

# MOSFET - N-Channel, Shielded Gate POWERTRENCH®

100 V, 222 A, 2.3 m $\Omega$ 

# FDP2D3N10C, FDPF2D3N10C

### **General Description**

This N-Channel MV MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

### **Features**

- Max  $r_{DS(on)} = 2.3 \text{ m}\Omega$  at  $V_{GS} = 10 \text{ V}$ ,  $I_D = 100 \text{ A}$
- Extremely Low Reverse Recovery Charge, Qrr
- 100% UIL Tested
- RoHS Compliant

### **Applications**

- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

| V <sub>DS</sub> | r <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|-----------------|-------------------------|--------------------|
| 100 V           | 2.3 m $\Omega$ @ 10 V   | 222 A*             |

\*Drain current limited by maximum junction temperature. Package limitation current is 120 A.





TO-220 CASE 221A



TO-220 Fullpack, 3-Lead / TO-220F-3SG CASE 221AT

### **MARKING DIAGRAM**



FDP(F)2D3N10C

Α

YWW ZZ Specific Device CodeAssembly Location

= Date Code (Year & Week)= Assembly Lot

### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 2 of this data sheet.

# **MOSFET MAXIMUM RATINGS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

|                                   | Rating                   |                                               | ing        |             |      |
|-----------------------------------|--------------------------|-----------------------------------------------|------------|-------------|------|
| Symbol                            | Parameter                |                                               | FDP2D3N10C | FDPF2D3N10C | Unit |
| V <sub>DS</sub>                   | Drain to Source Voltage  |                                               | 100        | 100         | V    |
| $V_{GS}$                          | Gate to Source Voltage   |                                               | ±20        | ±20         | V    |
| I <sub>D</sub>                    | Drain Current            | - Continuous, T <sub>C</sub> = 25°C (Note 3)  | 222*       | 222*        | Α    |
|                                   |                          | - Continuous, T <sub>C</sub> = 100°C (Note 3) | 157*       | 157*        |      |
|                                   |                          | - Pulsed (Note 1)                             | 888        | 888         | Α    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche  | Energy (Note 2)                               | 11         | 76          | mJ   |
| P <sub>D</sub>                    | Power Dissipation        | T <sub>C</sub> = 25°C                         | 214        | 45          | W    |
|                                   |                          | T <sub>A</sub> = 25°C                         | 2.4        | 2.4         |      |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Ju | nction Temperature Range                      | −55 to     | +175        | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\*Drain current limited by maximum junction temperature. Package limitation current is 120 A.

- Pulsed Id please refer to Figure 11 and Figure 12 "Forward Bias Safe Operating Area" for more details.
   E<sub>AS</sub> of 1176 mJ is based on starting T<sub>J</sub> = 25°C, L = 3 mH, I<sub>AS</sub> = 28 A, V<sub>DD</sub> = 90 V, V<sub>GS</sub> = 10 V. 100% test at L = 0.1 mH, I<sub>AS</sub> = 89 A.
   Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

### THERMAL CHARACTERISTICS

| Symbol          | Parameter                                     | FDP2D3N10C | FDPF2D3N10C | Unit |
|-----------------|-----------------------------------------------|------------|-------------|------|
| $R_{	heta JC}$  | Thermal Resistance, Junction to Case, Max.    | 0.7        | 3.3         | °C/W |
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient, Max. | 62.5       | 62.5        |      |

### PACKAGE MARKING AND ORDERING INFORMATION

| Device Marking | Device      | Package | Shipping           |
|----------------|-------------|---------|--------------------|
| FDP2D3N10C     | FDP2D3N10C  | TO-220  | 800 units / Tube   |
| FDPF2D3N10C    | FDPF2D3N10C | TO-220F | 1,000 units / Tube |

