

Z84C00 CMOS Z80® CPU Central Processing Unit

FEATURES

- The CMOS Z80 combines the high performance of the Z80 CPU with extremely low power consumption which results in increased reliability and very low system power requirements. This dramatic power savings makes the CMOS Z80 a natural choice for both hand-held and battery back-up operations.
- Pin compatible with Z80 CPUs.
- Software compatible with Z80 CPUs. The extensive instruction set contains 158 instructions, including the 8080A instruction set as a subset.
- Single 5 volt power supply (\pm 10%).
- The CMOS Z80 microprocessors and associated family of peripherals can be linked by a vectored interrupt system. This system can be daisy-chained to allow implementation of a priority interrupt scheme.
- Duplicate set of both general-purpose and flag registers.
- Two sixteen bit index registers.
- Three modes of maskable interrupts:
Mode 0—8080A similar;
Mode 1—Non-Z80 environment, location 38H;
Mode 2—Z80 family peripherals, vectored interrupts.
- Low Power Consumption
15 mA typical I_{cc}
Standby current less than 100 μ A @ 5V
- On-chip dynamic memory refresh counter.
- **Can be operated at 6.144MHz clock.**

Note: The Z8400 CPU is also available as a JAN qualified part.

GENERAL DESCRIPTION

The CPUs are fourth-generation enhanced microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable second- and third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six general-purpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response.

The CPU also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single +5V power source. All output signals are fully decoded and timed to control standard memory or peripheral circuits; the CPU is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 1) shows the primary functions of the processors. Subsequent text provides more detail on the I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

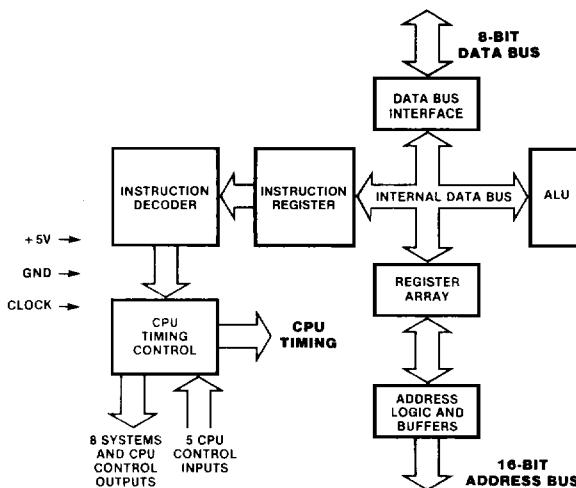


Figure 1. Z80C CPU Block Diagram

CMOS Z80 MICROPROCESSOR FAMILY

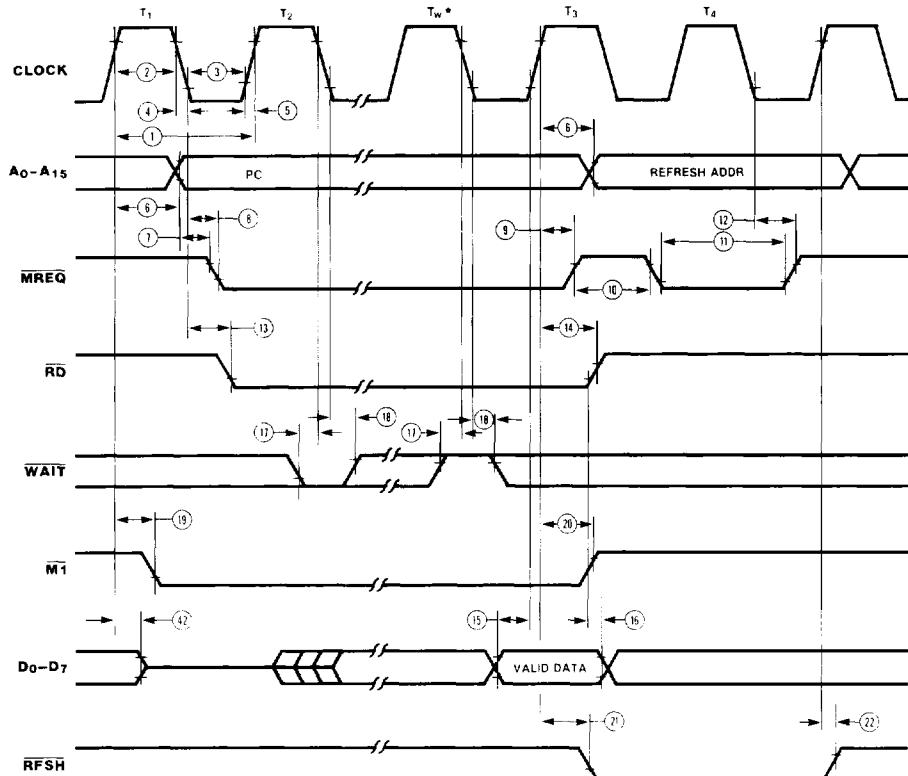
The Zilog CMOS Z80 microprocessor is the central element of a comprehensive microprocessor product family. This family works together in most applications with minimum requirements for additional logic, facilitating the design of efficient and cost-effective microcomputer-based systems.

Zilog has designed five components to provide extensive support for the microprocessor. These are:

- The PIO (Parallel Input/Output) operates in both data-byte I/O transfer mode (with handshaking) and in bit mode (without handshaking). The PIO may be configured to interface with standard parallel peripheral devices such as printers, tape punches, and keyboards.
- The CTC (Counter/Timer Circuit) features four programmable 8-bit counter/timers, each of which has an 8-bit prescaler. Each of the four channels may be configured to operate in either counter or timer mode.

