

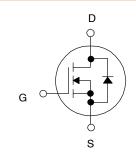
MOSFET - N-Channel, UniFET™ FRFET® 500 V, 100 A, 55 mΩ

FDL100N50F

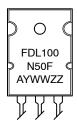
Description

UniFET MOSFET is **onsemi**'s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on–state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET MOSFET has been enhanced by lifetime control. Its trr is less than 100 nsec and the reverse dv/dt immunity is 15 V/ns while normal planar MOSFET's have over 200 nsec and 4.5 V/nsec respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features


- $R_{DS(on)} = 43 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$
- Low Gate Charge (Typ. 238 nC)
- Low C_{rss} (Typ. 64 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant

Applications


- Uninterruptible Power Supply
- AC-DC Power Supply

TO-264-3LD CASE 340CA

MARKING DIAGRAM

A YWW 77

- = Assembly Location
- = Date Code
- = Assembly Lot

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 $\,$ of this data sheet.

MOSFET MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter			FDL100N50F	Unit
V _{DSS}	Drain to Source Voltage			500	V
V_{GSS}	Gate to Source Voltage	Gate to Source Voltage			V
I _D	Drain Current	- Continuous (– Continuous (T _C = 25°C)		Α
		- Continuous (Γ _C = 100°C)	60	
I _{DM}	Drain Current	- Pulsed	(Note 1)	400	Α
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	5000	mJ
I _{AR}	Avalanche Current		(Note 1)	100	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	73.5	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	20	V/ns
P_{D}	Power Dissipation	(T _C = 25°C)	(T _C = 25°C)		W
		- Derate Above	– Derate Above 25°C		W/°C
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive rating: pulse-width limited by maximum junction temperature.
- 2. L = 1 mH, I $_{AS}$ = 100 A, V $_{DD}$ = 50 V, R $_{G}$ = 25 $\Omega,$ starting T $_{J}$ = 25 $^{\circ}C.$
- 3. $I_{SD} \leq$ 100 A, di/dt \leq 200 A/ μ s, $V_{DD} \leq$ BV $_{DSS}$, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDL100N50F	Unit
Rелс	Thermal Resistance, Junction to Case, Max.	0.05	°C/W
Reja	Thermal Resistance, Junction to Ambient, Max.	30	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
BV_{DSS}	Drain to Source Breakdown Voltage	I_D = 250 μ A, V_{GS} = 0 V, T_C = 25 $^{\circ}$ C	500	_	_	V	
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	0.5	-	V/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V	-	_	10	μΑ	
		V _{DS} = 400 V, T _C = 125°C	-	_	100	1	
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±100	nA	
ON CHARACTERISTICS							
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	3.0	_	5.0	V	
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 50 A	-	0.043	0.055	Ω	
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 50 A	_	95	_	S	
DYNAMIC CHA	RACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,	-	12000	_	pF	
C _{oss}	Output Capacitance	f = 1 MHz	_	1700	-	pF	
C _{rss}	Reverse Transfer Capacitance	7	-	64	_	pF	
Q _{g(tot)}	Total Gate Charge at 10V	$V_{DD} = 400 \text{ V}, I_D = 50 \text{ A},$	-	238	-	nC	
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 10 V (Note 4)	_	74	-	nC	
Q _{gd}	Gate to Drain "Miller" Charge	1 ` ''	_	95	-	nC	

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SWITCHING C	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	V_{DD} = 250 V, I_{D} = 50 A, V_{GS} = 10 V, R_{G} = 4.7 Ω	-	63	_	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, H_{G} = 4.7 \Omega$ (Note 4)	-	186	_	ns
t _{d(off)}	Turn-Off Delay Time		_	202	_	ns
t _f	Turn-Off Fall Time		-	105	_	ns
RAIN-SOUR	CE DIODE CHARACTERISTICS					
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	100	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	400	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 100 A	-	-	1.5	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 100 A	-	250	_	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	_	1.5	_	uC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Reel Size	Tape Width	Shipping [†]
FDL100N50F	FDL100N50F	TO - 264	N/A	N/A	25 Units / Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{4.} Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