# $\textbf{ELECTRICAL CHARACTERISTICS} \; (T_J = 25^{\circ}C \; \text{unless otherwise noted})$

| Symbol              | Parameter                             | Test Conditions                                                                     | Min | Тур  | Max   | Unit  |
|---------------------|---------------------------------------|-------------------------------------------------------------------------------------|-----|------|-------|-------|
| OFF CHAR            | ACTERISTICS                           |                                                                                     | •   |      |       | •     |
| BV <sub>DSS</sub>   | Drain to Source Breakdown Voltage     | I <sub>D</sub> = 250 μA, V <sub>GS</sub> = 0 V                                      | 100 | _    | -     | V     |
| $\Delta BV_{DSS}$   | Breakdown Voltage Temperature         | I <sub>D</sub> = 250 μA, referenced to 25°C                                         | -   | 70   | -     | mV/°C |
| $\Delta T_{J}$      | Coefficient                           |                                                                                     |     |      |       |       |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current       | V <sub>DS</sub> = 80 V, V <sub>GS</sub> = 0 V                                       | -   | _    | 1     | μΑ    |
|                     |                                       | V <sub>DS</sub> = 80 V, T <sub>J</sub> = 150°C                                      | _   | _    | 500   | μΑ    |
| I <sub>GSS</sub>    | Gate to Source Leakage Current        | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$                                   | _   | _    | ±100  | nA    |
| ON CHARA            | CTERISTICS                            |                                                                                     |     |      |       |       |
| V <sub>GS(th)</sub> | Gate to Source Threshold Voltage      | $V_{GS} = V_{DS}, I_D = 700 \mu A$                                                  | 2.0 | 3.0  | 4.0   | V     |
| r <sub>DS(on)</sub> | Static Drain to Source On Resistance  | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 100 A                                      | -   | 2.1  | 2.3   | mΩ    |
| 9FS                 | Forward Transconductance              | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 100 A                                       | -   | 222  | -     | S     |
| DYNAMIC (           | CHARACTERISTICS                       |                                                                                     |     |      |       |       |
| C <sub>iss</sub>    | Input Capacitance                     | V <sub>DS</sub> = 50 V, V <sub>GS</sub> = 0 V, f = 1 MHz                            | -   | 7980 | 11180 | pF    |
| C <sub>oss</sub>    | Output Capacitance                    |                                                                                     | -   | 4490 | 6290  | pF    |
| C <sub>rss</sub>    | Reverse Transfer Capacitance          |                                                                                     | -   | 40   | 75    | pF    |
| Rg                  | Gate Resistance                       |                                                                                     | 0.1 | 0.8  | 1.8   | Ω     |
| SWITCHING           | G CHARACTERISTICS                     |                                                                                     |     |      |       |       |
| t <sub>d(on)</sub>  | Turn-On Delay Time                    | $V_{DD} = 50 \text{ V}, I_{D} = 100 \text{ A}, V_{GS} = 10 \text{ V},$              | _   | 42   | 67    | ns    |
| t <sub>r</sub>      | Rise Time                             | $R_{GEN} = 6 \Omega$                                                                | _   | 35   | 56    | ns    |
| t <sub>d(off)</sub> | Turn-Off Delay Time                   |                                                                                     | _   | 74   | 118   | ns    |
| t <sub>f</sub>      | Fall Time                             |                                                                                     | -   | 32   | 57    | ns    |
| $Q_g$               | Total Gate Charge                     | $V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 50 \text{ V}, I_D = 100 \text{ A}$ | -   | 108  | 152   | nC    |
| $Q_{gs}$            | Gate to Source Gate Charge            | V <sub>DD</sub> = 50 V, I <sub>D</sub> = 100 A                                      | _   | 36   | _     | nC    |
| $Q_{gd}$            | Gate to Drain "Miller" Charge         |                                                                                     | _   | 22   | -     | nC    |
| Q <sub>oss</sub>    | Output Charge                         | V <sub>DD</sub> = 50 V, V <sub>GS</sub> = 0 V                                       | -   | 297  | -     | nC    |
| DRAIN-SO            | URCE DIODE CHARACTERISTICS            |                                                                                     |     |      |       |       |
| IS                  | Maximum Continuous Drain to Source Di | ode Forward Current                                                                 | -   | _    | 222   | А     |
| I <sub>SM</sub>     | Maximum Pulsed Drain to Source Diode  | Forward Current                                                                     | -   | -    | 888   | Α     |
| $V_{SD}$            | Source to Drain Diode Forward Voltage | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 100 A                                      | -   | 0.9  | 1.3   | V     |
| t <sub>rr</sub>     | Reverse Recovery Time                 | $V_{GS} = 0 \text{ V}, V_{DD} = 50 \text{ V}, I_F = 100 \text{ A},$                 | -   | 107  | 172   | ns    |
| Q <sub>rr</sub>     | Reverse Recovery Charge               | $dI_{F}/dt = 100 A/\mu s$                                                           | _   | 191  | 306   | nC    |
| t <sub>rr</sub>     | Reverse Recovery Time                 | $V_{GS} = 0 \text{ V}, V_{DD} = 50 \text{ V}, I_F = 100 \text{ A},$                 | _   | 97   | 155   | ns    |
| Q <sub>rr</sub>     | Reverse Recovery Charge               | dl <sub>F</sub> /dt = 300 A/μs                                                      | _   | 492  | 788   | nC    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