- The DMA (Direct Memory Access) controller provides dual port data transfer operations and the ability to terminate data transfer as a result of a pattern match.
- The SIO (Serial Input/Output) controller offers two channels. It is capable of operating in a variety of programmable modes for both synchronous and asynchronous communication, including Bi-Synch and SDLC.
- The DART (Dual Asynchronous Receiver/Transmitter) device provides low cost asynchronous serial communication. It has two channels and a full modem control interface.
- The above peripherals are compatible with the CPU; in addition, the PIO, CTC, and SIO devices are available in CMOS versions.

CPU TIMING


The CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 2). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the WAIT input with the falling edge of clock state T₂. During clock states T₃ and T₄ of an M1 cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

*T_W = Wait cycle added when necessary for slow ancillary devices.

Figure 2. Instruction Opcode Fetch

Memory Read or Write Cycles. Figure 3 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also

becomes active when the address bus is stable. The WR line is active when the data bus is stable, so that it can be used directly as an R/W pulse to most semiconductor memories.

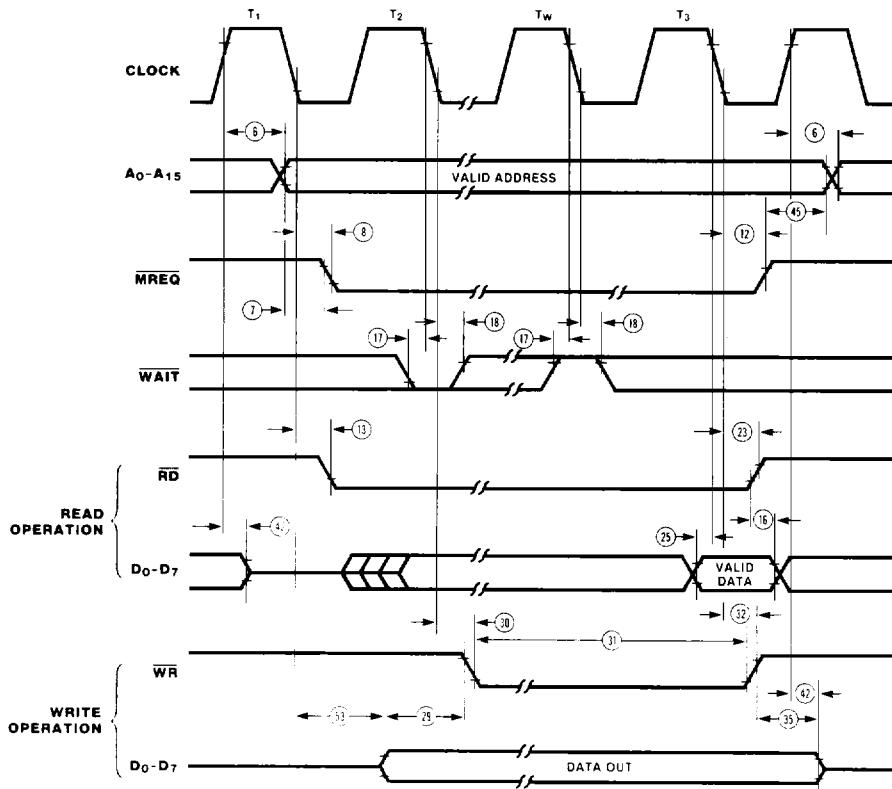
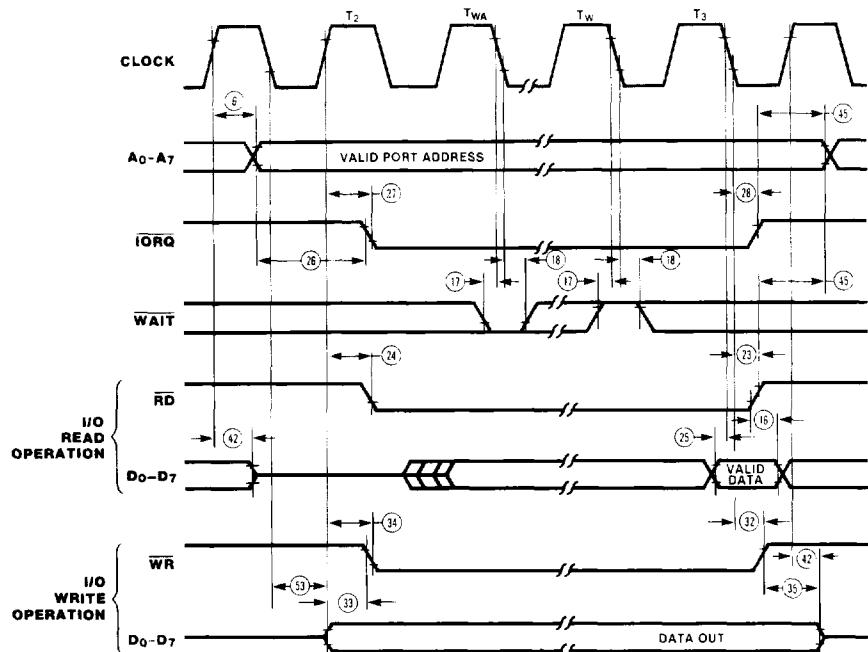
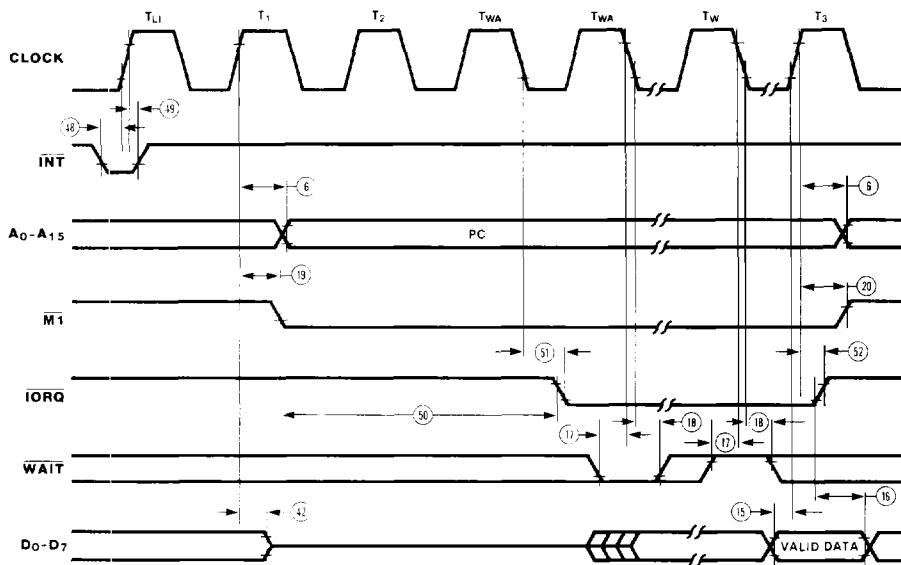



