_{MAX} range using global dimming at different R_{SET} values.

Table 5. I_{MAX} vs. Global Dimming Bits @ Various R_{SET}

B (kO)	I _{MAX} (mA)				
R _{SET} (kΩ)	Min	Default	Max		
2.1 (Recommended)	7	39	70		
14.7	1	5.57	10		
36.5	0.4	2.24	4		

2.7.1 Thermal Considerations

As V_{INMAX} increases to 5.5V, the voltage on OUTx nodes can go as high as 3V for RED LEDs and 2V for GREEN and BLUE LEDs. In such situation if the user configures G0:G5 or R_{EXT} for higher currents, the device would get over heated and might hit the thermal shutdown voltage.

Hence the V_{IN} and I_{OUTx} for the channels should be chosen in such a way that the device junction temperature does not exceed its thermal shutdown temperature. Below is the formula relating the power dissipation and θ_{JA} that can be used to avoid device thermal shutdown.

 $T_J = T_A + (\theta_{JA} \times P_{TOTAL})$

Where, T_J is the junction temperature.

 $T_{\mbox{\scriptsize A}}$ is the ambient temperature.

 θ_{JA} is the junction to ambient thermal resistance. Ptotal is the device's total power dissipation.

Example: If all the 36 channels are turned on and carry the same current IMAX, then the device total power dissipation is given by,

 $P_{TOTAL} = (12 \text{ x V}_{(OUT0)} \text{ x Imax}) + (12 \text{ x V}_{(OUT1)} \text{ x Imax}) + (12 \text{ x V}_{(OUT2)} \text{ x Imax})$

2.8 Microcontroller (MCU) Supply

AL5887 can recognize interface logic levels from 1.8V to 5.5V. So MCU interacting with AL5887 can operate in the range 1.8V to 5.5V. However, the information of the supply used by MCU is required to be shared with AL5887 by connecting the MCU supply to Vio pin of AL5887.

2.9 Device Functional Modes

- **INITIALIZATION**: The device enters into INITIALIZATION mode when EN = High. In this mode, all the registers are reset. Entry can also be from any state, if the RESET (register) = FFh or UVLO is active.
- NORMAL: The device enters the NORMAL mode when Chip_EN (register) = 1. IVIN is 7mA (typical).
- **POWER SAVE**: The device automatically enters the POWER SAVE mode when Power_Save_EN (register) = 1 and all the LEDs are off for a duration of > 30ms. In POWER SAVE mode, analog blocks are disabled to minimize power consumption, but the registers retain the data and keep it available via I2C/SPI. IVIN is 25µA (max). In case of any I2C/SPI command to this device, it goes back to the NORMAL mode.
- SHUTDOWN: The device enters SHUTDOWN mode from all states on VIN power down or when EN = Low > 25ms. IVIN is < 6µA (max).
- STANDBY: The device enters the STANDBY mode when Chip_EN (register bit) = 0. In this mode, all the OUTx are shut down, but the registers retain the data and keep it available via I2C/SPI. STANDBY is the low-power-consumption mode, when all circuit functions are disabled. IVIN is 25µA (max).
- THERMAL SHUTDOWN: The device automatically enters the THERMAL SHUTDOWN mode when the junction temperature exceeds +160°C (typical). In this mode, all the OUTx outputs are shut down. If the junction temperature decreases below +150°C (typical), the device returns to the NORMAL mode.

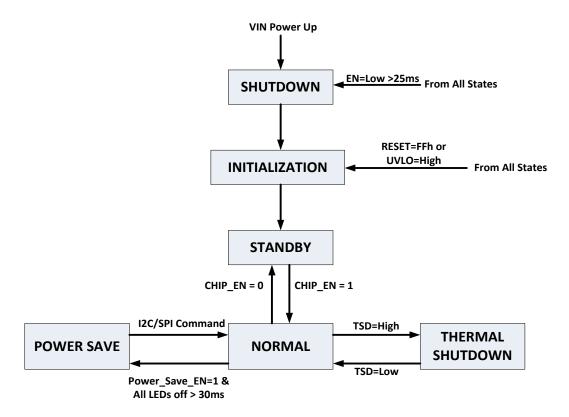


Figure 11. Functional Mode

3. Programming (SPI)

3.1 SPI-Compatible Interface

The AL5887 is compatible with SPI serial-bus specification and it operates as a slave.

3.1.1 SPI INITIALIZATION

Upon the release of power-on-reset (POR), the SPI peripheral in Digital Block waits for the chip selection signal (SPICS_SCL) from the SPI Controller. The output SPISDA_ADDR0 of the AL5887 is at high impedance until the reception of an active low on the select line.

The duration of the select line (SPICS_SCL) should be compliant with the lead and lag time requirements.

Lead time: 1) The time from SPICS_SCL low to SPISCL_ADDR1 high.

2) Least lead time is half clock period.

Lag time: 1) The time from SPISCL_ADDR1 low to SPICS_SCL high.

2) Least lag time is one clock period.

AL5887 is configured to communicate in Mode 0. Data read on rising edge. Clock Polarity in Idle State is Logic Low.