### TYPICAL PERFORMANCE CHARACTERISTICS (T. J = 25°C UNLESS OTHERWISE NOTED)

Drain to Source On-Resistance

Normalized

<sup>IDS(on)</sup>, Drain to Source On–Resistance (mΩ)

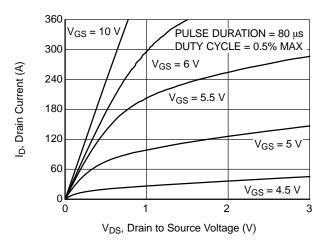



Figure 1. On-Region Characteristics

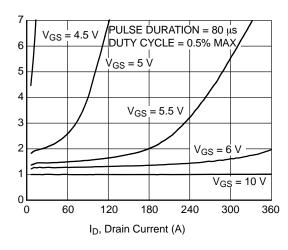



Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

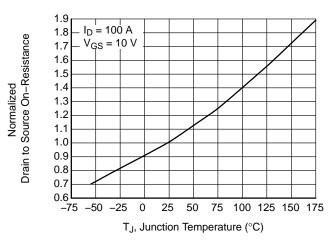



Figure 3. Normalized On–Resistance vs. Junction Temperature

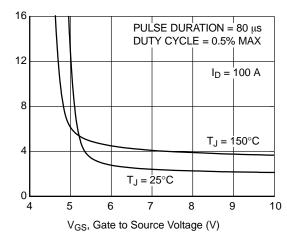



Figure 4. On–Resistance vs. Gate to Source Voltage

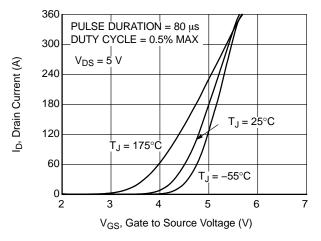



Figure 5. Transfer Characteristics

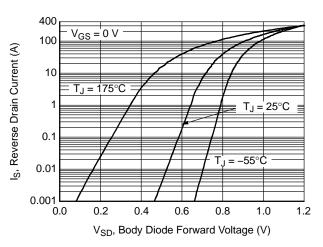



Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

### TYPICAL PERFORMANCE CHARACTERISTICS (T<sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) (CONTINUED)

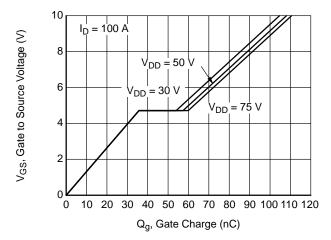



Figure 7. Gate Charge Characteristics

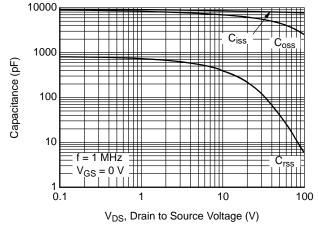



Figure 8. Capacitance vs. Drain to Source Voltage

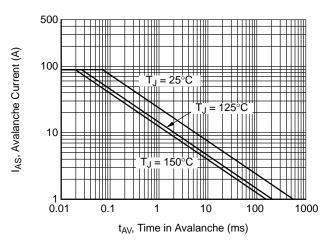



Figure 9. Unclamped Inductive Switching Capability

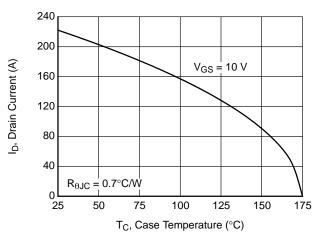



Figure 10. Maximum Continuous Drain Current vs.

Case Temperature

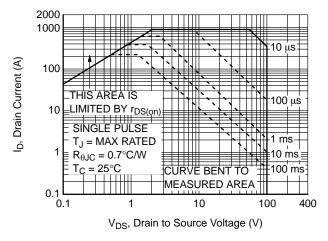



Figure 11. Forward Bias Safe Operating
Area for FDP2D3N10C

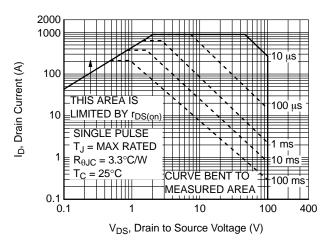
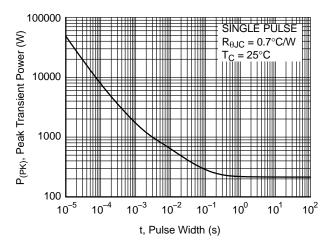