Figure 3. Memory Read or Write Cycles

Input or Output Cycles. Figure 4 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state (T_{WA}). This

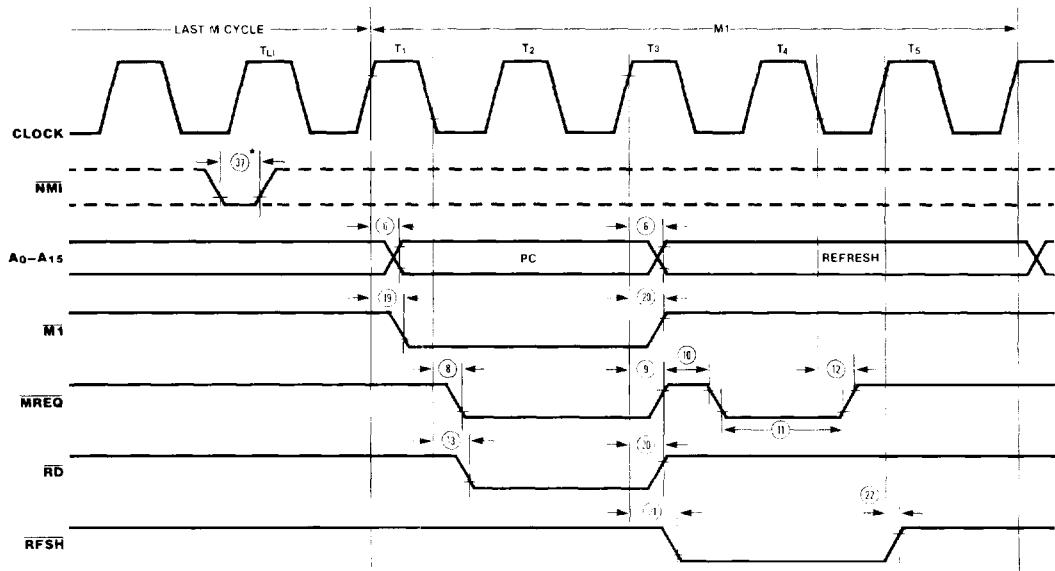


T_{WA} = One wait cycle automatically inserted by CPU.

Figure 4. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 5). When an interrupt is accepted, a special M1 cycle is generated.

During this $\overline{M1}$ cycle, \overline{IORQ} becomes active (instead of \overline{MREQ}) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

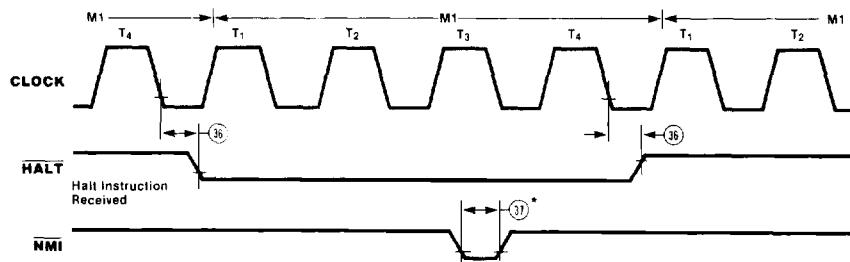


NOTES: 1) T_{LI} :: Last state of any instruction cycle
 2) T_{WA} = Wait cycle automatically inserted by CPU.

Figure 5. Interrupt Request/Acknowledge Cycle

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal

instruction fetch except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the NMI service routine located at address 0066H (Figure 6).



* Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{L1}).

Figure 6. Non-Maskable Interrupt Request Operation

Halt Acknowledge Cycle. When the CPU receives a Halt instruction, it executes NOP states until either an INT or NMI input is received. When in the Halt state, the HALT output is

active and remains so until an interrupt is received (Figure 7). INT will also force a Halt exit.

* Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{L1}).

Figure 7. Halt Acknowledge Cycle

Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 8). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR lines to a

high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

NOTES: 1) T_{LM} = Last state of any M cycle.
 2) T_x = An arbitrary clock cycle used by requesting device.

Figure 8. Z-BUS Request/Acknowledge Cycle

Reset Cycle. RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes inactive, three internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be to location 0000H (Figure 9).