3.1.2 Write Operation

A '1' on bit (R/W) of the SPI request frame indicates a write request from the SPI Controller. Bits A6 to A0 provide the address of the register to which the data is to be written. The contents of the frame from bit D7 to D0 is written into the respective register with last positive edge of the SPISCL_ADDR1 in the current SPI frame.

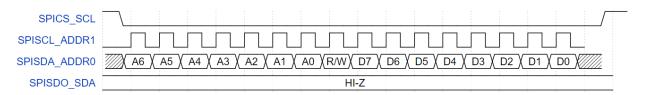


Figure 12. SPI Write Transaction

3.1.3 Read Operation

A read request from the SPI Controller is decoded with the read/write enable bit (R/W). A '0' on bit (R/W) of the frame indicates a read request from the Controller.

Bits A6 to A0 provide the address of the register. For a valid address, the 8-bit contents of the respective register is read out. For invalid addresses (out-of range/unused addresses) the response will be a default value (zero). The peripheral responds to the read request one clock cycle later by setting up data on falling edge and Controller reads data on rising edge. The peripheral responds to the read request one clock cycle later by setting up data on falling edge and Controller reads data on rising edge.

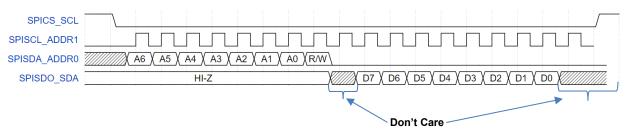


Figure 13. SPI Read Transaction

4. Programming (I2C)

4.1 I2C Interface

The I2C-compatible two-wire serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the devices connected to the bus. The two interface lines are the serial data line (SDA) and the serial clock line (SCL). Every device on the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates or receives the serial clock, SCL. The SCL and SDA lines should each have a pull-up resistor placed somewhere on the line and remain HIGH even when the bus is idle.

4.1.1 Data Validity

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state of the data line can only be changed when the clock signal is LOW.

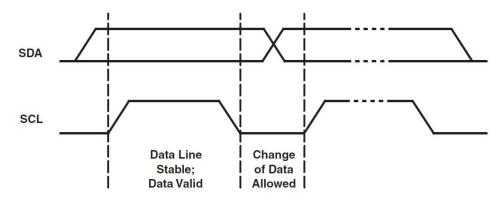


Figure 14. Data Validity

4.1.2 Start and Stop Conditions

START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while the SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus master always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus master can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

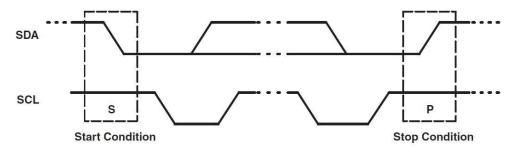


Figure 15. Start and Stop Conditions

4.1.3 Transferring Data

Every byte put on the SDA line must be eight bits long, with the most-significant bit (MSB) being transferred first. Each byte of data must be followed by an acknowledge bit. The acknowledge-related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge-after-every-byte rule. When the master is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

After the START condition, the bus master sends a chip address. This address is seven bits long followed by an eighth bit, which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1 indicates a READ. The second byte selects the register to which the data is written. The third byte contains data to write to the selected register.

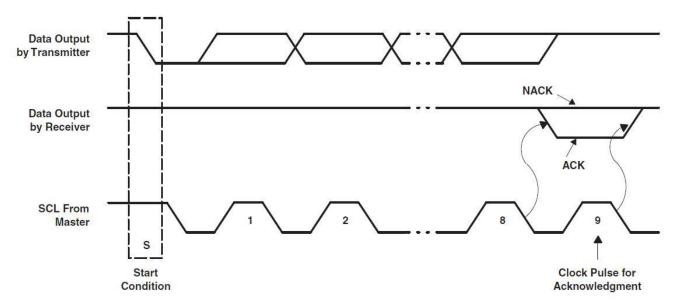


Figure 16. Acknowledge and Not Acknowledge on I2C Bus

4.1.4 I2C Slave Addressing

The device slave address is defined by connecting GND or VIO to the SPISDA_ADDR0 and SPISCL_ADDR1 pins. A total of 4 independent slave addresses can be realized by combinations when GND or VIO is connected to the SPISDA_ADDR0 and SPISCL_ADDR1 pins (see Table 6 and Table 7).

The device responds to a broadcast slave address regardless of the setting of the SPISDA_ADDR0 and SPISCL_ADDR1 pins. Global writes to the broadcast address can be used for configuring all devices simultaneously. The device supports global read using a broadcast address; however, the data read is only valid if all devices on the I2C bus contain the same value in the addressed register.

 SPISCL_ADDR1
 SPISDA_ADDR0
 Slave Address

 Independent
 Broadcast

 GND
 GND
 011 0000

 GND
 Vio
 011 0001

 Vio
 GND
 011 0010

Table 6. Slave-Address Combinations

Table	7.	Chip	Address
-------	----	------	---------

011 0011

		Slave Address									
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Independent	0	1	1	0	0	SPISCL_ADDR1	SPISDA_ADDR0	1 or 0			
Broadcast	0	0	1	1	1	0	0	1 or 0			

4.1.5 Control-Register Write Cycle

Vio

- The master device generates a start condition.
- The master device sends the slave address (7 bits) and the data direction bit (R/W = 0).