Figure 12. Forward Bias Safe Operating Area for FDPF2D3N10C

### TYPICAL PERFORMANCE CHARACTERISTICS (T<sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) (CONTINUED)



100000 SINGLE PULSE P<sub>(PK)</sub>, Peak Transient Power (W)  $R_{\theta JC} = 3.3^{\circ}C/W$  $T_C = 25^{\circ}C$ 10000 1000 100 10  $10^{-5}$  $10^{-2}$  $10^{-4}$  $10^{-1}$ 10<sup>0</sup> 10<sup>2</sup> 10<sup>1</sup> t, Pulse Width (s)

Figure 13. Single Pulse Maximum Power Dissipation for FDP2D3N10C

Figure 14. Single Pulse Maximum Power Dissipation for FDPF2D3N10C

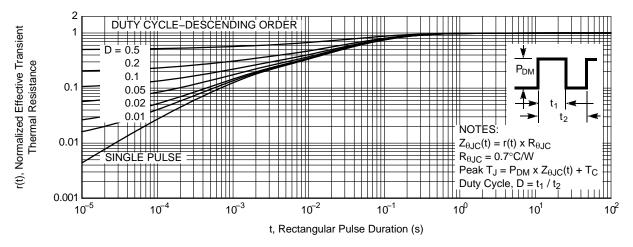



Figure 15. Junction-to-Case Transient Thermal Response Curve for FDP2D3N10C

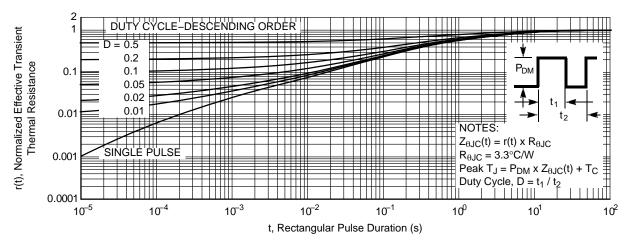
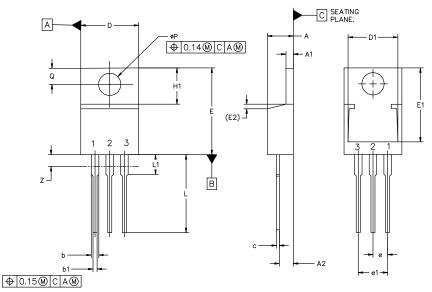



Figure 16. Junction-to-Case Transient Thermal Response Curve for FDPF2D3N10C




POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.





### TO-220-3 10.10x15.12x4.45, 2.54P CASE 221A **ISSUE AL**

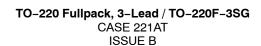
**DATE 05 FEB 2025** 



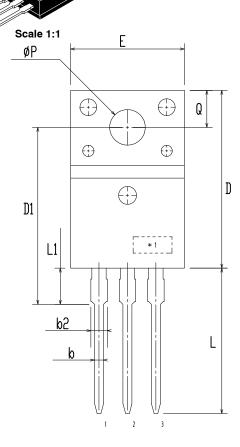
| MILLIMETERS |          |       |       |  |  |  |
|-------------|----------|-------|-------|--|--|--|
| DIM         | MIN      | NOM   | MAX   |  |  |  |
| А           | 4.07     | 4.45  | 4.83  |  |  |  |
| A1          | 1.15     | 1.28  | 1.41  |  |  |  |
| A2          | 2.04     | 2.42  | 2.79  |  |  |  |
| b           | 1.15     | 1.34  | 1.52  |  |  |  |
| b1          | 0.64     | 0.80  | 0.96  |  |  |  |
| С           | 0.36     | 0.49  | 0.61  |  |  |  |
| D           | 9.66     | 10.10 | 10.53 |  |  |  |
| D1          | 8.43     | 8.63  | 8.83  |  |  |  |
| E           | 14.48    | 15.12 | 15.75 |  |  |  |
| E1          | 12.58    | 12.78 | 12.98 |  |  |  |
| E2          | 1.27 REF |       |       |  |  |  |

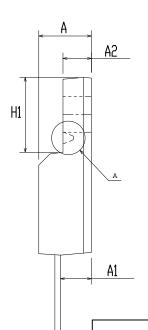
| MILLIMETERS |       |       |       |  |  |
|-------------|-------|-------|-------|--|--|
| DIM         | MIN   | NOM   | MAX   |  |  |
| е           | 2.42  | 2.54  | 2.66  |  |  |
| e1          | 4.83  | 5.08  | 5.33  |  |  |
| H1          | 5.97  | 6.22  | 6.47  |  |  |
| L           | 12.70 | 13.49 | 14.27 |  |  |
| L1          | 2.80  | 3.45  | 4.10  |  |  |
| Q           | 2.54  | 2.79  | 3.04  |  |  |
| ØΡ          | 3.60  | 3.85  | 4.09  |  |  |
| Z           |       |       | 3.48  |  |  |