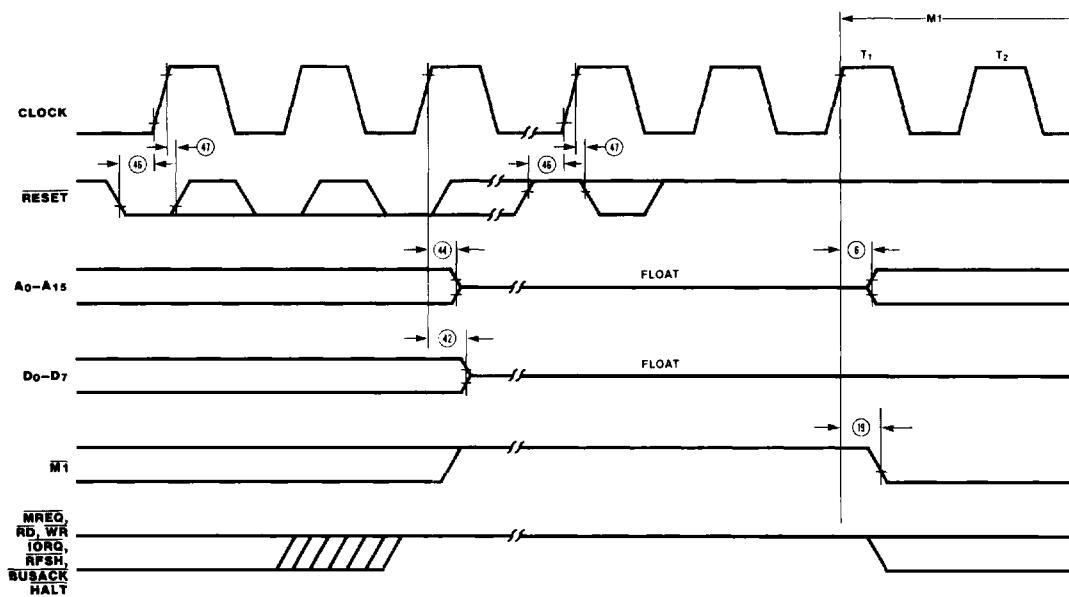


Figure 9. Reset Cycle

AC CHARACTERISTICS[†]

Number	Symbol	Parameter	Z84C0006	
			Min	Max
1	T _{cC}	Clock Cycle Time	162 ^a	DC ^c
2	T _{wCh}	Clock Pulse Width (High)	65 ^c	DC ^c
3	T _{wCl}	Clock Pulse Width (Low)	65 ^c	DC ^c
4	T _{fC}	Clock Fall Time		20 ^c
5	T _{rC}	Clock Rise Time		20 ^c
6	T _{dCr(A)}	Clock to Address Valid Delay		90 ^a
7	T _{dA(MREQf)}	Address Valid to MREQ Delay	35 ^{*c}	
8	T _{dCf(MREQf)}	Clock to MREQ Delay		70 ^a
9	T _{dCr(MREQr)}	Clock to MREQ Delay		70 ^a
10	T _{wMREQh}	MREQ Pulse Width (High)	65 ^{*c}	
11	T _{wMREQI}	MREQ Pulse Width (Low)	135 ^{*c}	
12	T _{dCf(MREQr)}	Clock to MREQ Delay		70 ^a
13	T _{dCf(RDf)}	Clock to RD Delay		80 ^a
14	T _{dCr(RDr)}	Clock to RD Delay		70 ^a
15	T _{sD(Cr)}	Data Setup Time to Clock	30 ^a	
16	T _{hD(RDr)}	Data Hold Time to RD		0 ^c
17	T _{sWAIT(Cf)}	WAIT Setup Time to Clock	60 ^a	
18	T _{hWAIT(Cf)}	WAIT Hold Time after Clock	10 ^c	
19	T _{dCr(M1f)}	Clock to M1 Delay		80 ^a
20	T _{dCr(M1r)}	Clock to M1 Delay		80 ^a
21	T _{dCr(RRSHf)}	Clock to RFSH Delay	110 ^a	
22	T _{dCr(RFSHr)}	Clock to RFSH Delay	100 ^a	
23	T _{dCf(RDr)}	Clock to RD Delay	70 ^a	
24	T _{dCr(RDf)}	Clock to RD Delay	70 ^a	
25	T _{sD(Cf)}	Data Setup to Clock during M ₂ , M ₃ , M ₄ , or M ₅ Cycles	40 ^a	
26	T _{dA(IORQf)}	Address Stable prior to IORQ	110 ^{*c}	
27	T _{dCr(IORQf)}	Clock to IORQ Delay	65 ^a	
28	T _{dCf(IORQr)}	Clock to IORQ Delay	70 ^a	
29	T _{dD(WRf)Mw}	Data Stable prior to WR	25 ^{*c}	

^aFor clock periods other than the minimums shown, calculate parameters using the table on the following page.

Calculated values above assumed TrC = TfC = 20 ns.

^cUnits in nanoseconds (ns).

^{*}For loading \leq 50 pF. Decrease width by 10 ns for each additional 50 pF.

AC CHARACTERISTICS^t (Continued)

Number	Symbol	General Parameter	Z84C0006	
			Min	Max
30	TdCf(WRf)	Clock to <u>WR</u> Delay		70 ^a
31	TwWR	<u>WR</u> Pulse Width	135 ^{*c}	
32	TdCf(WRr)	Clock to <u>WR</u> Delay		70 ^a
33	TdD(WRf)IO	Data Stable prior to <u>WR</u>	-55 ^{*c}	
34	TdCr(WRf)	Clock to <u>WR</u> Delay		60 ^a
35	TdWRr(D)	Data Stable from <u>WR</u>	30 ^{*c}	
36	TdCf(HALT)	Clock to HALT or <u>NMI</u> Pulse Width	260 ^a	
37	TwNMI	<u>NMI</u> Pulse Width	70 ^c	
38	TsBUSREQ(Cr)	<u>BUSREQ</u> Setup Time to Clock	50 ^a	
39	ThBUSREQ(Cr)	<u>BUSREQ</u> Hold Time after Clock	25 ^c	
40	TdCr(BUSACKf)	Clock to <u>BUSACK</u> Delay		90 ^a
41	TdCf(BUSACKr)	Clock to <u>BUSACK</u> Delay		90 ^a
42	TdCr(Dz)	Clock to Data Float Delay		80 ^c
43	TdCr(CTz)	Clock to Control Outputs Float Delay(<u>MREQ</u> , <u>IORQ</u> , <u>RD</u> , and <u>WR</u>)		70 ^c
44	TdCr(Az)	Clock to Address Float Delay		80 ^c
45	TdCTr(A)	<u>MREQ</u> , <u>IORQ</u> , <u>RD</u> , and <u>WR</u> to Address Hold Time	35 ^{*c}	
46	TsRESET(Cr)	<u>RESET</u> to Clock Setup Time	60 ^a	
47	ThRESET(Cr)	<u>RESET</u> to Clock Hold Time	10 ^c	
48	TsINTf(Cr)	<u>INT</u> to Clock Setup Time	70 ^a	
49	ThINTr(Cr)	<u>INT</u> to Clock Hold Time	10 ^c	
50	TdM1f(IORQf)	<u>M1</u> to <u>IORQ</u> Delay	365 ^{*c}	
51	TdCf(IORQf)	Clock to <u>IORQ</u> Delay	70 ^a	
52	TdCf(IORQr)	Clock to <u>IORQ</u> Delay	70 ^a	
53	TdCf(D)	Clock to Data Valid Delay	130 ^a	