Vio

- The slave device sends an acknowledge signal if the slave address is correct.
- The master device sends the control register address (8 bits).
- The slave device sends an acknowledge signal.
- The master device sends the data byte to be written to the addressed register.
- The slave device sends an acknowledge signal.
- If the master device sends further data bytes, the control register address of the slave is incremented by 1 after the acknowledge signal. To reduce program load time, the device supports address auto incrementation. The register address is incremented after each 8 data bits.
- The write cycle ends when the master device creates a stop condition.

Figure 17. Write Cycle

4.1.6 Control-Register Read Cycle

- The master device generates a start condition.
- The master device sends the slave address (7 bits) and the data direction bit (R/W = 0).
- The slave device sends an acknowledge signal if the slave address is correct.
- The master device sends the control register address (8 bits).
- · The slave device sends an acknowledge signal.
- The master device generates a repeated-start condition.
- The master device sends the slave address (7 bits) and the data direction bit (R/W = 1).
- The slave device sends an acknowledge signal if the slave address is correct.
- The slave device sends the data byte from the addressed register.
- If the master device sends an acknowledge signal, the control-register address is incremented by 1. The slave device sends the data byte from the addressed register. To reduce program load time, the device supports address auto incrementation. The register address is incremented after each 8 data bits.
- The read cycle ends when the master device does not generate an acknowledge signal after a data byte and generates a stop condition.

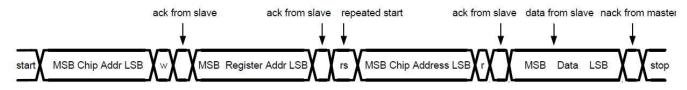


Figure 18. Read Cycle

25 of 39

Downloaded from **Arrow.com**.

Registers Map Description

5. Registers Map

Addr.	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	FDV
00h	DEVICE_CONFIG0	Reserved	CHIP_EN		T. 0		erved	lu 0 .	155 011 1	00h
01h	DEVICE_CONFIG1	Phase_Shift_ EN	Reserved	Log_Scale_ EN	EN	Reserved	Dither_EN	Max_Current _Option	Off	AEh
02h	LED_CONFIG0	LED7_Bank_ EN	LED6_Bank _EN	LED5_ Bank_EN	LED4_Bank_ EN	_EN	LED2_ Bank_EN	LED1_Bank_ EN	LED0_Bank_ EN	00h
03h	LED_CONFIG1		Rese	rved		LED11_ Bank_EN	LED10_ Bank_EN	LED9_Bank_ EN	LED8_Bank_ EN	00h
04h	BANK_BRIGHTNESS					rightness				FFh
05h	BANK_A_COLOR		Bank_A_Color							00h
06h	BANK_B_COLOR					B_Color				00h
07h	BANK_C_COLOR					C_Color				00h
08h	RGB0_BRIGHTNESS					Brightness				FFh
09h 0Ah	RGB1_BRIGHTNESS RGB2_BRIGHTNESS					Brightness Brightness				FFh FFh
0Bh	RGB3_BRIGHTNESS					Brightness				FFh
0Ch	RGB4 BRIGHTNESS					Brightness				FFh
0Dh	RGB5_BRIGHTNESS					Brightness				FFh
0Eh	RGB6_BRIGHTNESS					Brightness				FFh
0Fh	RGB7_BRIGHTNESS					Brightness				FFh
10h	RGB8_BRIGHTNESS					Brightness				FFh
11h	RGB9_BRIGHTNESS				RGB9_E	Brightness				FFh
12h	RGB10_BRIGHTNESS					Brightness				FFh
13h	RGB11_BRIGHTNESS				RGB11_	Brightness				FFh
14h	R0_COLOR				R0_	Color				00h
15h	G0_COLOR				G0_	Color				00h
16h	B0_COLOR					Color				00h
17h	R1_COLOR					Color				00h
18h	G1_COLOR					Color				00h
19h	B1_COLOR					Color				00h
1Ah	R2_COLOR					Color				00h
1Bh	G2_COLOR					Color				00h
1Ch	B2_COLOR					Color				00h
1Dh 1Eh	R3_COLOR G3_COLOR					Color Color				00h 00h
1Fh	B3_COLOR					Color				00h
20h	R4_COLOR					Color				00h
21h	G4_COLOR					Color				00h
22h	B4_COLOR					Color				00h
23h	R5_COLOR					Color				00h
24h	G5_COLOR					Color				00h
25h	B5_COLOR				B5_	Color				00h
26h	R6_COLOR				R6_	Color				00h
27h	G6_COLOR				G6_	Color				00h
28h	B6_COLOR					Color				00h
29h	R7_COLOR					Color				00h
2Ah	G7_COLOR					Color				00h
2Bh	B7_COLOR					Color				00h
2Ch	R8_COLOR					Color				00h
2Dh	G8_COLOR					Color				00h
2Eh	B8_COLOR R9_COLOR					Color				00h 00h
2Fh 30h	G9 COLOR					Color Color				00h
30h 31h	B9_COLOR					Color				00h
32h	R10_COLOR					_Color				00h
33h	G10_COLOR					Color				00h
34h	B10_COLOR					_Color				00h
35h	R11_COLOR					_Color				00h
36h	G11_COLOR					_Color				00h
37h	B11_COLOR					_Color				00h
38h	RESET	RESET							00h	
65h	FLAG	Reserved FLAG_POR FLAG_ FLAG_ FLAG_ PREUVLO PREOTP SHORT OPEN							10h	
66h	LED_GLOBAL_DIMMING	Reser	ved	G5	G4	G3	G2	G1	G0	00h
67h	FAULT WAIT				erved	-		FW1	FW0	00h
68h	MASK and CLR	Reserved	POR_Mask	PreUVLO_ Mask	PreOTP_ Mask	Short_Mask	Open_ Mask	CLR_Fault	CLR_POR	00h

