

Galvanically isolated 4 A half-bridge gate driver

Features

- 1700 V dual channel gate driver
- Driver current capability: 4 A sink / source at 25 °C
- dV/dt transient immunity ± 100 V/ns
- Overall input-output propagation delay: 75 ns
- UVLO function
- Configurable interlocking function
- Dedicated SD and BRAKE pins
- Gate driving voltage up to 26 V
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Temperature shutdown protection
- Standby function

Applications

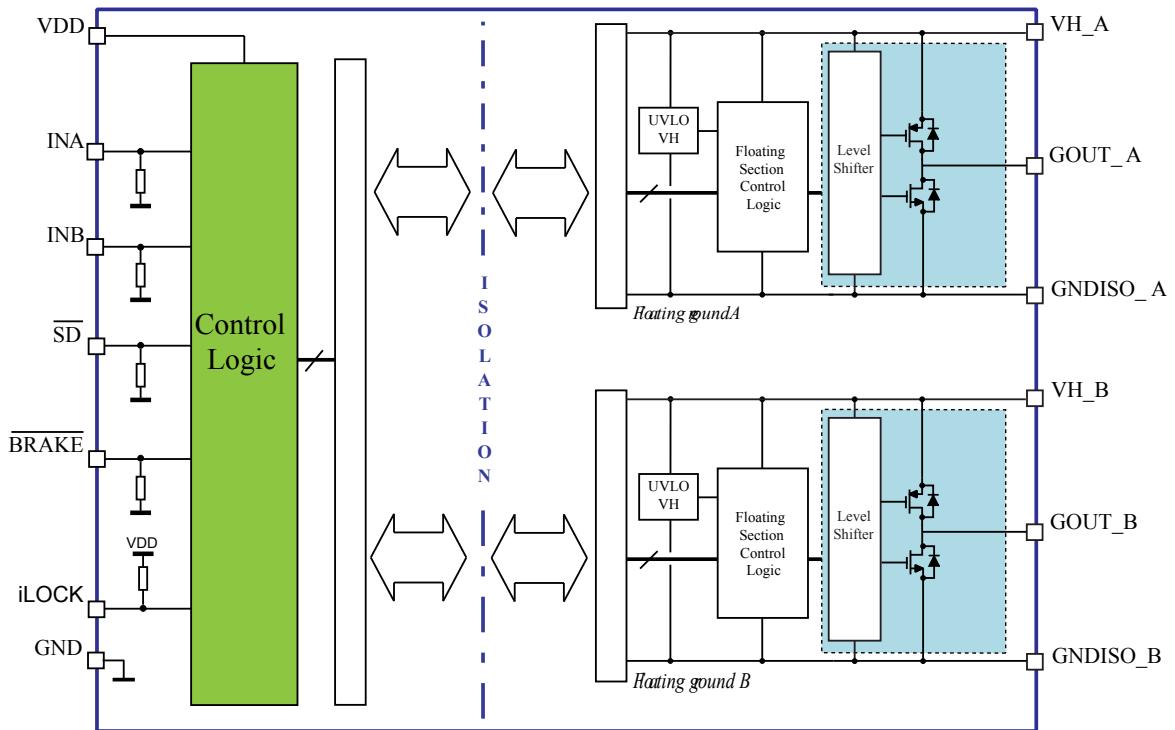
- Motor driver for industrial drives, factory automation, home appliances and fans
- 600/1200 V inverters
- Battery chargers
- Induction heating
- Welding
- UPS
- Power supply units
- DC-DC converters
- Power Factor Correction

Product status link
STGAP2D
Product label
The logo is a green circle containing a stylized plant with three leaves and a root system. Below the plant, the words "SUSTAINABLE TECHNOLOGY" are written in a sans-serif font.

Description

The STGAP2D is a half-bridge gate driver which isolates the gate driving channels from the low voltage control and interface circuitry.

The gate driver is characterized by 4 A capability and rail-to-rail outputs, making the device also suitable for high power inverter applications such as motor drivers in industrial applications.