*For clock periods other than the minimums shown, calculate parameters using the following table. Calculated values above assumed $T_{cC} = T_{fC} = 20$ ns.

tUnits in nanoseconds (ns)

FOOTNOTES TO AC CHARACTERISTICS

Number	Symbol	General Parameter	Z84C0006
1	TcC	$T_{wCh} + T_{wCl} + T_{rC} + T_{fC}$	
7	TdA(MREQf)	$T_{wCh} + T_{fC}$	-50
10	TwMREQh	$T_{wCh} + T_{fC}$	-20
11	TwMREQI	TcC	-30
26	TdA(IORQf)	TcC	-55
29	TdD(WRf)	TcC	-140
31	TwWR	TcC	-30
33	TdD(WRf)	$T_{wCl} + T_{rC}$	-140
35	TdWRr(D)	$T_{wCl} + T_{rC}$	-55
45	TdCTr(A)	$T_{wCl} + T_{rC}$	-50
50	TdM1f(IORQf)	$2T_{cC} + T_{wCh} + T_{fC}$	-50

AC Test Conditions: $V_{IH} = V_{CC} - 1.00V$ $V_{OH} = V_{CC}/2$ $V_{IL} = 0.8V$ $V_{OL} = V_{CC}/2$ $V_{IHc} = V_{CC} - 0.6V$ $V_{ILc} = 0.45V$ FLOAT = $\pm 0.5V$

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect	
to V_{SS}	-0.3V to $V_{CC} + 0.3V$
Voltage on all pins with respect	
to ground	-0.3V to +7V
Operating Case Temperature	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C

Absolute Maximum Power Dissipation 1W

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The DC Characteristics and Capacitance sections below apply for the following standard test conditions, unless otherwise noted.

Military Operating Temperature Range (T_C)
-55°C to +125°C

Standard Military Test Condition
 $+4.5V \leq V_{CC} \leq +5.5V$

All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

All AC parameters assume a load capacitance of 100 pF. Add 15 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus. AC timing measurements are referenced to $V_{CC}/2$ Volts.

DC CHARACTERISTICS

Symbol	Parameter	Min	Max	Unit	Condition
V_{ILC}	Clock Input Low Voltage	-0.3 ^c	0.45 ^a	V	
V_{IHC}	Clock Input High Voltage	$V_{CC} - 6^a$	$V_{CC} + .3^c$	V	
V_{IL}	Input Low Voltage	-0.3 ^c	0.8 ^a	V	
V_{IH}	Input High Voltage	2.2 ^c	V_{CC}^c	V	
V_{OL}	Output: Low Voltage		0.4 ^a	V	$I_{OL} = 2.0$ mA
V_{OH1}	Output: High Voltage	2.4 ^a		V	$I_{OH} = -1.6$ mA
V_{OH2}	Output: High Voltage	$V_{CC} - 0.8^a$		V	$I_{OH} = -250$ μ A
I_{CC_1}	Power Supply Current		35 ^c	mA	$V_{CC} = 5V$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
6 MHz					
I_{CC_2}	Standby Supply Current	100 ^a		μ A	$V_{CC} = 5V$ $CLK = (0)$ $V_{IH} = V_{CC} - 0.2V$ $V_{IL} = 0.2V$
I_{LI}	Input Leakage Current		10 ^a	μ A	$V_{IN} = 0.4$ to V_{CC}
I_{LO}	3-State Output Leakage Current in Float	-10 ^a	10 ^{2a}	μ A	$V_{OUT} = 0.4$ to V_{CC}

1. Measurements made with outputs floating.
2. $A_{15}A_0$, D_7D_0 , $MREQ$, $IORD$, RD , and WR .
3. I_{CC_2} standby supply current is guaranteed only when the supplied clock is stopped at a low level during T_4 of the machine cycle immediately following the execution of a HALT instruction.
4. **I_{CC_1} is measured with 100pF capacitive only test load.**

CAPACITANCE

Symbol	Parameter	Min	Max	Unit
C_{IN}	Input Capacitance		10 ^c	pF
C_{OUT}	Output Capacitance		15 ^c	pF

NOTES:

$T_A = 25^\circ C$, $f = 1$ MHz.
Unmeasured pins returned to ground.

Parameter Test Status:

^a Tested
^b Guaranteed

^c Guaranteed by Characterization/Design

PIN DESCRIPTIONS

A₀-A₁₅. Address Bus (output, active High, 3-state). A₀-A₁₅ form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR to go to a high-impedance state so that other devices can control these lines. BUSREQ is normally wired-OR and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

D₀-D₇. Data Bus (input/output, active High, 3-state). D₀-D₇ constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wired-OR and requires an external pullup for these applications.