^{*} FDV = Factory Default Value

Addr.	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	FDV
6Ah	O_M0	O_M_OUT7	O_M_OUT6	O_M_OUT5	O_M_OUT4	O_M_OUT3	O_M_OUT2	O_M_OUT1	O_M_OUT0	00h
6Bh	O_M1	O_M_OUT15	O_M_OUT14	O_M_OUT13	O_M_OUT12	O_M_OUT11	O_M_OUT10	O_M_OUT9	O_M_OUT8	00h
6Ch	O_M2	O_M_OUT23	O_M_OUT22	O_M_OUT21	O_M_OUT20	O_M_OUT19	O_M_OUT18	O_M_OUT17	O_M_OUT16	00h
6Dh	O_M3	O_M_OUT31	O_M_OUT30	O_M_OUT29	O_M_OUT28	O_M_OUT27	O_M_OUT26	O_M_OUT25	O_M_OUT24	00h
6Eh	O_M4		Rese	erved		O_M_OUT35	O_M_OUT34	O_M_OUT33	O_M_OUT32	00h
6Fh	S_M0	S_M_OUT7	S_M_OUT6	S_M_OUT5	S_M_OUT4	S_M_OUT3	S_M_OUT2	S_M_OUT1	S_M_OUT0	00h
70h	S_M1	S_M_OUT15	S_M_OUT14	S_M_OUT13	S_M_OUT12	S_M_OUT11	S_M_OUT10	S_M_OUT9	S_M_OUT8	00h
71h	S_M2	S_M_OUT23	S_M_OUT22	S_M_OUT21	S_M_OUT20	S_M_OUT19	S_M_OUT18	S_M_OUT17	S_M_OUT16	00h
74h	S_M3	S_M_OUT31	S_M_OUT30	S_M_OUT29	S_M_OUT28	S_M_OUT27	S_M_OUT26	S_M_OUT25	S_M_OUT24	00h
75h	S_M4		Rese	erved		S_M_OUT35	S_M_OUT34	S_M_OUT33	S_M_OUT32	00h
76h	O_F0	O_F_OUT7	O_F_OUT6	O_F_OUT5	O_F_OUT4	O_F_OUT3	O_F_OUT2	O_F_OUT1	O_F_OUT0	00h
77h	O_F1	O_F_OUT15	O_F_OUT14	O_F_OUT13	O_F_OUT12	O_F_OUT11	O_F_OUT10	O_F_OUT9	O_F_OUT8	00h
78h	O_F2	O_F_OUT23	O_F_OUT22	O_F_OUT21	O_F_OUT20	O_F_OUT19	O_F_OUT18	O_F_OUT17	O_F_OUT16	00h
79h	O_F3	O_F_OUT31	O_F_OUT30	O_F_OUT29	O_F_OUT28	O_F_OUT27	O_F_OUT26	O_F_OUT25	O_F_OUT24	00h
7Ah	O_F4		Rese	erved		O_F_OUT35	O_F_OUT34	O_F_OUT33	O_F_OUT32	00h
7Bh	S_F0	S_F_OUT7	S_F_OUT6	S_F_OUT5	S_F_OUT4	S_F_OUT3	S_F_OUT2	S_F_OUT1	S_F_OUT0	00h
7Ch	S_F1	S_F_OUT15	S_F_OUT14	S_F_OUT13	S_F_OUT12	S_F_OUT11	S_F_OUT10	S_F_OUT9	S_F_OUT8	00h
7Dh	S_F2	S_F_OUT23	S_F_OUT22	S_F_OUT21	S_F_OUT20	S_F_OUT19	S_F_OUT18	S_F_OUT17	S_F_OUT16	00h
7Eh	S_F3	S_F_OUT31	S_F_OUT30	S_F_OUT29	S_F_OUT28	S_F_OUT27	S_F_OUT26	S_F_OUT25	S_F_OUT24	00h
7Fh	S_F4		Rese	erved	·	S_F_OUT35	S_F_OUT34	S_F_OUT33	S_F_OUT32	00h