The device integrates protection functions: dedicated SD and BRAKE pins are available, UVLO and thermal shutdown are included to easily design high reliability systems, and an interlocking function prevents outputs from being high at the same time.

The input to output propagation delay results are contained within 75 ns, providing high PWM control accuracy.

A standby mode is available in order to reduce idle power consumption.

1 Block diagram

Figure 1. Block diagram

2 Pin description and connection diagram

Figure 2. Pin connection (top view)

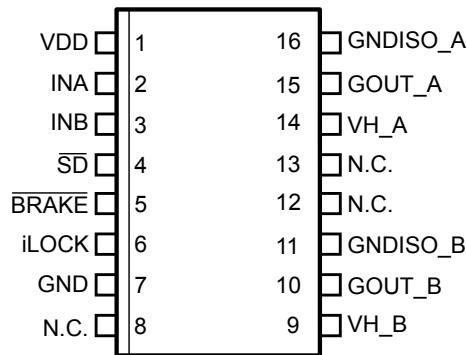


Table 1. Pin description

Pin #	Pin name	Type	Function
1	VDD	Power supply	Control logic supply voltage.
2	INA	Logic input	Control logic input for Channel A, active high.
3	INB	Logic input	Control logic input for Channel B, active high.
4	SD	Logic input	Shutdown input, active low.
5	BRAKE	Logic input	Control logic input, active low.
6	iLOCK	Analog input	Interlocking enable/disable.
7	GND	Power supply	Control logic ground.
9	VH_B	Power supply	Channel B gate driving positive supply.
10	GOUT_B	Analog output	Channel B Sink/Source output.
11	GNDISO_B	Power supply	Channel B gate driving isolated ground.
14	VH_A	Power supply	Channel A gate driving positive supply.
15	GOUT_A	Analog output	Channel A Sink/Source output.
16	GNDISO_A	Power supply	Channel A gate driving isolated ground.
Others	-	-	Not connected.

3 Electrical data

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Test condition	Min.	Max.	Unit
VDD	Logic supply voltage vs. GND	-	-0.3	6.5	V
V _{LOGIC}	Logic pins voltage vs. GND	-	-0.3	6.5	V
iLOCK	Interlocking enable vs. GND		-0.3	VDD + 0.3	V
V _{H_x}	Positive supply voltage (V _{H_x} vs. GNDISO _{_x})	-	-0.3	28	V
V _{OUT}	Voltage on gate driver outputs (GOUT _{_x} vs. GNDISO _{_x})	-	-0.3	V _{H_x} + 0.3	V
V _{ISO-OP}	Input to output isolation voltage (GND vs. GNDISO _{_x})	DC or peak	-1700	+1700	V
T _J	Junction temperature	-	-40	150	°C
T _S	Storage temperature	-	-50	150	°C
P _{Din}	Power Dissipation input chip	T _A = 25 °C	-	10	mW
P _{Dout}	Power Dissipation output chip	T _A = 25 °C	-	1.16	W
ESD	HBM- (human body model)	-		2	kV

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Package	Value	Unit
R _{th(JA)}	Thermal resistance junction to ambient	SO-16	90	°C/W

3.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Max.	Unit
VDD	Logic supply voltage vs. GND	-	3.1	5.5	V
V _{LOGIC}	Logic pins voltage vs. GND	-	0	5.5	V
iLOCK	Interlocking enable vs. GND		0	VDD	V
VH_x	Positive supply voltage (VH_x vs. GNDISO-x)	-	-	26	V
GNDISO _{A-B} ⁽¹⁾	Floating grounds differential voltage (GNDISO_A - GNDISO_B)	DC or peak	-1500	+1500	V
F _{SW}	Maximum switching frequency ⁽²⁾	-	-	1	MHz
t _{OUT}	Pulse width	-	100	-	ns
T _J	Operating Junction Temperature	-	-40	125	°C

