Microsemi.

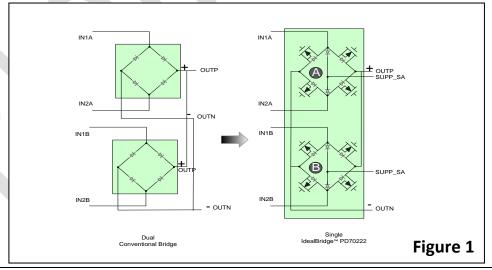
IdealBridge™ Dual MOSFET-based Bridge Rectifier

PRELIMINARY

Description

PD70222 is a dual pack of MOSFET-based full-bridge rectifiers. It contains low-R_{DS} 0.15Ω N-channel MOSFETs for much higher overall efficiency and higher output power, particularly when used in Powered Devices for Power over Ethernet (PoE) applications. The entire drive circuitry for driving the MOSFETs is onchip, including a charge pump for driving the high-side N-channel MOSFETs. The total forward drop (bridge offset) introduced by the IdealBridge™ rectifier is only 180mV at 0.6A, compared to a standard bridge rectifier that typically presents 2000mV of forward drop.

PD70222 IdealBridge™ can support over 1A current, making it the ideal choice not only for modern energy-saving 2-pair applications compliant with IEEE802.3af and IEEE802.3at (Type 1 and Type 2), but also 4-pair Powered Devices such as for UPOE (51W) and POH (Power over HDBase-T, 73W).

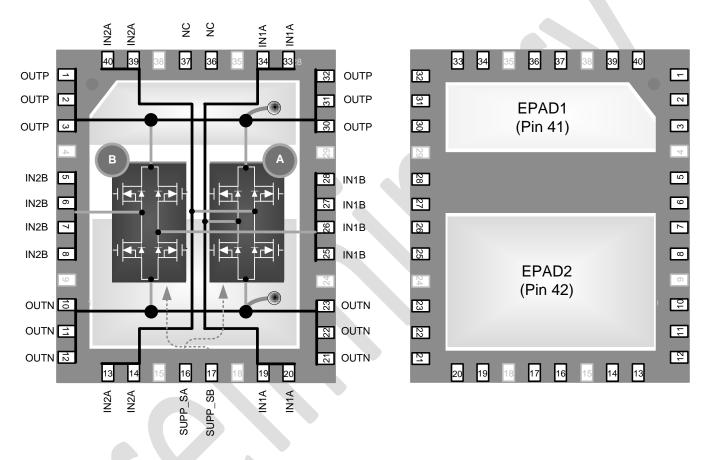

In addition, PD70222 is capable of helping to identify at the physical layer itself whether a 2-pair PSE or a 4-pair PSE is providing power over the cable. It does that by sensing the voltage on the line (un-rectified) side of the pairs.

Features

- Active circuit with low forward-drop to replace dissipative passive diode bridges
- ♦ Self-contained drive circuitry for MOSFETs
- Designed to support IEEE802.3af/at, UPOE and Power over HDBase-T (PoH)
- Integrated 0.15Ω N-Channel MOSFETs for 0.3Ω total path resistance
- "Power present" indicator signals for identifying 4-pair bridge power
- ♦ Low leakage, < 12μA during detection
- ♦ Wide operating voltage range up to 57V
- ◆ -40°C to +85°C ambient
- ♦ Available in 40 pin package
- ♦ RoHS Compliant

Applications

- Power over Ethernet (all IEEE compliant 2-pair modes)
- Proprietary 4-pair standards, UPOE (Universal PoE) and POH