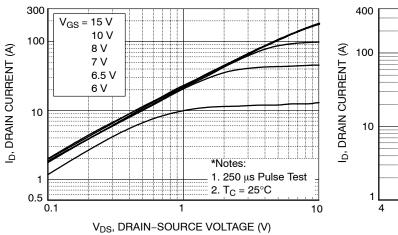


Figure 1. On-Region Characteristics

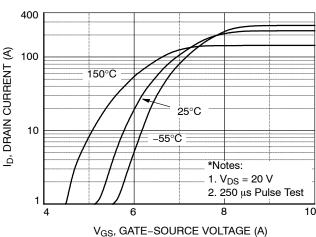


Figure 2. Transfer Characteristics

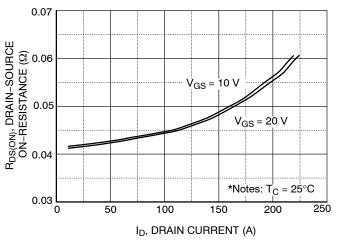


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

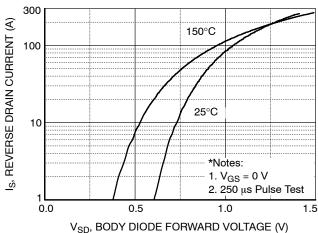


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

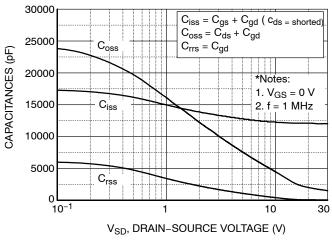


Figure 5. Capacitance Characteristics

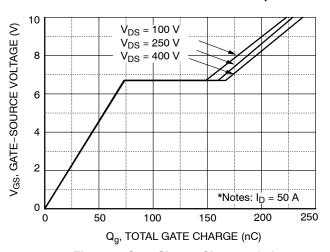


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS (continued)

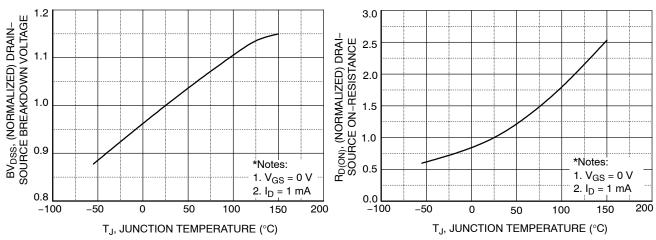


Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On–Resistance Variation vs.
Temperature