1. Characterization data, 1200 V max. tested in production.

2. Actual limit depends on power dissipation and T_J

4

Electrical characteristics

Table 5. Electrical characteristics ($T_J = 25^\circ\text{C}$, $VH_x = 15\text{ V}$, $VDD = 5\text{ V}$ unless otherwise specified)

Symbol	Pin	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Dynamic characteristics							
t_{DOn}	INA, INB, SD, BRAKE	Input to output propagation delay ON	See Figure 8	50	75	90	ns
t_{Doff}	INA, INB, SD, BRAKE	Input to output propagation delay OFF	See Figure 8	50	75	90	ns
t_r	-	Rise time	$C_L = 4.7\text{ nF}$, See Figure 8	-	30	-	ns
t_f	-	Fall time		-	30	-	ns
PWD	-	Pulse width distortion ⁽¹⁾	-	-	-	20	ns
$t_{deglitch}$	INA, INB, SD, BRAKE	Inputs deglitch filter	-	-	20	40	ns
CMTI ⁽²⁾	-	Common-mode transient immunity, $ dv_{ISO}/dt $	$V_{CM} = 1500\text{ V}$, see Figure 9	100	-	-	V/ns
Supply voltage							
VH_{on}	-	VH_x UVLO turn-on threshold	-	8.6	9.1	9.6	V
VH_{off}	-	VH_x UVLO turn-off threshold	-	7.9	8.4	8.9	V
VH_{hyst}	-	VH_x UVLO hysteresis	-	0.6	0.75	0.95	V
I_{QHU_A} , I_{QHU_B}	-	VH_x undervoltage quiescent supply current	$VH_x = 7\text{ V}$	-	1.3	1.8	mA
I_{QH_A} , I_{QH_B}	-	VH_x quiescent supply current	-	-	1.3	1.8	mA
I_{QHSBY_A} , I_{QHSBY_B}	-	Standby VH_x quiescent supply current	-	-	400	550	μA
SafeClp	-	GOUT active clamp	$I_{GOUT} = 0.2\text{ A}$; VH floating	-	2	2.3	V
I_{QDD}	-	VDD quiescent supply current	-	-	1.8	2.4	mA
I_{QDDSBY}	-	Stand-by VDD quiescent supply current	Standby mode	-	40	80	μA
Logic inputs							
V_{il}	INA, INB, SD, BRAKE	Low-level logic threshold voltage	-	$0.29 \cdot VDD$	$0.33 \cdot VDD$	$0.37 \cdot VDD$	V
V_{ih}	INA, INB, SD, BRAKE	High-level logic threshold voltage	-	$0.62 \cdot VDD$	$0.66 \cdot VDD$	$0.7 \cdot VDD$	V
I_{logic_h}	INA, INB, SD, BRAKE	Logic inputs high-level input bias current	$V_{logic} = 5\text{ V}$	33	50	70	μA
I_{logic_l}	INA, INB, SD, BRAKE	Logic inputs low-level input bias current	$V_{logic} = 0\text{ V}$	-	-	1	μA
R_{pd}	INA, INB, SD, BRAKE	Logic inputs pull-down resistor	-	70	100	150	$\text{k}\Omega$
Interlocking							
iLOCKen	iLOCK	Interlocking enable voltage		$0.7 \cdot VDD$			V
iLOCK_	iLOCK	iLOCK low-level bias current	$iLOCK = \text{GND}$	35	55	75	μA
iLOCK_h	iLOCK	iLOCK high-level bias current	$iLOCK = VDD$			1	μA
iLOCK_pu	iLOCK	iLOCK pull-up resistor		66	90	142	$\text{k}\Omega$