^{*} O_Mx = Open_Maskx

Table 8. Access Type Codes

Access Type	Code	Description
Read Type		
R	R	Read
Write Type		
$\overline{\mathbb{W}}$	$\overline{\mathbb{W}}$	Write
Power On Reset or Default value		
(xxh)	(xxh)	Value after POR or default value

5.1 DEVICE_CONFIG0 (Address = 00h) [default = 00h]

Table 9. DEVICE_CONFIG0 Register

7	6	5	4	3	2	1	0		
Reserved	Chip_EN			Rese	erved				
Reserved	R/W̄-(00h)		Reserved						
Reserved	0 = AL5887 Disabled 1 = AL5887 Enabled			Rese	erved				

^{*} S_Mx = Short_Maskx

^{*} O_Fx = Open Faultx

^{*} S_Fx = Short Faultx

^{*} FDV = Factory Default Value

5.2 DEVICE_CONFIG1 (Address = 01h) [default = AEh]

Table 10. DEVICE_CONFIG1 Register

7	6	5	4	3	2	1	0
Phase_Shift_EN	Reserved	Log_Scale_EN	Power_Save_EN	Reserved	Dither_EN	Max_Current_Option	LED_Global_Off
R/W-(01h)	R/W-(00h)	R/W-(01h)	R/W-(00h)	R/W-(01h)	R/W-(01h)	R/W-(01h)	R/W-(00h)
0 = Disabled 1 = Enabled	_	Enabled 1 = Logarithmic	0 = Power Save Mode Disabled 1 = Power Save Mode Enabled	_	0 = Disabled 1 = Enabled	U = 29.25MA 1 = 39mΔ	0 = Normal Operation 1 = Shutdown all LEDs

5.3 LED_CONFIG0 (Address = 02h) [default = 00h]

Table 11. LED_CONFIG0 Register

7	6	5	4	3	2	1	0				
LED7_Bank_ EN	LED6_Bank_ EN	LED5_Bank_ EN	LED4_Bank_ EN	LED3_Bank_ EN	LED2_Bank_ EN	LED1_Bank_EN	LED0_Bank_EN				
	R/W̄-(00h)										
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1				

^{* 0 =} Independent Mode Enabled

5.4 LED_CONFIG1 (Address = 03h) [default = 00h]

Table 12. LED_CONFIG1 Register

7	6	5 4		3 2		1	0				
	Reserved			LED11_Bank_ EN	LED9_Bank_ EN	LED8_Bank_ EN					
	R/W̄-(00h)										
	Reserved		0/1	0/1	0/1	0/1					

^{* 0 =} Independent Mode Enabled

5.5 BANK_BRIGHTNESS (Address = 04h) [default = FFh]

Table 13. BANK_BRIGTHNESS Register

7	6	5	4	3	2	1	0				
BANK_BRIGHTNESS											
			R/W-	(FFh)							
	00h = 0% of full brightness										
	80h = 50% of full brightness										
	FFh = 100 % of full brightness										

5.6 BANK_A_COLOR (Address = 05h) [default = 00h]

Table 14. BANK_A_COLOR Register

7	7 6 5 4 3 2 1 0											
BANK_A_COLOR												
	R/W̄-(00h)											
	00h = The color mixing percentage is 0%											
	 80h = The color mixing percentage is 50%											
		F	Fh = The color mi	xing percentage is	100%							

^{* 1 =} Bank Mode Enabled

^{* 1 =} Bank Mode Enabled

5.7 BANK_B_COLOR (Address = 06h) [default = 00h]

Table 15. BANK_B_COLOR Register

7	6	5	4	3	2	1	0					
	BANK_B_COLOR											
			R/W-	(00h)								
		00	h = The color mixi	ng percentage is 0)%							
	 80h = The color mixing percentage is 50%											
		FFI	n = The color mixin	 g percentage is 10	00%							

5.8 BANK_C_COLOR (Address = 07h) [default = 00h]

Table 16. BANK_C_COLOR Register

7	7 6 5 4 3 2 1 0										
BANK_C_COLOR											
R/W-(00h)											
	00h = The color mixing percentage is 0%										
	80h = The color mixing percentage is 50%										
	FFh = The color mixing percentage is 100%										

5.9 RGB0 to RGB11_BRIGHTNESS (Address = 08h to 13h) [default = FFh]

Table 17. RGB0 to RGB11_BRIGHTNESS Register

7	6 5 4 3 2 1 0										
RGB0 to RGB11_BRIGHTNESS											
	R/W-(FFh)										
	00h = 0% of full brightness										
 80h = 50% of full brightness FFh = 100 % of full brightness											

5.10 Rx_COLORx = 0 to 11 (Address = 14h to 1Eh) [default = 00h]

Table 18. Rx_COLOR Register

7	7 6 5 4 3 2 1 0									
Rx_COLOR										
R/W̄-(00h)										
		00	h = The color mixi	ng percentage is 0	1%					
	80h = The color mixing percentage is 50%									
	FFh = The color mixing percentage is 100%									

5.11 Gx_COLORx = 0 to 11 (Address = 1Fh to 2Ah) [default = 00h]

Table 19. Gx_COLOR Register

7	7 6 5 4 3 2 1 0											
Gx_COLOR												
	R/W̄-(00h)											
	00h = The color mixing percentage is 0%											
	 80h = The color mixing percentage is 50%											
	FFh = The color mixing percentage is 100%											