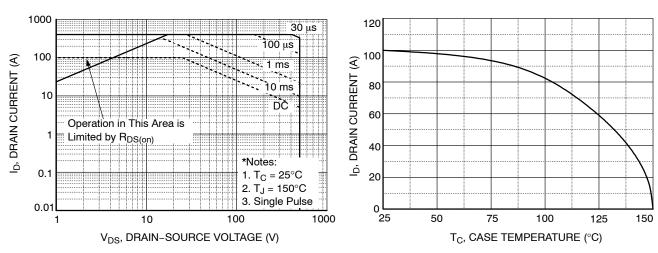


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

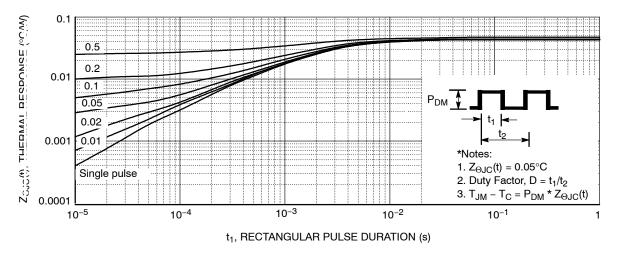


Figure 11. Transient Thermal Response Curve

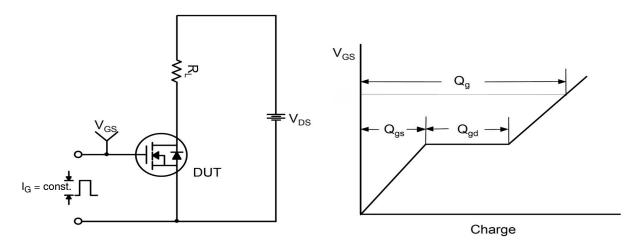


Figure 12. Gate Charge Test Circuit & Waveforms

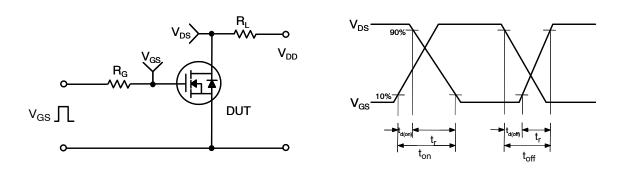


Figure 13. Resistive Switching Test Circuit & Waveforms

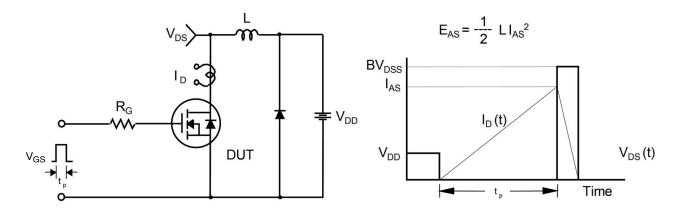
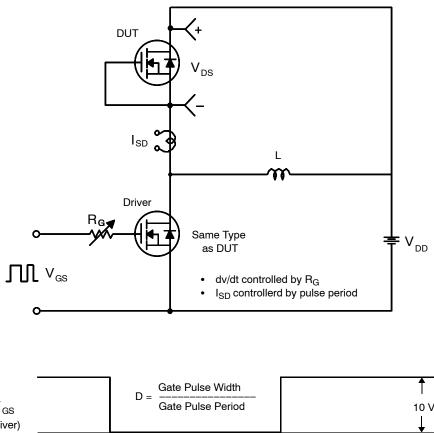



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

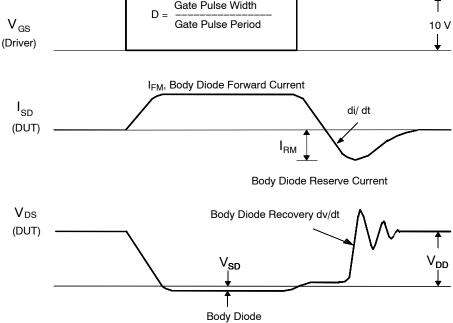
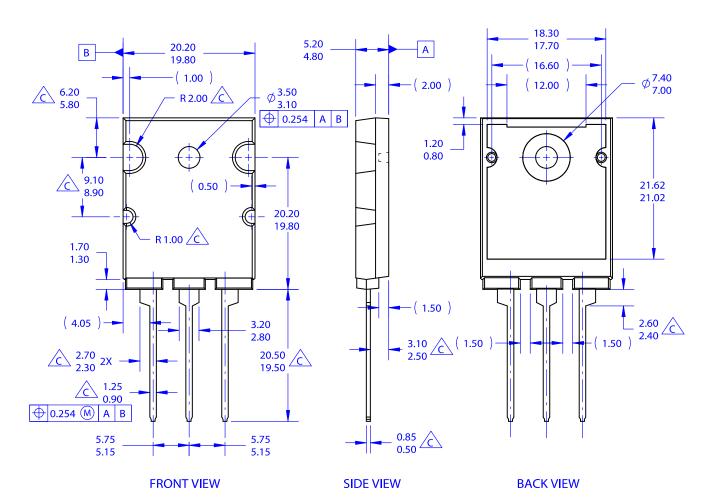


Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms


Forward Votlage Drop

UniFET is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

FRFET is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TO-264-3LD CASE 340CA ISSUE O

DATE 31 OCT 2016

3.70 3.30 4.80 BOTTOM VIEW

NOTES:

A. PACKAGE REFERENCE: JEDEC TO264 VARIATION AA.

B. ALL DIMENSIONS ARE IN MILLIMETERS.

D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.

E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

DOCUMENT NUMBER:	98AON13860G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-264-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales