

CM1263-06DE

Low Capacitance ESD Protection for High-Speed Serial Interfaces

Features

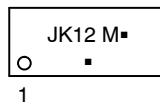
- 6 Channels of ESD Protection
- 1 pF Loading Capacitance per Channel Typical
- ± 8 kV ESD Protection (IEC 61000-4-2, Contact Discharge)
- ± 15 kV ESD Protection (IEC 61000-4-2, Air Discharge)
- These Devices are Pb-Free and are RoHS Compliant

Applications

- LCD and Camera Data Lines in Wireless Handsets that Use High-Speed Serial Interfaces such as MDDI, MIPI, MVI and MPL
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- Wireless Handsets
- Handheld PCs/PDAs
- LCD and Camera Modules

ON Semiconductor®

<http://onsemi.com>



UDFN12
DE SUFFIX
CASE 517BD

BLOCK DIAGRAM

MARKING DIAGRAM

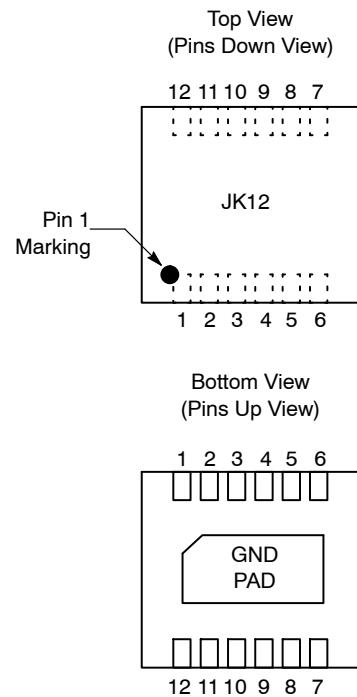
JK12 = Specific Device Code
M = Month Code
- = Pb-Free Package

(*Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
CM1263-06DE	UDFN (Pb-Free)	3000/Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

CM1263-06DE

Table 1. PIN DESCRIPTIONS

Pin	Description
1	V_N^*
2	(CH1) ESD Channel #1
3	V_N^*
4	V_N^*
5	(CH2) ESD Channel #2
6	V_N^*
7	(CH3) ESD Channel #3
8	V_{P2} for Channels 2, 3, and 4
9	(CH4) ESD Channel #4
10	(CH5) ESD Channel #5
11	V_{P1} for Channels 1, 5, and 6
12	(CH6) ESD Channel #6
DAP*	Backside, GND Pad, V_N^*

PACKAGE / PINOUT DIAGRAM

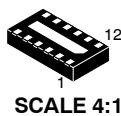
12-Lead UDFN Package

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Operating Supply Voltage ($V_P - V_N$)	6.0	V
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C
DC Voltage at any channel input	($V_N - 0.5$) to ($V_P + 0.5$)	V

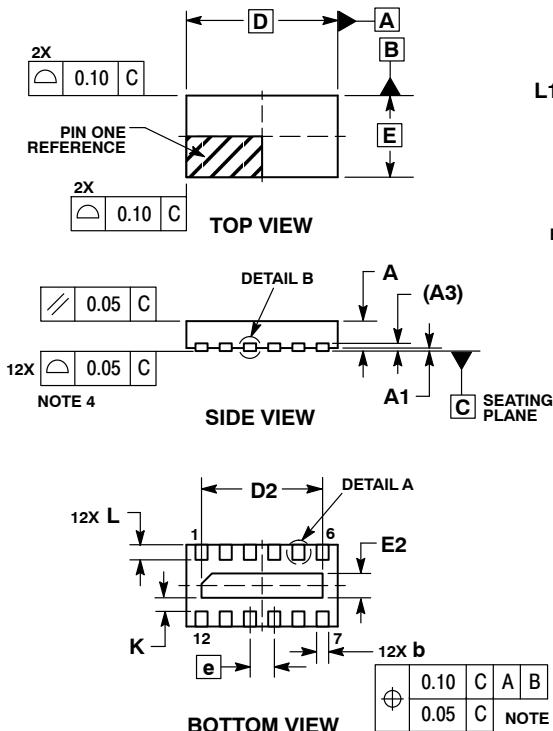
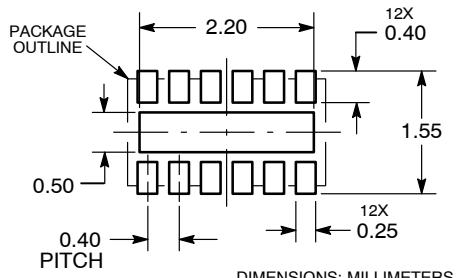
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