5.12 Bx_COLORx = 0 to 11 (Address = 2Bh to 37h) [default = 00h]

Table 20. Bx_COLOR Register

7	7 6 5 4 3 2 1 0										
Bx_COLOR											
	R/W̄-(00h)										
	00h = The color mixing percentage is 0%										
	 80h = The color mixing percentage is 50%										
	FFh = The color mixing percentage is 100%										

5.13 RESET (Address = 38h) [default = 00h]

Table 21. RESET Register

7	6 5 4 3 2 1 0										
	RESET										
			W	7-(00h)							
	FFh = Resets all the registers to default value.										

5.14 FLAG (Address = 65h) [default = 00h]

Table 22. FLAG Register

7	6	5	4	3	2	1	0
F	Reserved FLAG_POR		FLAG_PREUVLO	FLAG_PREOTP	FLAG_SHORT	FLAG_OPEN	
				R/W	V-(00h)		
F	Reserve		U = No POR fault reported. 1 = POR fault reported.	1 = Pre_UVLO fault	0 = No Pre_OTP fault reported. 1 = Pre_OTP fault reported.	reported on any	0 = No open fault reported on any channel. 1 = Open fault reported on any of the channels.

5.15 LED_GLOBAL_DIMMING (Address = 66h) [default = 00h]

Table 23. LED_GLOBAL_DIMMING Register

7	7 6		4	3	2	1	0	
Reserved		G5	G4	G3	G2	G1	G0	
			R/Ñ	W-(00h)				
Rese	Reserved 6-bit LED Global current setting. See <u>Table 3</u> for details.							

5.16 FAULT_WAIT (Address = 67h) [default = 00h]

Table 24. FAULT_WAIT Register

7	6	5	2	1	0						
		FW1	FW0								
	R/W̄-(00h)										
		Rese	0 = as per <u>Table 2</u> 1 = as per <u>Table 2</u>	0 = as per <u>Table 2</u> 1 = as per <u>Table 2</u>							

5.17 MASK and CLR (Address = 68h) [default = 00h]

Table 25. MASK and CLR Register

7	6	5	4	3	2	1	0			
Reserved	POR_Mask	PreUVLO_Mask	PreOTP_Mask	Short_Mask	Open_Mask	CLR_Fault	CLR_POR			
R/W̄-(00h)										
		0 = Pre-UVLO mask turned off 1 = Pre-UVLO mask turned on	0 = Pre-OTP mask turned off 1 = Pre-OTP mask turned on	0 = Short Detection Mask off 1 = Short Detection Mask on	0 = Open Detection Mask off 1 = Open Detection Mask on		0 = Clearing POR turned off 1 = Clears the POR faults			

5.18 O_M0 (Address = 6Ah) [default = 00h]

Table 26. O_M0 Register

7	6	5	4	3	2	1	0				
*O_M_OUT7	O_M_OUT6	O_M_OUT5	O_M_OUT4	O_M_OUT3	O_M_OUT2	O_M_OUT1	O_M_OUT0				
	R/W-(00h)										
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1				

^{*} O_M = Open_Maskx

5.19 O_M1 (Address = 6Bh) [default = 00h]

Table 27. O_M1 Register

7	6	5	4	3	2	1	0			
*O_M_OUT15	O_M_OUT14	O_M_OUT13	O_M_OUT12	O_M_OUT11	O_M_OUT10	O_M_OUT9	O_M_OUT8			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} O_M = Open_Maskx

5.20 O_M2 (Address = 6Ch) [default = 00h]

Table 28. O_M2 Register

7	6	5	4	3	2	1	0			
*O_M_OUT23	O_M_OUT22	O_M_OUT21	O_M_OUT20	O_M_OUT19	O_M_OUT18	O_M_OUT17	O_M_OUT16			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} O_M = Open_Maskx

^{* 0 =} Open Detection Mask Off

^{* 1 =} Open Detection Mask On

^{* 0 =} Open Detection Mask Off

^{* 1 =} Open Detection Mask On

^{* 0 =} Open Detection Mask Off

^{* 1 =} Open Detection Mask On

5.21 O_M3 (Address = 6Dh) [default = 00h]

Table 29. O_M3 Register

7	6	5	4	3	2	1	0			
O_M_OUT31	O_M_OUT30	O_M_OUT29	O_M_OUT28	O_M_OUT27	O_M_OUT26	O_M_OUT25	O_M_OUT24			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} O_M = Open_Maskx

5.22 O_M4 (Address = 6Eh) [default = 00h]

Table 30. O_M4 Register

7	6	5	4	3	2	1	0			
	Rese	erved		O_M_OUT35	O_M_OUT34	O_M_OUT33	O_M_OUT32			
	R/W-(00h)									
	Rese	erved		0/1	0/1	0/1	0/1			