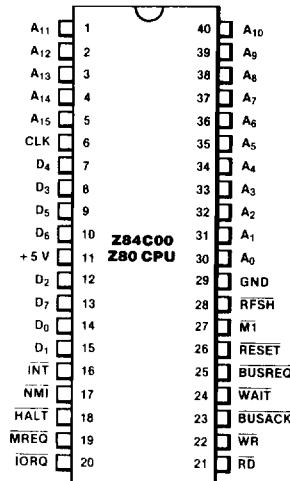
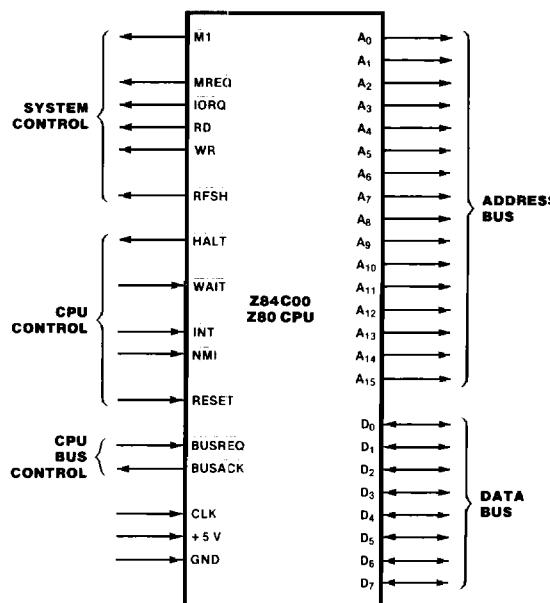
IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with M1 during an interrupt acknowledge cycle to indicate that an interrupt response vector can be placed on the data bus.

M1. Machine Cycle One (output, active Low). M1, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. M1, together with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, negative edge-triggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. Read (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

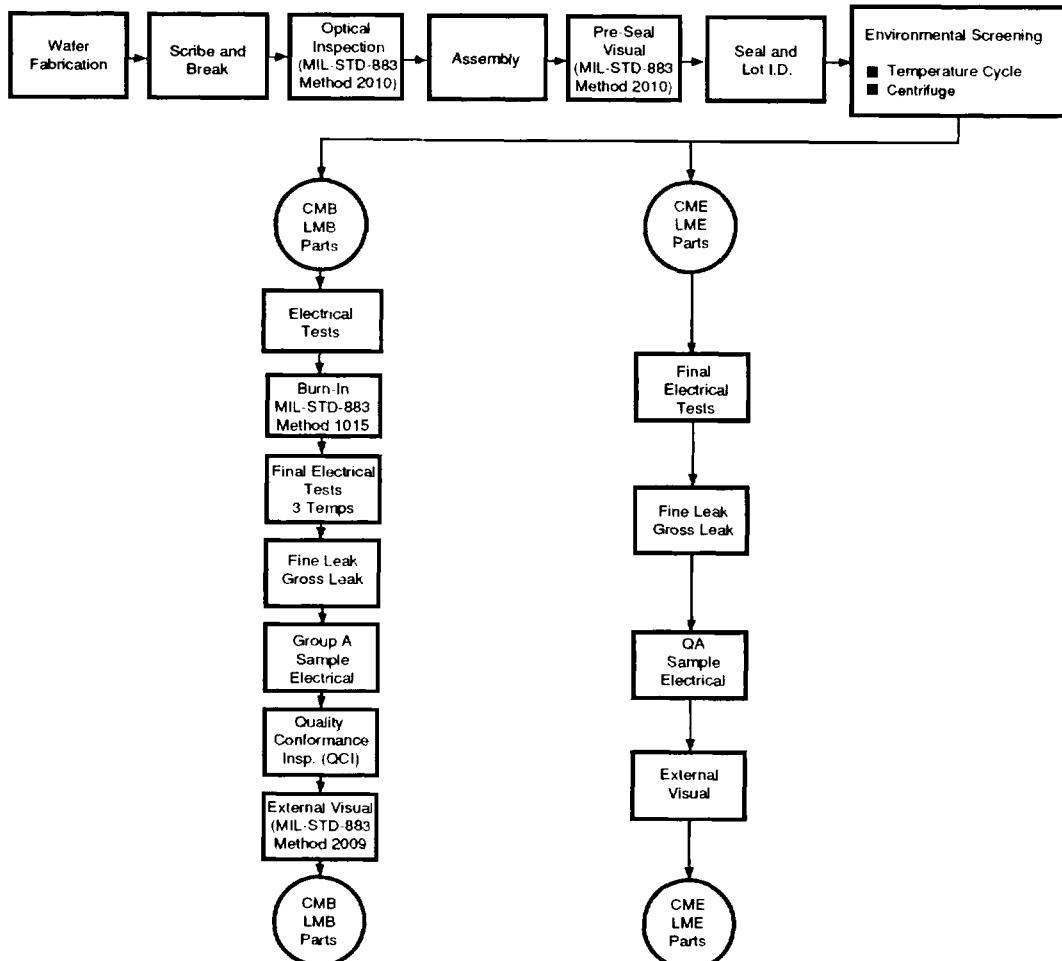


RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.

WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from refreshing dynamic memory properly.