Table 3. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

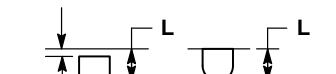
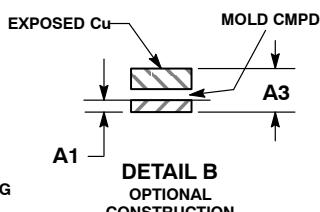
Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_P	Operating Supply Voltage ($V_P - V_N$)			3.3	5.5	V
I_P	Operating Supply Current	$V_P = 3.3$ V, $V_N = 0$ V (per V_P pin)			8.0	µA
V_F	Diode Forward Voltage Top Diode Bottom Diode	$T_A = 25$ °C, $I_F = 8$ mA, $V_P = 3.3$ V, $V_N = 0$ V	0.60 0.60	0.80 0.80	0.95 0.95	V
I_{LEAK}	Channel Leakage Current	$T_A = 25$ °C; $V_P = 3.3$ V, $V_N = 0$ V (Channel 1)			250	nA
		$V_P = 3.3$ V, $V_N = 0$ V (Channels 1–6)			1000	nA
I_R	Reverse (Leakage Current)	V_P = floating; $V_N = 0$ V (per channel)			1000	nA
C_{IN}	Channel Input Capacitance	At 1 MHz, $V_P = 3.3$ V, $V_N = 0$ V, $V_{IN} = 0$ V		0.88	1.2	pF
ΔC_{IN}	Channel Input Capacitance Matching	At 1 MHz, $V_P = 3.3$ V, $V_N = 0$ V, $V_{IN} = 0$ V		0.02		pF
C_{MUTUAL}	Mutual Capacitance between signal pin and adjacent signal pin	At 1 MHz, $V_P = 3.3$ V, $V_N = 0$ V, $V_{IN} = 0$ V		0.11		pF
V_{ESD}	ESD Protection Peak Discharge Voltage at any channel input, in system a) Contact discharge per IEC 61000-4-2 standard b) Air discharge per IEC 61000-4-2 standard	$T_A = 25$ °C (Notes 2 and 3)	± 8 ± 15			kV
V_{CL}	Channel Clamp Voltage Positive Transients Negative Transients	$T_A = 25$ °C, $I_{PP} = 1$ A, $t_P = 8/20$ µS (Note 3)		+9.96 -1.6		V
R_{DYN}	Dynamic Resistance Positive Transients Negative Transients	$T_A = 25$ °C, $I_{PP} = 1$ A, $t_P = 8/20$ µS Any I/O pin to Ground (Note 3)		0.96 0.5		Ω

1. All parameters specified at $T_A = -40$ °C to +85 °C unless otherwise noted.

2. Standard IEC 61000-4-2 with $C_{Discharge} = 150$ pF, $R_{Discharge} = 330$ Ω, $V_P = 3.3$ V, V_N grounded.



3. These measurements performed with no external capacitor on V_P (V_P floating).

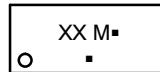
SCALE 4:1



UDFN12, 2.5x1.35, 0.4P
CASE 517BD
ISSUE O

DATE 18 NOV 2009

RECOMMENDED
SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS


*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DETAIL A
OPTIONAL
CONSTRUCTIONSDETAIL B
OPTIONAL
CONSTRUCTION

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25 mm FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

MILLIMETERS		
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13 REF	
b	0.15	0.25
D	2.50 BSC	
D2	1.90	2.10
E	1.35 BSC	
E2	0.30	0.50
e	0.40 BSC	
K	0.15	---
L	0.20	0.30
L1	---	0.05

GENERIC
MARKING DIAGRAM*

1
XX = Specific Device Code
M = Month Code
- = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot "■", may or may not be present.

DOCUMENT NUMBER:	98AON47061E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	uD FN12, 2.5x1.35, 0.4p	PAGE 1 OF 1

onsemi and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