^{*} O_M = Open_Maskx

5.23 S_M0 (Address = 6Fh) [default = 00h]

Table 31. S_M0 Register

7	6	5	4	3	2	1	0			
S_M_OUT7	S_M_OUT6	S_M_OUT5	S_M_OUT4	S_M_OUT3	S_M_OUT2	S_M_OUT1	S_M_OUT0			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} S_M = Short_Maskx

5.24 S_M1 (Address = 70h) [default = 00h]

Table 32. S_M1 Register

7	6	5	4	3	2	1	0			
S_M_OUT15	S_M_OUT14	S_M_OUT13	S_M_OUT12	S_M_OUT11	S_M_OUT10	S_M_OUT9	S_M_OUT8			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} S_M = Short_Maskx

^{* 0 =} Open Detection Mask Off

^{* 1 =} Open Detection Mask On

^{* 0 =} Open Detection Mask Off

^{* 1 =} Open Detection Mask On

^{* 0 =} Short Detection Mask Off

^{* 1 =} Short Detection Mask On

^{* 0 =} Short Detection Mask Off

^{* 1 =} Short Detection Mask On

5.25 S_M2 (Address = 71h) [default = 00h]

Table 33. S_M2 Register

7	6	5	4	3	2	1	0			
S_M_OUT23	S_M_OUT22	S_M_OUT21	S_M_OUT20	S_M_OUT19	S_M_OUT18	S_M_OUT17	S_M_OUT16			
	R/W-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} S_M = Short_Maskx

5.26 S_M3 (Address = 74h) [default = 00h]

Table 34. S_M3 Register

7	6	5	4	3	2	1	0			
S_M_OUT31	S_M_OUT30	S_M_OUT29	S_M_OUT28	S_M_OUT27	S_M_OUT26	S_M_OUT25	S_M_OUT24			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} S_M = Short_Maskx

5.27 S_M4 (Address = 75h) [default = 00h]

Table 35. S_M4 Register

7	6	5	4	3	2	1	0			
	Rese	erved		S_M_OUT35	S_M_OUT34	S_M_OUT33	S_M_OUT32			
	R/W̄-(00h)									
	Rese	erved		0/1	0/1	0/1	0/1			

^{*} S_M = Short_Maskx

5.28 O_F0 (Address = 76h) [default = 00h]

Table 36. O_F0 Register

7	6	5	4	3	2	1	0			
O_F_OUT7	O_F_OUT6	O_F_OUT5	O_F_OUT4	O_F_OUT3	O_F_OUT2	O_F_OUT1	O_F_OUT0			
	R/W-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} O_Fx = Open_Faultx

^{* 0 =} Short Detection Mask Off

^{* 1 =} Short Detection Mask On

^{* 0 =} Short Detection Mask Off

^{* 1 =} Short Detection Mask On

^{* 0 =} Short Detection Mask Off

^{* 1 =} Short Detection Mask On

^{* 0 =} Open Fault Not Detected

^{* 1 =} Open Fault Detected

5.29 O_F1 (Address = 77h) [default = 00h]

Table 37. O_F1 Register

7	6	5	4	3	2	1	0			
O_F_OUT15	O_F_OUT14	O_F_OUT13	O_F_OUT12	O_F_OUT11	O_F_OUT10	O_F_OUT9	O_F_OUT8			
	R/W-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} O_Fx = Open_Faultx

5.30 O_F2 (Address = 78h) [default = 00h]

Table 38. O_F2 Register

7	6	5	4	3	2	1	0			
O_F_OUT23	O_F_OUT22	O_F_OUT21	O_F_OUT20	O_F_OUT19	O_F_OUT18	O_F_OUT17	O_F_OUT16			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} O_Fx = Open_Faultx

5.31 O_F3 (Address = 79h) [default = 00h]

Table 39. O_F3 Register

7	6	5	4	3	2	1	0			
O_F_OUT31	O_F_OUT30	O_F_OUT29	O_F_OUT28	O_F_OUT27	O_F_OUT26	O_F_OUT25	O_F_OUT24			
	R/W̄-(00h)									
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			

^{*} O_Fx = Open_Faultx

5.32 O_F4 (Address = 7Ah) [default = 00h]

Table 40. O_F4 Register

7	6	5	4	3	2	1	0
	Reserved			O_F_OUT35	O_F_OUT34	O_F_OUT33	O_F_OUT32
R/W̄-(00h)							
Reserved			0/1	0/1	0/1	0/1	

^{*} O_Fx = Open_Faultx

^{* 0 =} Open Fault Not Detected

^{* 1 =} Open Fault Detected

^{* 0 =} Open Fault Not Detected

^{* 1 =} Open Fault Detected

^{* 0 =} Open Fault Not Detected

^{* 1 =} Open Fault Detected

^{* 0 =} Open Fault Not Detected

^{* 1 =} Open Fault Detected

5.33 S_F0 (Address = 7Bh) [default = 00h]

Table 41. S_F0 Register

7	6	5	4	3	2	1	0
S_F_OUT7	S_F_OUT6	S_F_OUT5	S_F_OUT4	S_F_OUT3	S_F_OUT2	S_F_OUT1	S_F_OUT0
	R/W̄-(00h)						
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

