IGBT - Ultra Field Stop

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Ultra Field Stop Trench construction, and provides superior performance in demanding switching applications, offering low switching losses. The IGBT is well suited for applications that require fast switching IGBT with low V_F diodes, e.g. phase–shifted full bridge, etc. Incorporated into the device is a free wheeling diode with a low forward voltage.

Features

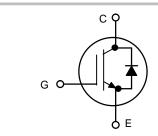
- Extremely Efficient Trench with Field Stop Technology
- $T_{Jmax} = 175^{\circ}C$
- Low V_F Reverse Diode
- Optimized for High Speed Switching
- These are Pb-Free Devices

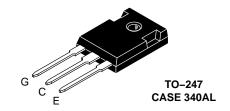
Typical Applications

- Welding
- Uninterruptible Power Inverter Supplies (UPS)
- Motor Control

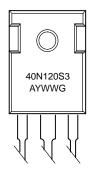
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	1200	V
Collector current @ Tc = 25°C @ Tc = 100°C	lc	160 40	А
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	160	Α
Diode forward current @ Tc = 25°C @ Tc = 100°C	l _F	160 40	A
Diode pulsed current, T _{pulse} limited by T _{Jmax}	I _{FM}	160	Α
Gate-emitter voltage Transient gate-emitter voltage $(T_{pulse} = 5 \mu s, D < 0.10)$	V _{GE}	±20 ±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	454 227	W
Operating junction temperature range	T_J	-55 to +175	°C
Storage temperature range	T _{stg}	-55 to +175	°C
Lead temperature for soldering, 1/8" from case for 10 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

40 A, 1200 V V_{CEsat} = 1.7 V E_{off} = 1.1 mJ

MARKING DIAGRAM

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB40N120S3WG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction–to–case, for IGBT	$R_{\theta JC}$	0.34	°C/W
Thermal resistance junction-to-case, for Diode		0.5	°C/W
Thermal resistance junction-to-ambient		40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC		-		-		-
Collector–emitter breakdown voltage, gate–emitter short–circuited	$V_{GE} = 0 \text{ V, } I_{C} = 500 \mu\text{A}$	V _{(BR)CES}	1200	-	-	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 40 A V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	V _{CEsat}	_ _	1.7 2.3	1.95 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 400 \mu A$	$V_{GE(th)}$	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}$ $V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}, T_{J=} 175^{\circ}\text{C}$	I _{CES}	_ _	- 0.5	0.4 -	mA
Gate leakage current, collector–emitter short–circuited	V _{GE} = 20 V , V _{CE} = 0 V	I _{GES}	-	-	200	nA
Input capacitance		C _{ies}	_	4912	-	pF
Output capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	C _{oes}	-	140	-	
Reverse transfer capacitance		C _{res}	_	80	-	
Gate charge total		Q_g	_	212	-	nC
Gate to emitter charge	$V_{CE} = 600 \text{ V}, I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V}$	Q_ge	_	43	-	1
Gate to collector charge		Q_{gc}	_	102	-	
SWITCHING CHARACTERISTIC, INDUCT	IVE LOAD					
Turn-on delay time		t _{d(on)}	_	12	_	ns
Rise time		t _r	_	25	-	
Turn-off delay time	T _J = 25°C	t _{d(off)}	_	145	_	
Fall time	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}$	t _f	_	107	-	
Turn-on switching loss	$R_g = 10 \Omega$ $V_{GE} = 15V$	E _{on}	_	2.2	-	mJ
Turn-off switching loss		E _{off}	_	1.1	_	
Total switching loss		E _{ts}	_	3.3	_	
Turn-on delay time		t _{d(on)}	_	13	_	ns
Rise time		t _r	_	24	-	
Turn-off delay time	T _J = 175°C	t _{d(off)}	_	153	-	
Fall time	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}$	t _f	_	173	-	
Turn-on switching loss	$R_g = 10 \Omega$ $V_{GE} = 15 V$	E _{on}	_	2.8	-	mJ
Turn-off switching loss		E _{off}	_	1.6	-	1
Total switching loss		E _{ts}	_	4.4	_	1
DIODE CHARACTERISTIC				•		•
Forward voltage	V _{GE} = 0 V, I _F = 40 A V _{GE} = 0 V, I _F = 40 A, T _J = 175°C	V _F	- -	2.0 2.55	2.6	V
Reverse recovery time		t _{rr}	_	163	_	ns
Reverse recovery charge	T _J = 25°C	Q _{rr}	_	2.9	_	μс
Reverse recovery current	$I_F = 40 \text{ A}, V_R = 400 \text{ V}$	I _{rrm}	_	30	_	Α
Diode peak rate of fall of reverse recovery current during tb	di _F /dt = 500 A/μs	dI _{rrm} /dt	-	137	-	A/μs

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC						
Reverse recovery time		t _{rr}	-	250	_	ns
Reverse recovery charge	$T_J = 175^{\circ}C$ $I_F = 40 \text{ A, V}_R = 400 \text{ V}$	Q _{rr}	-	5.3	-	μς
Reverse recovery current		I _{rrm}	-	40	_	Α
Diode peak rate of fall of reverse recovery current during tb	$di_F/dt = 500 A/\mu s$	dI _{rrm} /dt	-	482	-	A/μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

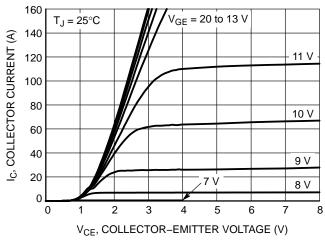


Figure 1. Output Characteristics

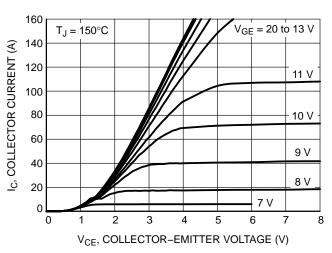


Figure 2. Output Characteristics

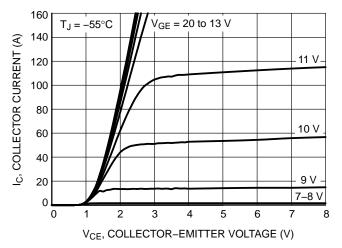
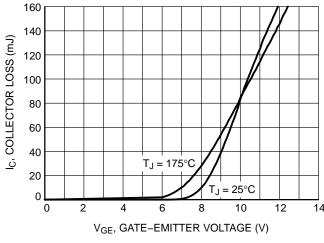



Figure 3. Output Characteristics

Figure 4. Output Characteristics

Figure 5. Typical Transfer Characteristics

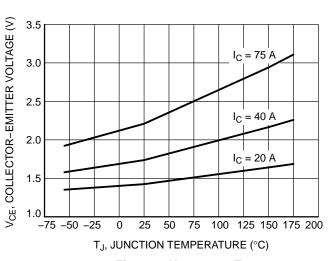


Figure 6. V_{CE(sat)} vs. T_J

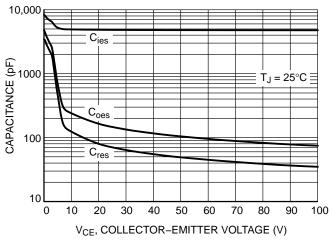


Figure 7. Typical Capacitance

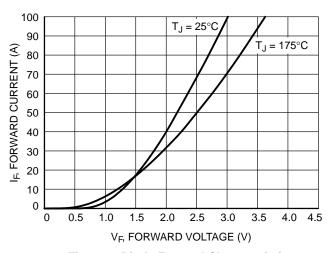


Figure 8. Diode Forward Characteristics

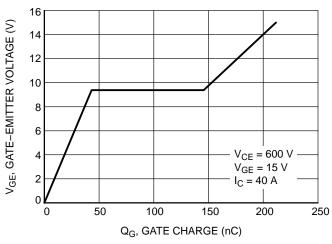


Figure 9. Typical Gate Charge

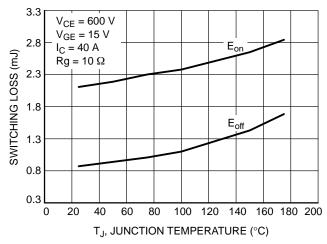


Figure 10. Switching Loss vs. Temperature

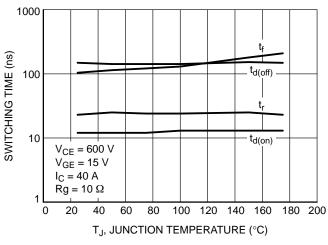


Figure 11. Switching Loss vs. Temperature

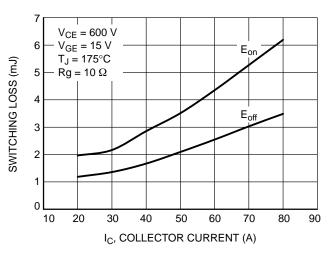


Figure 12. Switching Loss vs. I_C

TYPICAL CHARACTERISTICS

SWITCHING LOSS (mJ)

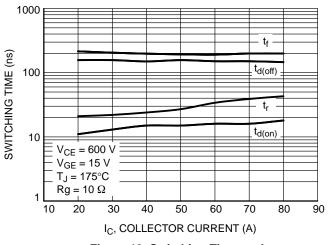


Figure 13. Switching Time vs. I_C

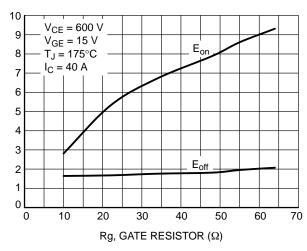


Figure 14. Switching Loss vs. R_G

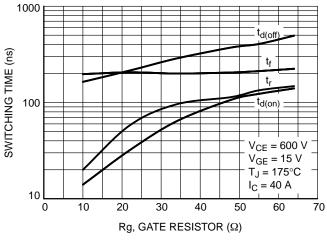


Figure 15. Switching Time vs. R_G

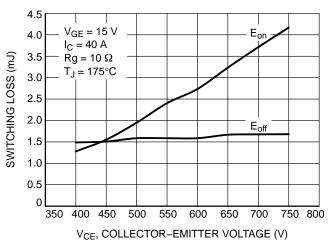


Figure 16. Switching Loss vs. V_{CE}

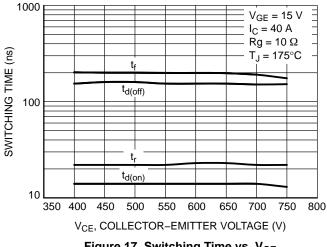


Figure 17. Switching Time vs. V_{CE}

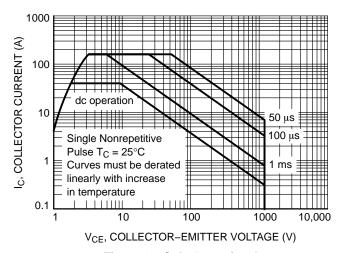
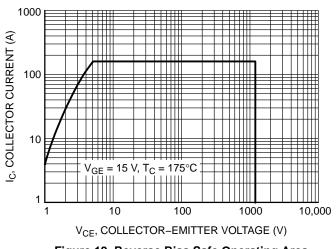



Figure 18. Safe Operating Area

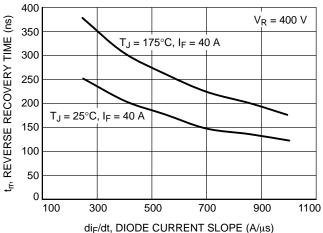
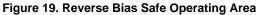



Figure 20. t_{rr} vs. di_F/dt

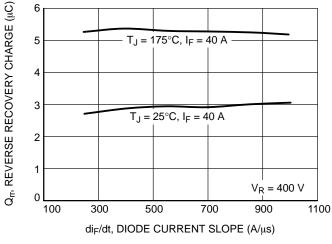


Figure 21. Q_{rr} vs. di_F/dt

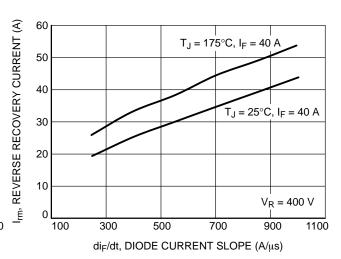


Figure 22. I_{rm} vs. di_F/dt

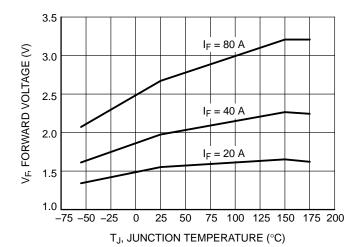


Figure 23. V_F vs. T_J

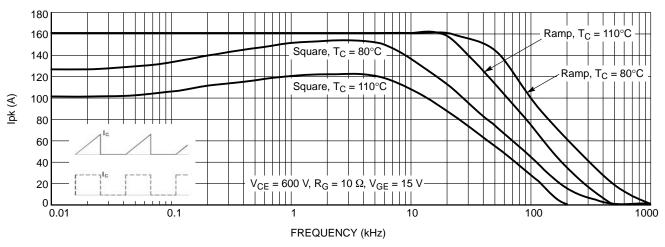


Figure 24. Collector Current vs. Switching Frequency

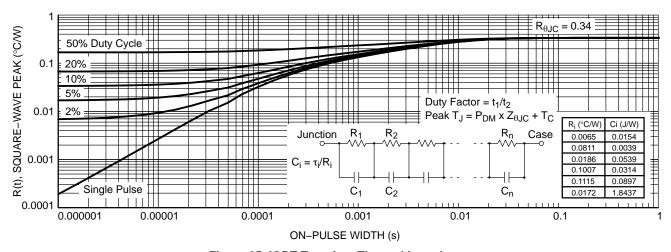


Figure 25. IGBT Transient Thermal Impedance

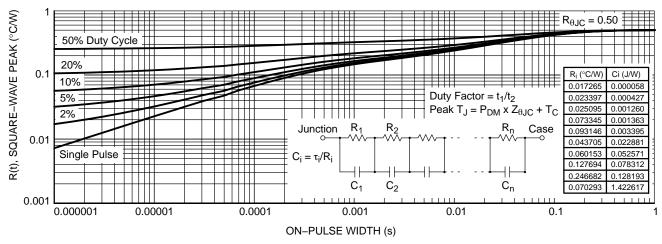


Figure 26. Diode Transient Thermal Impedance

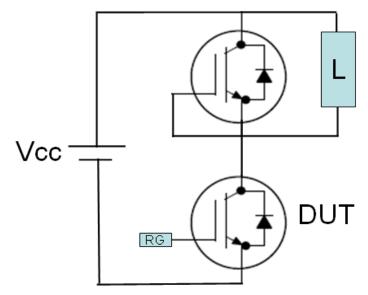


Figure 27. Test Circuit for Switching Characteristics

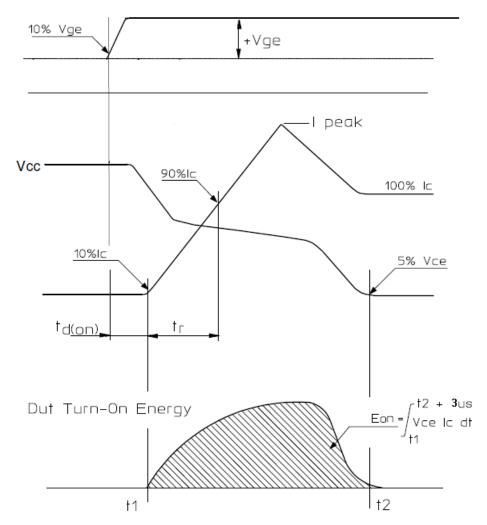


Figure 28. Definition of Turn On Waveform

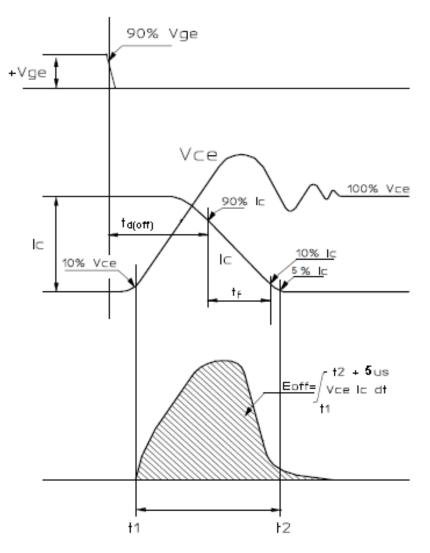
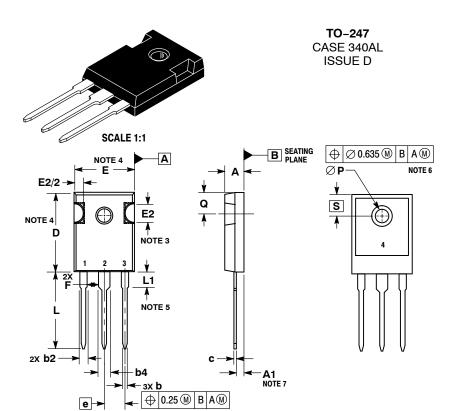
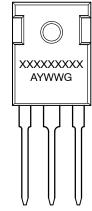



Figure 29. Definition of Turn Off Waveform

DATE 17 MAR 2017


NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 SLOT REQUIRED, NOTCH MAY BE ROUNDED.

- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
- LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY
- ØP SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.
- DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED

	MILLIMETERS			
DIM	MIN	MAX		
Α	4.70	5.30		
A1	2.20	2.60		
b	1.07	1.33		
b2	1.65	2.35		
b4	2.60	3.40		
С	0.45	0.68		
D	20.80	21.34		
E	15.50	16.25		
E2	4.32	5.49		
е	5.45	BSC		
F	2.655			
L	19.80	20.80		
L1	3.81	4.32		
P	3.55	3.65		
Q	5.40	6.20		
S	6.15 BSC			

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location Α

Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON16119F	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