Symbol	Pin	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Driver buffer section							
I _{GON}	GOUT	Source short-circuit current	T _J = 25 °C	-	4	-	A
			T _J = -40 to +125 °C (2)	3	-	5	
I _{GOFF}	GOUT	Sink short-circuit current	T _J = 25 °C	-	4	-	A
			T _J = -40 to +125 °C (2)	3	-	5.5	
V _{GONH}	GOUT	G _{ON} output high-level voltage	I _{GON} = 100 mA	VH - 0.15	VH - 0.125	-	V
V _{GOFFL}	GOUT	G _{OFF} output low-level voltage	I _{GOFF} = 100 mA	-	110	120	mV
R _{GON}	GOUT	Source R _{DS_ON}	I _{GON} = 100 mA	-	1.25	1.5	Ω
R _{GOFF}	GOUT	Sink R _{DS_ON}	I _{GOFF} = 100 mA	-	1.1	1.2	Ω
Overtemperature protection							
T _{SD}		Shutdown temperature	-	170	-	-	°C
T _{hys}		Temperature hysteresis	-	-	20	-	°C
Standby							
t _{STBY}	-	Standby time	See Section 5.6	200	280	500	μs
t _{WUP}	-	Wake-up time		10	20	35	μs
t _{awake}	-	Wake-up delay		90	140	200	μs
t _{stbyfilt}	-	Standby filter		200	280	800	ns

1. $PWD = \max (|t_{Don(A)} - t_{Don(B)}|, |t_{Doff(A)} - t_{Doff(B)}|, |t_{Doff(A)} - t_{Don(B)}|, |t_{Doff(B)} - t_{Don(A)}|)$.

2. Characterization data, not tested in production.

Table 6. Isolation related specifications

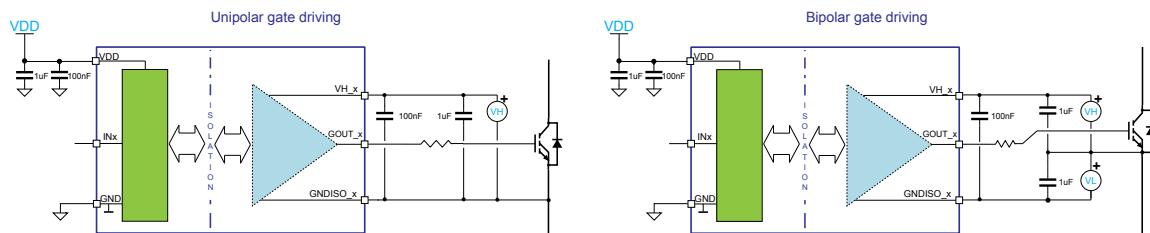
Parameter	Symbol	Value	Unit	Conditions
Clearance (Minimum External Air Gap)	CLR	4	mm	Measured from input terminals to output terminals, shortest distance through air
Creepage (*) (Minimum External Tracking)	CPG	4	mm	Measured from input terminals to output terminals, shortest distance path along body
Comparative Tracking Index (Tracking Resistance)	CTI	≥ 400	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

Table 7. Isolation characteristics

Parameter	Symbol	Test Conditions	Characteristic	Unit
Input to Output test voltage In accordance with VDE 0884-11	V _{PR}	Method a, Type test	2720	V _{PEAK}
		V _{PR} = 2720, t _m = 10 s		
		Partial discharge < 5 pC		
	V _{IOTM}	Method b1, 100% Production test	3200	V _{PEAK}
		V _{PR} = 3200, t _m = 1 s		
		Partial discharge < 5 pC		
Transient Overvoltage (Highest Allowable Overvoltage)	V _{IOTM}	t _{ini} = 60 s Type test	4800	V _{PEAK}
Maximum Surge Test Voltage	V _{IISM}	Type test	4800	V _{PEAK}
Isolation Resistance	R _{IO}	V _{IO} = 500 V, Type test	>10 ⁹	Ω

Table 8. UL 1577 tests

Description	Symbol	Characteristic	Unit
Isolation Withstand Voltage, 1 min (Type test)	V _{ISO}	2828/4000	V _{rms} / PEAK
Isolation Test Voltage, 1 sec (100% production)	V _{ISOTest}	3394/4800	V _{rms} / PEAK


5 Functional description

5.1

Gate driving power supply and UVLO

The **STGAP2D** is a flexible and compact gate driver with 4 A output current and rail-to-rail outputs. The device allows implementing either unipolar or bipolar gate driving.