PRELIMINARY

Pin Configuration and Pinout

PD70222

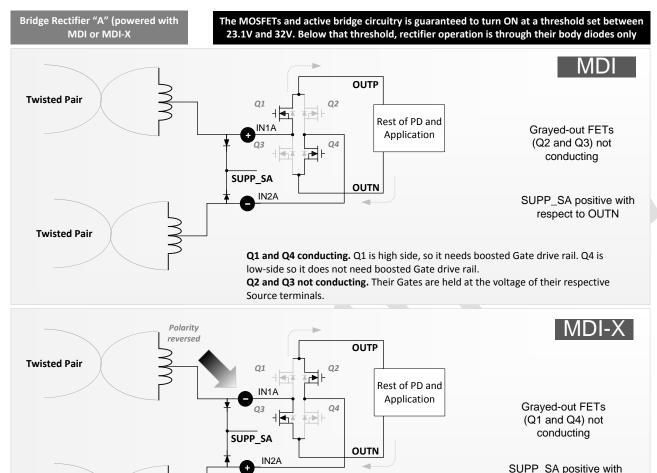
TOP VIEW 6×8 MLPQ – 40L

BOTTOM VIEW 6×8 MLPQ – 40L

Figure 2: Internal Construction and Pinout

Ordering Information

Ambient	Туре	Part Marking	Tape and Reel	Package
Temperature				
-40 to 85°C	RoHS compliant, Pb-free	PD70222	PD70222ILQ-TR	MLP-Quad (40 lead)


PRELIMINARY

Pin Description

Pin Number	Pin Designator	Description	
1, 2, 3	OUTP	Rectified positive (upper) rail shared by both bridges	
4	N.A.	Not applicable (pin not present)	
5, 6, 7, 8	IN2B	Input "2" of bridge rectifier number B	
9	N.A.	Not applicable (pin not present)	
10, 11, 12	OUTN	Rectified negative (lower) rail shared by both bridges	
13, 14	IN2A	Input "2" of bridge rectifier number A	
15	N.A.	Not applicable (pin not present)	
16	SUPP_SA	Input power supply detect pin for bride rectifier number A. Goes	
		high when pairs connected to this bridge are powered by the	
		PSE	
17	SUPP_SB	Input power supply detect pin for bride rectifier number B. Goes	
		high when pairs connected to this bridge are powered by the	
		PSE	
18	N.A.	Not applicable (pin not present)	
19, 20	IN1A	Input "1" of bridge rectifier number A	
21, 22, 23	OUTN	Rectified negative (lower) rail shared by both bridges, same as	
		Pins 10, 11 and 12	
24	N.A.	Not applicable (pin not present)	
25, 26, 27, 28	IN1B	Input "1" of bridge rectifier number B	
29	N.A.	Not applicable (pin not present)	
30, 31, 32	OUTP	Rectified positive (upper) rail shared by both bridges. Same as	
		Pins 1, 2 and 3	
33, 34	IN1A	Input "A" of bridge rectifier number 1. Same as Pins 19 and 20	
35	N.A.	Not applicable (pin not present)	
36, 37	N.C	Not connected; do not connect externally (leave floating)	
38	N.A.	Not applicable (pin not present)	
39, 40	IN2A	Input "2" of bridge rectifier number A. Same as Pins 13 and 14	
41	EPAD1	Connect to OUTP on PCB	
42	EPAD2	Connect to OUTN on PCB	

PRELIMINARY

PURPOSE OF CHARGE PUMP:

Twisted Pair

Therefore, in both cases above, the FETs connected to OUTP (the "high-side" FETs) are the ones which require a boosted Gate drive rail so they can be turned ON. The on-chip charge pump provides the boosted Gate drive rail for the high-side FETs. The FETs connected to OUTN ("low-side" FETs) do not need a boosted drive rail to be turned ON.

Source terminals.

PURPOSE AND USE OF SUPPLY PINS:

Since the above twisted pair set is delivering power, in both cases above, SUPP_SA is positive with respect to OUTN. But if these two twisted pairs were not connected to a PSE, SUPP_SA would be low. Therefore, in the case of a standard 2-pair or 4-pair PDs with two bridge rectifiers (4-pairs), one connected to the data pairs, the other to the spare pairs, the presence of high voltage on SUPP_SA and/or SUPP_SB will indicate whether the data pairs or spare pairs, or both, are connected to PSEs. So SUPP_SA and SUPP_SB can be used to indicate 2-pair or 4-pair PoE operation.

side so it does not need boosted Gate drive rail.

Q2 and Q3 conducting. Q2 is high side, so it needs boosted Gate drive rail. Q3 is low-

Q1 and Q4 not conducting. Their Gates are held at the voltage of their respective

Figure 3: Principle of Operation

respect to OUTN

PRELIMINARY

Absolute Maximum Ratings

Performance is not necessarily guaranteed over this entire range. These are maximum stress ratings only. Exceeding these ratings, even momentarily, can cause immediate damage, or negatively impact long-term operating reliability.