^{*} S_Fx = Short_Faultx

5.34 S_F1 (Address = 7Ch) [default = 00h]

Table 42. S_F1 Register

7	6	5	4	3	2	1	0
S_F_OUT15	S_F_OUT14	S_F_OUT13	S_F_OUT12	S_F_OUT11	S_F_OUT10	S_F_OUT9	S_F_OUT8
	R/W̄-(00h)						
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

^{*} S_Fx = Short_Faultx

5.35 S_F2 (Address = 7Dh) [default = 00h]

Table 43. S_F2 Register

7	6	5	4	3	2	1	0
S_F_OUT23	S_F_OUT22	S_F_OUT21	S_F_OUT20	S_F_OUT19	S_F_OUT18	S_F_OUT17	S_F_OUT16
	R/W̄-(00h)						
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

^{*} S_Fx = Short_Faultx

5.36 S_F3 (Address = 7Eh) [default = 00h]

Table 44. S_F3 Register

7	6	5	4	3	2	1	0
S_F_OUT31	S_F_OUT30	S_F_OUT29	S_F_OUT28	S_F_OUT27	S_F_OUT26	S_F_OUT25	S_F_OUT24
R/W-(00h)							
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

^{*} S_Fx = Short_Faultx

^{* 0 =} Short Fault Not Detected

^{* 1 =} Short Fault Detected

^{* 0 =} Short Fault Not Detected

^{* 1 =} Short Fault Detected

^{* 0 =} Short Fault Not Detected

^{* 1 =} Short Fault Detected

^{* 0 =} Short Fault Not Detected

^{* 1 =} Short Fault Detected

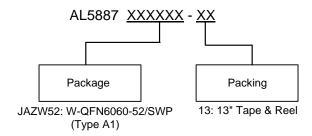
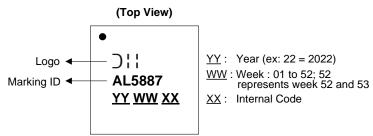

5.37 S_F4 (Address = 7Fh) [default = 00h]

Table 45. S_F4 Register

7	6	5	4	3	2	1	0
Reserved			S_F_OUT35	S_F_OUT34	S_F_OUT33	S_F_OUT32	
R/W̄-(00h)							
Reserved			0/1	0/1	0/1	0/1	

^{*} S_Fx = Short_Faultx

Ordering Information



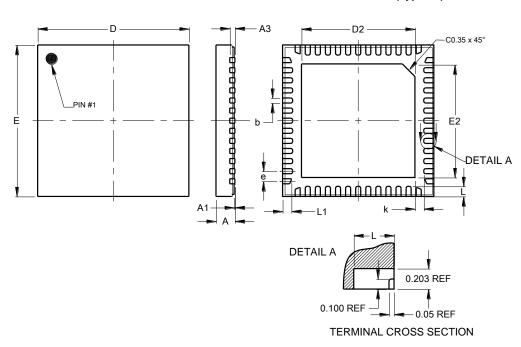
Part Number	Part Number Suffix	Backago Codo	Pookogo (Noto 11)	Packing	
Part Number	Part Number Sumx	Package Code	Package (Note 11)	Qty.	Carrier
AL5887JAZW52-13	-13	JAZW52	W-QFN6060-52/SWP (Type A1)	4000	Tape & Reel

Note: 11. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

W-QFN6060-52/SWP (Type A1)

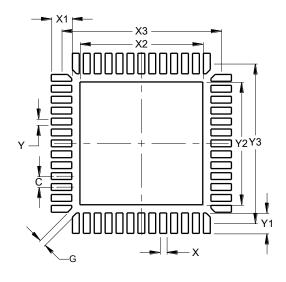
^{* 0 =} Short Fault Not Detected


^{* 1 =} Short Fault Detected

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

W-QFN6060-52/SWP (Type A1)



'	W-QFN6060-52/SWP						
	(Type A1)						
Dim	Min	Max	Тур				
Α	0.700	0.800	0.750				
A1	0.00	0.05	0.02				
A3		0.203 R	EF				
b	0.15	0.25	0.20				
D		6.00 B	SC				
D2	4.45	4.55	4.50				
Е		6.00 B	SC				
E2	4.45	4.55	4.50				
е		0.40 B	SC				
k	0.20		-				
١	0.35	0.45	0.40				
L1	0.30	0.40	0.35				
Α	All Dimensions in mm						

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

W-QFN6060-52/SWP (Type A1)

Dimensions	Value
פווטופוושווט	(in mm)
С	0.400
G	0.250
X	0.250
X1	0.750
X2	4.500
Х3	5.850
Y	0.250
Y1	0.750
Y2	4.500
Y3	5.850

Mechanical Data

Package W-QFN6060-52/SWP (Type A1)

- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per JESD22-B102 (3)
- Weight: 0.0091 grams (Approximate)

Design Tools

- AL5887 Demo Board
- Emulator
- Demo Board Gerber File for PCB Layout Reference
- PSPICE Digital Simulation

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com

AL5887 39 of 39 May 2024

Document number: DS45393 Rev. 4 - 2 www.diodes.com © 2024 Copyright Diodes Incorporated. All Rights Reserved.