Figure 3. Power supply configuration for unipolar and bipolar gate driving

Undervoltage protection is available on VH_x supply pin. A fixed hysteresis sets the turn-off threshold, thus avoiding intermittent operation.

When VH_x voltage goes below the VH_{off} threshold, the output buffer enters 'safe state'. When VH_x voltage reaches the VH_{on} threshold, the device returns to normal operation and sets the output according to actual input pins status.

The VDD and VH_x supply pins must be properly filtered with local bypass capacitors. The use of capacitors with different values in parallel provides both local storage for impulsive current supply and high-frequency filtering. We recommend using low-ESR SMT ceramic capacitors for the best filtering performance. A 100 nF ceramic capacitor must be placed as close as possible to each supply pin, and a second bypass capacitor with value between 1 μ F and 10 μ F should be placed close to it.

5.2

Power-up, power-down and safe state

The following conditions define the safe state:

- GOUT n-channel = ON state
- GOUT p-channel = high impedance

Such conditions are maintained at power-up of the isolated side ($VH_x < VH_{on}$) and during whole device power-down phase ($VH < VH_{off}$), regardless of the value of the input pins.

The device integrates a structure that clamps the driver output to a voltage not higher than SafeClp when VH voltage is not high enough to actively turn the internal GOUT n-channel on. If VH_x positive supply pin is floating or not supplied, the GOUT pin is therefore clamped to a voltage smaller than SafeClp.

If the supply voltage VDD of the control section of the device is not supplied, the output is put in safe state and remains in this condition until the VDD voltage returns to operative conditions.

After power-up of both isolated and low voltage side, the device output state depends on the status of the input pins.

5.3 Control Inputs

The device is controlled through the following logic inputs:

- SD: active low shutdown input;
- BRAKE: active low brake input;
- INA, INB: active high logic inputs for channel A and channel B driver outputs;
- iLOCK: used to enable or disable the interlocking protection

The operation of the driver IOs is described in [Table 9](#).

Table 9. Inputs truth table (applicable when device is not in UVLO or "safe state")

Input pins ⁽¹⁾						Output pins	
	iLOCK	SD	BRAKE	INA	INB	GOUT_A	GOUT_B
	X	L	X	X	X	Low	Low
	X	H	L	X	X	Low	HIGH
	X	H	H	L	L	Low	Low
	X	H	H	H	L	HIGH	Low
	X	H	H	L	H	Low	HIGH
Interlocking	VDD	H	H	H	H	Low	Low
	GND	H	H	H	H	HIGH	HIGH

1. X: *Don't care*.

A deglitch filter allows input signals with duration shorter than $t_{deglitch}$ to be ignored, thereby preventing any noise spikes in the application from generating unwanted commutations.

5.4 Watchdog

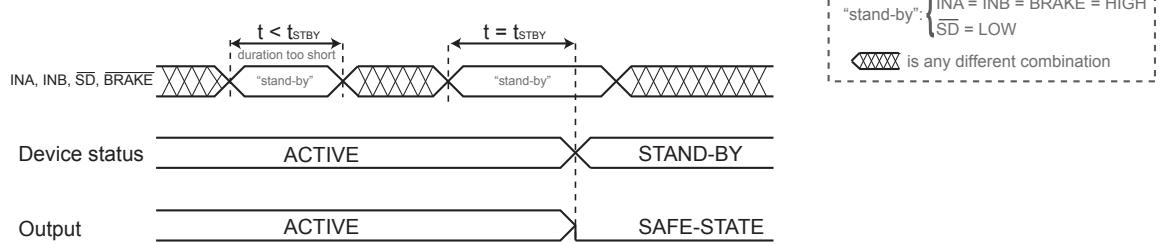
The isolated HV side has a watchdog function to identify when it is not able to communicate with the LV side; for example, because the VDD of the LV side is not supplied. In this case, the output of the driver is forced into 'safe state' until the communication link is properly established again.