		Min	Max	Units
IN1A, IN1B, IN2A, IN2B t	o OUTN	-0.3	72	V
IN1A to IN2A		-0.3	72	V
IN1B to IN2B		-0.3	72	V
IN1A, IN1B, IN2A, IN2B t	o OUTP	-72		V
IN1A, IN2A to IN1B		-0.3	72	V
IN1A, IN2A to IN2B		-0.3	72	V
OUTP to OUTN		-0.3	72	V
OUTP to IN1A, IN1B, IN2	OUTP to IN1A, IN1B, IN2A, IN2B		72	V
SUPP_SA, SUPP_SB to OUTN		-0.3	72	V
I _{INA} , I _{INB} (currents through bridge A and/or B)			TBD	Α
Junction Temperature	Junction Temperature		150	°C
Lead Soldering Temperature (40s, reflow)			260	°C
Storage Temperature		-65	150	°C
ESD rating	HBM		±2	kV
	MM		±200	V
	CDM		±500	V

Note: EPAD1 is connected by copper plane on PCB to OUTP, and EPAD2 is similarly connected to OUTN. OUTN is ground for IC.

Operating Ratings

Performance is generally guaranteed over this range as further detailed below under Electrical Characteristics.

	Min	Max	Units
IN1A, IN1B to OUTN	TBD	57	V
IN2A, IN2B to OUTN	TBD	57	V
Junction Temperature	-40	125	°C
Port Current (I _{INx})	0	1.5	Α

Note: Corresponding Ambient Temperature is -40 to 85 °C

PRELIMINARY

Thermal Properties

Thermal Resistance	Min	Тур	Max	Units
θ_{JA}		31		°C/W
θ_{JL}		2.5		°C/W
θ_{JC}		TBD		°C/W

Note: The θ_{Jx} numbers assume no forced airflow. Junction Temperature is calculated using $T_J = T_A + (P_D \times \theta_{JA})$. In particular, θ_{JA} is a function of the PCB construction. The stated number above is for a four-layer board in accordance with JESD-51 (JEDEC).

Electrical Characteristics

Unless otherwise specified under conditions, the Min and Max ratings stated below apply over the entire specified operating ratings of the device. Typ values stated are either by design or by production testing at 25°C ambient.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{INx}	Input Voltage for Bridge "x", where x is "A" or "B".				57	\
IQ	Quiescent Current (both bridges combined)	$2.5V < V_{INx} < 10.1V$, 500μ load or $25k$ signature detection resistor connected. No load on SUPP_Sx pins.		6	12	μΑ
	1	10.2V < V _{INx} < 23V, 50mA load between OUTP and OUTN. No load on SUPP_Sx pins.			80	μΑ
		V_{INx} = 55V. 1.5A load between OUTP and OUTN. 900kΩ load resistor on each SUPP_Sx pin.			750	μΑ
V _{TURN_ON}	Active turn- on voltage of FETs		23.1	27.5	32	V
V _{HYS}	Turn-on voltage hysteresis			TBD		V