WR. Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

PACKAGE PIN OUTS


DIP and LCC Pin Functions

40-Pin Dual-in-Line Package (DIP),
Pin Assignments, Top View

MIL-STD-883 MILITARY PROCESSED PRODUCT

- Mil-Std-883 establishes uniform methods and procedures for testing microelectronic devices to insure the electrical, mechanical, and environmental integrity and reliability that is required for military applications.
- Mil-Std-883 Class B is the industry standard product assurance level for military ground and aircraft application
- The total reliability of a system depends upon tests that are designed to stress specific quality and reliability concerns that affect microelectronic products.
- The following tables detail the 100% screening and electrical tests, sample electrical tests, and Qualification/Quality Conformance testing required

Zilog Military Product Flow

Table I
MIL-STD-883 Class B Screening Requirements
Method 5004

Test	Mil-Std-883 Method	Test Condition	Requirement
Internal Visual	2010	Condition B	100%
Temperature Cycle	1010	Condition C	100%
Constant Acceleration (Centrifuge)	2001	Condition E or D ^(Note 1) , Y ₁ Axis Only	100%
Initial Electrical Tests		Zilog Military Electrical Specification Static/DC T _C = + 25°C	100%
Burn-In	1015	Condition D ^(Note 2) , 160 hours, T _A = + 125°C	100%
Interim Electrical Tests		Zilog Military Electrical Specification Static/DC T _C = + 25°C	100%
PDA Calculation		PDA = 5%	100%
Final Electrical Tests		Zilog Military Electrical Specification Static/DC T _C = + 125°C, - 55°C Functional, Switching/AC T _C = + 25°C	100%
Fine Leak	1014	Condition B	100%
Gross Leak	1014	Condition C	100%
Quality Conformance Inspection (QCI)			
Group A	Each Inspection Lot	5005 (See Table II)	Sample
Group B	Every Week	5005 (See Table III)	Sample
Group C	Periodically (Note 3)	5005 (See Table IV)	Sample
Group D	Periodically (Note 3)	5005 (See Table V)	Sample
External Visual	2009		100%
QA—Ship			100%

NOTES

1. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package mass of ≥ 5 grams.
2. In process of fully implementing of Condition D Burn-In Circuits. Contact factory for copy of specific burn-in circuit available.
3. Performed periodically as required by Mil-Std-883, paragraph 1.2 1 b(17).

Table II Group A
Sample Electrical Tests
MIL-STD-883 Method 5005

Subgroup	Tests	Temperature (T_C)	LTPD Max Accept = 2
Subgroup 1	Static/DC	+ 25 °C	2
Subgroup 2	Static/DC	+ 125 °C	3
Subgroup 3	Static/DC	- 55 °C	5
Subgroup 7	Functional	+ 25 °C	2
Subgroup 8	Functional	- 55 °C and + 125 °C	5
Subgroup 9	Switching/AC	+ 25 °C	2
Subgroup 10	Switching/AC	+ 125 °C	3
Subgroup 11	Switching/AC	- 55 °C	5

NOTES:

- The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail electrical specification. Where no parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test.
- A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspection shall be allowed.
- Group A testing by subgroup or within subgroups may be performed in any sequence unless otherwise specified.

Table III Group B
Sample Test Performed Every Week to
Test Construction and Insure Integrity of Assembly Process.
MIL-STD-883 Method 5005

Subgroup	Mil-Std-883 Method	Test Condition	Quantity or LTPD/Max Accept
Subgroup 1 Physical Dimensions	2016		2/0
Subgroup 2 Resistance to Solvents	2015		4/0
Subgroup 3 Solderability	2003	Solder Temperature + 245°C ± 5°C	15 (Note 1)
Subgroup 4 Internal Visual and Mechanical	2014		1/0
Subgroup 5 Bond Strength	2011	C	15 (Note 2)
Subgroup 6 ^(Note 3) Internal Water Vapor Content	1018	1000 ppm. maximum at + 100°C	3/0 or 5/1
Subgroup 7 ^(Note 4) Seal	1014		5
7a) Fine Leak		7a) B	
7b) Gross Leak		7b) C	
Subgroup 8 ^(Note 5) Electrostatic Discharge Sensitivity	3015	Zilog Military Electrical Specification Static/DC T_C = + 25°C A = 20-2000V B = >2000V	15/0
		Zilog Military Electrical Specification Static/DC T_C = + 25°C	

NOTES:

1. Number of leads inspected selected from a minimum of 3 devices.
2. Number of bond pulls selected from a minimum of 4 devices.
3. Test applicable only if the package contains a dessicant.
4. Test not required if either 100% or sample seal test is performed between final electrical tests and external visual during Class B screening.
5. Test required for initial qualification and product redesign.

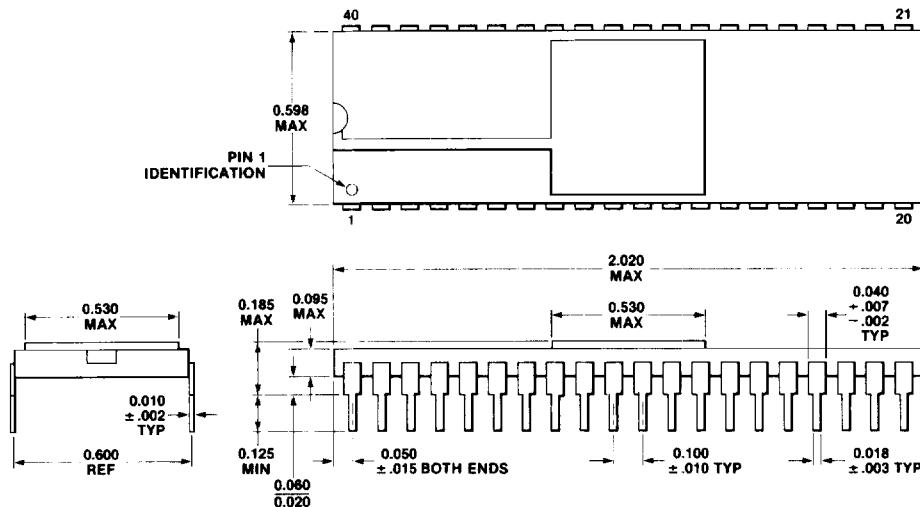
Table IV Group C
Sample Test Performed Periodically to Verify Integrity of the Die.
MIL-STD-883 Method 5005

Subgroup	Mil-Std-883 Method	Test Condition	Quantity or LTPD/Max Accept
Subgroup 1			
Steady State Operating Life	1005	Condition D ^(Note 1) , 1000 hours at + 125 °C	5
End Point Electrical Tests		Zilog Military Electrical Specification $T_C = +25^{\circ}\text{C}, +125^{\circ}\text{C}, -55^{\circ}\text{C}$	

NOTE

1. In process of fully implementing Condition D Burn-In Circuits. Contact factory for copy of specific burn-in circuit available.

