

LOW POWER NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/391

Qualified Levels: JAN, JANTX, JANTXV, and JANS

DESCRIPTION

This 2N3057A NPN leaded silicon transistor device is military qualified for high-reliability applications. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3057 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/391.
- Rad hard levels are also available per MIL-PRF-19500/391. (For RHA datasheet see JANSD2N3057A.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low profile metal TO-46 leaded package.
- Light weight.
- General-purpose switching and amplifier applications.
- Military and high-reliability applications.

TO-46 (TO-206AB) **Package**

Also available in:

TO-39 (TO-205AD) (short-leaded)

TO-5 package (long-leaded)

2N3019

TO-18 (TO-206AA)

UB package (surface mount) 2N3700UB

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J and T _{STG}	-65 to +200	°C
Thermal Impedance Junction-to-Ambient	R _{OJA}	325	°C/W
Thermal Impedance Junction-to-Case	ReJC	80	°C/W
Collector-Emitter Voltage	V_{CEO}	80	V
Collector-Base Voltage	V_{CBO}	140	V
Emitter-Base Voltage	V_{EBO}	7.0	V
Collector Current	lc	1.0	Α
Total Power Dissipation: @ $T_A = +25$ °C ⁽¹⁾ @ $T_C = +25$ °C ⁽²⁾	P _D	0.5	W
@ $T_C = +25 ^{\circ}C^{(2)}$		1.8	

Notes:

- 1. Derate linearly 2.3 mW/°C for $T_{\text{A}} \geq$ +25 °C.
- 2. Derate linearly 10.3 mW/°C for T_C ≥ +25 °C.

MSC - Lawrence

6 Lake Street. Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- · CASE: Low profile nickel cap.
- TERMINALS: Gold over nickel plated kovar leads. Solder dip (Sn63/Pb37) available upon request. NOTE: Solder dip will eliminate RoHS compliance.
- MARKING: Part number, date code, manufacturer's ID and serial number.
- WEIGHT: Approximately 0.234 grams.
- See Package Dimensions on last page.

JAN 2N3057A Reliability Level JAN JAN 2N3057A Beliability Level JAN JAN JAN Level JAN JAN Level JANTX = JANTX level JANTXV = JANTXV level JANS = JANS level Blank = Commercial

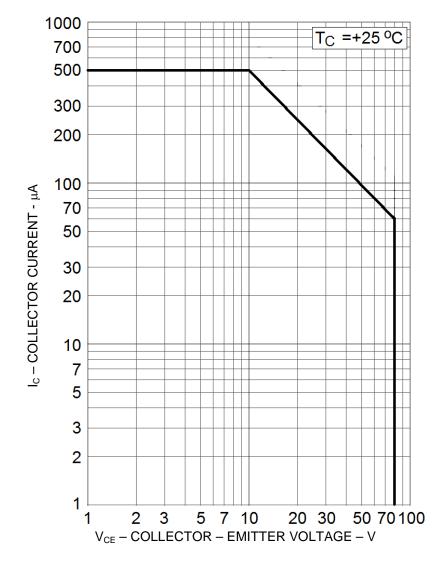
	SYMBOLS & DEFINITIONS			
Symbol	Definition			
f	Frequency			
I _B	Base current (dc)			
I _E	Emitter current (dc)			
T _A	Ambient temperature			
T _C	Case temperature			
V _{CB}	Collector to base voltage (dc)			
V _{CE}	Collector to emitter voltage (dc)			
V_{EB}	Emitter to base voltage (dc)			

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Current I _C = 30 mA	V _{(BR)CEO}	80		V
Collector-Base Cutoff Current V _{CB} = 140 V	I _{CBO}		10	μA
Emitter-Base Cutoff Current $V_{EB} = 7 \text{ V}$	I _{EBO1}		10	μA
Collector-Emitter Cutoff Current V _{CE} = 90 V	I _{CES}		10	ηΑ
Emitter-Base Cutoff Current V _{EB} = 5.0 V	I _{EBO2}		10	ηΑ
ON CHARACTERISTICS				
Forward-Current Transfer Ratio				
$I_{C} = 150 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 1.0 \text{ A}, V_{CE} = 10 \text{ V}$	h _{FE}	100 50 90 50 15	300 300 300	
Collector-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	V _{CE(sat)}		0.2 0.5	V
Base-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{BE(sat)}		1.1	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Transfer Ratio I_C = 1.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz	h _{fe}	80	400	
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 50$ mA, $V_{CE} = 10$ V, $f = 20$ MHz	h _{fe}	5.0	20	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		12	pF
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_{C} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{ibo}		60	pF



ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SAFE OPERATION AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests T _C = 25 °C, 1 cycle, t = 10 ms	
Test 1	$V_{CE} = 10 \text{ V}$ $I_{C} = 180 \text{ mA}$
Test 2	$V_{CE} = 40 \text{ V}$ $I_C = 45 \text{ mA}$
Test 3	$V_{CE} = 80 \text{ V}$ $I_{C} = 22.5 \text{ mA}$

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

Maximum Safe Operating Area

GRAPHS

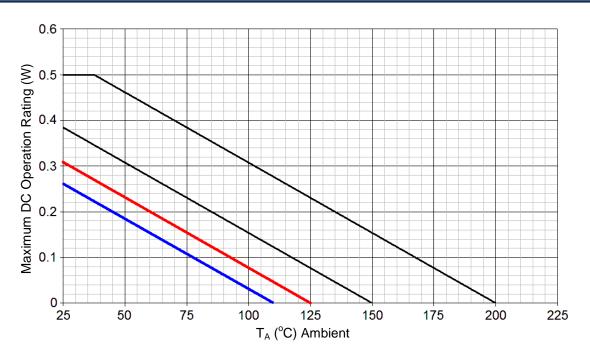
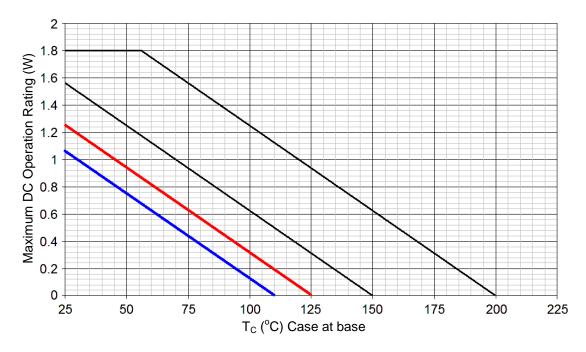
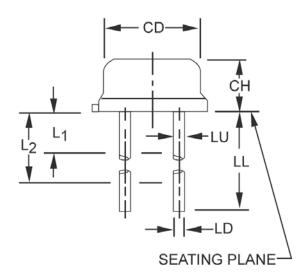
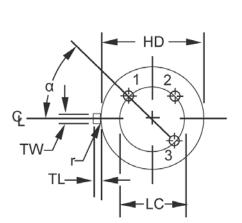


FIGURE 1
Temperature-Power Derating ($R_{\Theta JA}$)
Leads = .125 inch (3.175mm)


FIGURE 2

<u>Temperature-Power Derating (R_{OJC})</u>

PACKAGE DIMENSIONS

Symbol	Inches		Millimeters		Note
	Min	Max	Min	Max	
CD	.178	.195	4.52	4.95	
CH	.065	.085	1.65	2.16	
HD	.209	.230	5.31	5.84	
LC	.100 TP		2.54 TP		6
LD	.016	.021	0.41	0.53	7
LL	.500	1.750	12.70	44.45	7
LU	.016	.019	0.41	0.48	7
L1		.050		1.27	7
L2	.250		6.35		7
TL	.028	.048	0.71	1.22	3
TW	.036	.046	0.91	1.17	2
r	-	.007	-	0.18	10, 11
α	45° TP		45° TP		6

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. This device may be measured by direct methods.
- 6. Dimension LU applies between L_1 and L_2 . Dimension LD applies between L_2 and LL minimum. Diameter is uncontrolled in L_1 and beyond LL minimum.
- 7. All three leads.
- 8. The collector shall be internally connected to the case.
- 9. Dimension r (radius) applies to both inside corners of tab.
- 10. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 11. Lead 1 = emitter, lead 2 = base, lead 3 = collector.