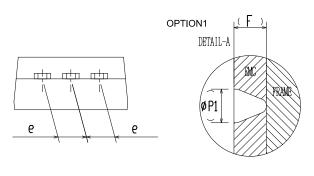
### NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
  2. CONTROLLING DIMENSION: MILLIMETERS.
  3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

| STYLE 1: |           | STYLE 2:  |           | STYLE 3:  |         | STYLE 4: |                     |
|----------|-----------|-----------|-----------|-----------|---------|----------|---------------------|
| PIN 1.   | BASE      | PIN 1.    | BASE      | PIN 1.    | CATHODE | PIN 1.   | MAIN TERMINAL 1     |
| 2.       | COLLECTOR | 2.        | EMITTER   | 2.        | ANODE   | 2.       | MAIN TERMINAL 2     |
| 3.       | EMITTER   | 3.        | COLLECTOR | 3.        | GATE    | 3.       | GATE                |
| 4.       | COLLECTOR | 4.        | EMITTER   | 4.        | ANODE   | 4.       | MAIN TERMINAL 2     |
| STYLE 5: |           | STYLE 6:  |           | STYLE 7:  |         | STYLE 8: |                     |
| PIN 1.   | GATE      | PIN 1.    | ANODE     | PIN 1.    | CATHODE | PIN 1.   | CATHODE             |
| 2.       | DRAIN     | 2.        | CATHODE   | 2.        | ANODE   | 2.       | ANODE               |
| 3.       | SOURCE    | 3.        | ANODE     | 3.        | CATHODE | 3.       | EXTERNAL TRIP/DELAY |
| 4.       | DRAIN     | 4.        | CATHODE   | 4.        | ANODE   | 4.       | ANODE               |
| STYLE 9: |           | STYLE 10: |           | STYLE 11: |         | STYLE 12 | :                   |
| PIN 1.   | GATE      | PIN 1.    | GATE      | PIN 1.    | DRAIN   | PIN 1.   | MAIN TERMINAL 1     |
| 2.       | COLLECTOR | 2.        | SOURCE    | 2.        | SOURCE  | 2.       | MAIN TERMINAL 2     |
| 3.       | EMITTER   | 3.        | DRAIN     | 3.        | GATE    | 3.       | GATE                |
| 4.       | COLLECTOR | 4.        | SOURCE    | 4.        | SOURCE  | 4.       | NOT CONNECTED       |


| DOCUMENT NUMBER: | 98ASB42148B              | Electronic versions are uncontrolled except when accessed directly from the Document Reposi<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |  |  |
|------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| DESCRIPTION:     | TO-220-3 10.10x15.12x4.4 | TO-220-3 10.10x15.12x4.45, 2.54P                                                                                                                                               |  |  |  |


onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.






**DATE 19 JAN 2021** 







| DIM   | MIL   | LIMITERS |       |
|-------|-------|----------|-------|
| ויונע | MIN   | NDM      | MAX   |
| Α     | 4.50  | 4.70     | 4.90  |
| A1    | 2.56  | 2.76     | 2.96  |
| A2    | 2.34  | 2.54     | 2.74  |
| b     | 0.70  | 0.80     | 0.90  |
| b2    | *     | 2        | 1.47  |
| С     | 0.45  | 0.50     | 0.60  |
| D     | 15.67 | 15.87    | 16.07 |
| D1    | 15.60 | 15.80    | 16.00 |
| E     | 9.96  | 10.16    | 10.36 |
| е     | 2.34  | 2.54     | 2.74  |
| F     | 2     | 0.84     | 2     |
| H1    | 6.48  | 6.68     | 6.88  |
| L     | 12.78 | 12.98    | 13.18 |
| L1    | 3.03  | 3.23     | 3.43  |
| ØΡ    | 2.98  | 3.18     | 3.38  |
| ø P1  | ~     | 1.00     | ~     |
| Q     | 3.20  | 3.30     | 3.40  |

### NOTES:

- A. DIMENSION AND TOLERANCE AS ASME Y14.5-2009
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUCSIONS.

C

C. OPTION 1 - WITH SUPPORT PIN HOLE OPTION 2 - NO SUPPORT PIN HOLE

| DOCUMENT NUMBER: |                                       | Electronic versions are uncontrolled except when accessed directly from the Document Reposi<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | TO-220 FULLPACK, 3-LEAD / TO-220F-3SG |                                                                                                                                                                                | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