Table V Group D
Sample Test Performed Periodically to Insure Integrity of the Package.
MIL-STD-883 Method 5005


Subgroup	Mil-Std-883 Method	Test Condition	Quantity or LTPD/Max Accept
Subgroup 1 Physical Dimensions	2016		15
Subgroup 2 Lead Integrity	2004	Condition B ₂ or D ^(Note 1)	15
Subgroup 3 Thermal Shock	1011	Condition B minimum, 15 cycles minimum	
Temperature Cycling	1010	Condition C, 100 cycles minimum	15
Moisture Resistance	1004		
Seal	1014		
3a) Fine Leak		3a) Condition B	
3b) Gross Leak		3b) Condition C	
Visual Examination	1004 or 1010		
End Point Electrical Tests		Zilog Military Electrical Specification $T_C = +25^{\circ}\text{C}, +125^{\circ}\text{C}, -55^{\circ}\text{C}$	
Subgroup 4			
Mechanical Shock	2002	Condition B minimum	
Vibration Variable Frequency	2007	Condition A minimum	
Constant Acceleration (Centrifuge)	2001	Condition E or D ^(Note 2) , Y ₁ Axis Only	15
Seal	1014		
4a) Fine Leak		4a) Condition B	
4b) Gross Leak		4b) Condition C	
Visual Examination	1010 or 1011		
End Point Electrical Tests		Zilog Military Electrical Specification $T_C = +25^{\circ}\text{C}, +125^{\circ}\text{C}, -55^{\circ}\text{C}$	
Subgroup 5			
Salt Atmosphere	1009	Condition A minimum	
Seal	1014		15
5a) Fine Leak		5a) Condition B	
5b) Gross Leak		5b) Condition C	
Visual Examination	1009		
Subgroup 6			
Internal Water Vapor Content	1018	5,000 ppm. maximum water content at +100°C	3/0 or 5/1
Subgroup 7 ^(Note 3)			
Adhesion of Lead Finish	2025		15 ^(Note 4)
Subgroup 8 ^(Note 5)			
Lid Torque	2024		5/0

NOTES:

1. Lead Integrity Condition D for leadless chip carriers.
2. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package mass of ≥ 5 grams.
3. Not applicable to leadless chip carriers.
4. LTPD based on number of leads.
5. Not applicable for solder seal packages.

PACKAGE INFORMATION

40-Pin Ceramic Dual In-line Package (DIP)

ORDERING INFORMATION

CMOS Z80 CPU, 6.0 MHz

40-pin DIP

Z84C0006CME

Z84C0006CMB

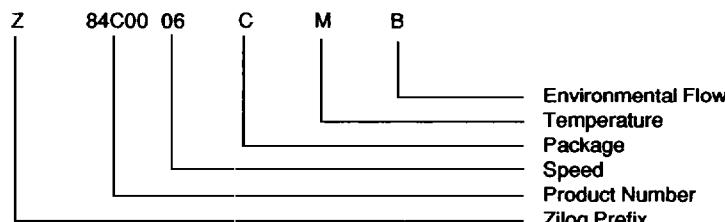
Codes

PACKAGE

C = Ceramic

ENVIRONMENTAL

E = Hermetic Standard


B = 833 Class B Military

TEMPERATURE

M = -55°C to +125°C

Example:

Z84C0006CMB is a CMOS 8400, 6MHz, Ceramic, -55 C to 125 C 883C Standard Flow.

**ZILOG DOMESTIC SALES OFFICES
AND TECHNICAL CENTERS****CALIFORNIA**

Agoura 818-707-2160
Campbell 408-370-8120
Tustin 714-838-7800

COLORADO

Boulder 303-494-2905

FLORIDA

Largo 813-585-2533

GEORGIA

Norcross 404-448-9370

ILLINOIS

Schaumburg 312-517-8080

NEW HAMPSHIRE

Nashua 603-888-8590

NEW JERSEY

Clark 201-382-5700

OHIO

Seven Hills 216-447-1480

PENNSYLVANIA

Ambler 215-653-0230

TEXAS

Dallas 214-987-9987

WASHINGTON

Seattle 206-523-3591

INTERNATIONAL SALES OFFICES**CANADA**

Toronto 416-673-0634

GERMANY

Munich 49-89-672-045

JAPAN

Tokyo 81-3-587-0528

HONG KONG

Kowloon 852-3-723-8979

KOREA

Seoul 82-2-552-5401

SINGAPORE

Singapore 65-235-7155

TAIWAN

Taipei 886-2-741-3125

UNITED KINGDOM

Maidenhead 44-628-392-00

© 1990 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog.

The information contained herein is subject to change without notice. Zilog will not be responsible for any such changes. Zilog will not be responsible for notifying any user of changes. Zilog assumes no responsibility for the use of any circuitry or other technology embodied in a Zilog product. No patent licenses, industrial property rights, or other rights are implied.

Zilog will not be responsible for any damage to the user that may result from accidents or any other reasons during operations of the products described herein.

All specifications (parameters) are subject to change without notice. Zilog will not be responsible for any such changes. Zilog will not be responsible for notifying any user of changes. The applicable Zilog test documentation will specify which parameters are tested.

**Zilog, Inc. 210 Hacienda Ave., Campbell, CA 95008-6609 Telephone
(408) 370-8000 TWX 910-338-7621**