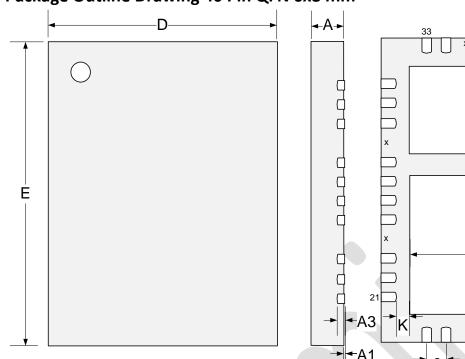
Copyright © 2013 Rev. 0.35, May 2013

PRELIMINARY

	Alternate input voltage polarity			200			ms
V _{OFFSET}	Bridge offset	V _{INx} > 32V, two FETs in series	$I_{INx} = 0.6A$ $I_{INx} = 0.6A$		180 300	TBD TBD	mV
		V _{INx} < 32V, two body diodes in	$I_{INx} = 1mA$ $I_{INx} = 5mA$	398 508		1190 1294	
R _{DS}	FET Drain to Source	series $I_D = 0.6A$ $I_D = 1A$	I _{INx} = 40mA	658	TBD TBD	1116 TBD	Ω
I _R	Resistance Leakage Current (Reverse)		$I_D = 1.5A$ $V_{OUTP} - V_{OUTN} = 57V$		0.15	40	μΑ
V _{BFD}	Backfeed Voltage	Between input terminals with 100kΩ resistor across them and 57V between OUTP and OUTN				2.7	V
I _{MAX_LOW}	Maximum Forward Current (per bridge) below V _{TURN ON}	Polarity changeover > 20ms				0.45	A
I _{MAX_HIGH}	Maximum Forward Current (per bridge) above V _{TURN ON}			1.5		TBD	Α
V _{SUPP_HIGH}	Max voltage on SUPP_SA and SUPP_SB pins	V _{INx} = 36V		34			V
V _{SUPP_LOW}	Min voltage on SUPP_SA and SUPP_SB pins	V _{INx} = TBDV				26	V

D2

X - depopulated pin


PRELIMINARY

E4

E3

E2

Package Outline Drawing 40 Pin QFN 6x8 mm

	MILLIMETERS		Inc	HES
Dim	MIN	MAX	MIN	MAX
Α	0.80	1.00	0.031	0.039
A1	0.00	0.05	0	0.002
A3	0.20	REF	0.008	8 REF
b	0.18	0.30	0.007	0.012
D	6.00	BSC	0.236 BSC	
E	8.00 BSC		0.315 BSC	
D2	4.35	4.6	0.171	0.181
E2	6.35	6.6	0.250	0.260
E3	3.5	3.75	0.138	0.148
E4	2.2	2.4	0.087	0.094
е	0.50 BSC		0.020	O BSC
K	0.20	-	0.008	-
L	0.37	0.57	0.014	0.022

Note:

- 1. Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.
- 2. Dimensions are in millimeters, inches for reference only.

PRELIMINARY

Recommended PCB layout

Recommended PCB layout pattern for PD70222 is described in the following three figures.

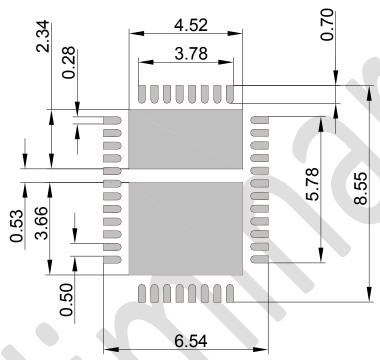


Figure 4: PD70222 Top layer Copper Recommended PCB Layout (mm)

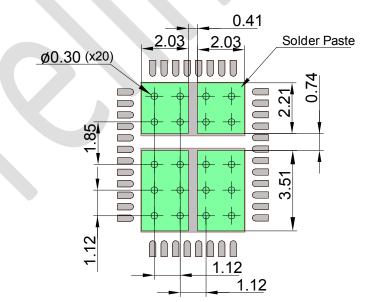


Figure 5: PD70222 Top layer Solder Paste and Vias Recommended PCB Layout for Thermal Pad Array (mm)

PRELIMINARY

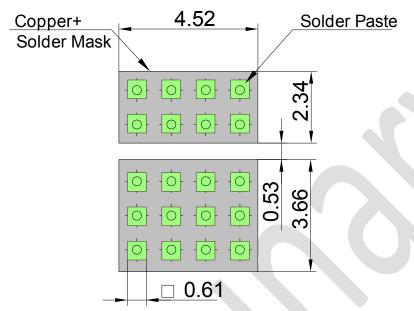


Figure 6: PD70222 Bottom layer Copper and Solder Paste Recommended PCB Layout for Thermal Pad Array (mm)

PRFLIMINARY

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Revision History

Revision Level / Date	Para. Affected	Description
0.2 / 4 Oct 2012	-	Initial Release – Preliminary version
0.3 / 30 April 2013		Adding package description and Recommended PCB layout
0.35 / 8 May 2013		Adding Package tollerances

© 2013 Microsemi Corp. All rights reserved.

For support contact: sales_AMSG@microsemi.com

Visit our web site at: www.microsemi.com Catalog Number: DS_PD70222