5.5 Thermal shutdown protection

The device provides a thermal shutdown protection. When junction temperature reaches the T_{SD} temperature threshold, the device is forced into 'safe state'. Device operation is restored as soon as the junction temperature falls below $T_{SD} - T_{hys}$.

5.6 Standby function

The device can be put in standby mode to reduce the power consumption of both the control interface and gate driving sides. In standby mode, the quiescent current from VDD and VH_x supply pins is reduced to I_{QDDs} and I_{QHS_x} , respectively, and the output remains in 'safe state' (the output is actively forced low).


To enter standby, keep the SD low while keeping the other input pins (INA, INB and BRAKE) high ('standby' value) for a time longer than t_{STBY} . During standby, the inputs can change from the 'standby' value.

To exit standby, inputs must be put in any combination different from the 'standby' value for a time longer than $t_{stbyfilt}$, and then in the "standby" value for a time t such that $t_{WUP} < t < t_{STBY}$.

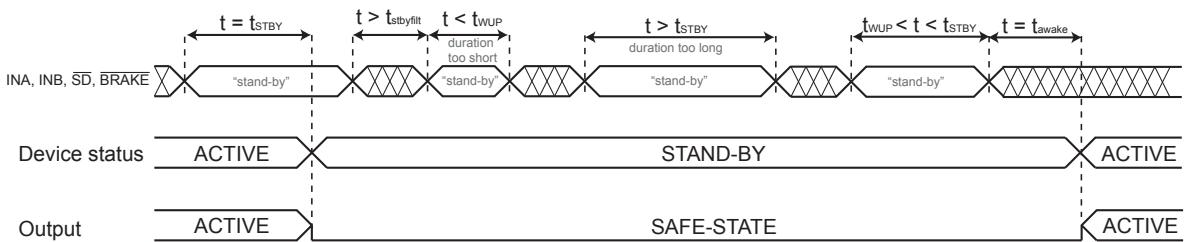

When the input configuration is changed from the 'standby' value, the output is enabled and set according to inputs state after a time t_{awake} .

Figure 4. Standby state sequences

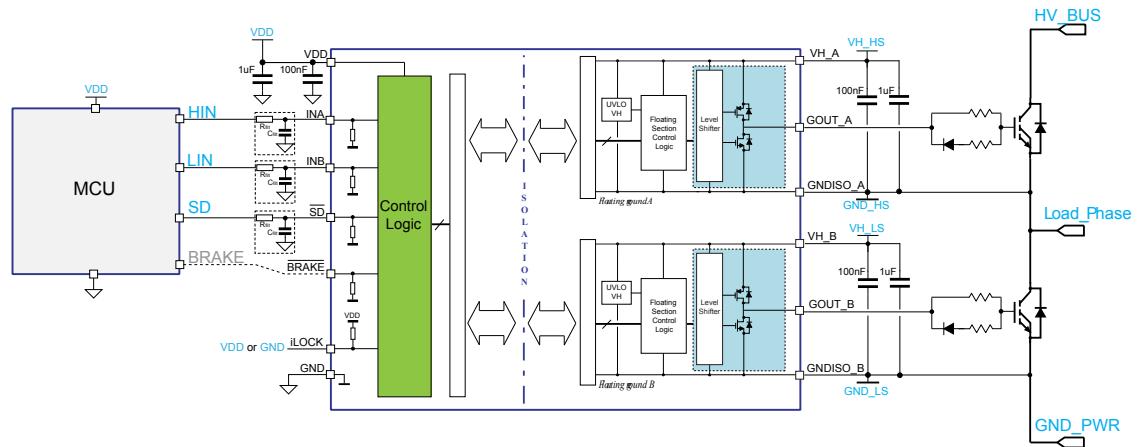
Sequence to enter stand-by mode

Sequence to exit stand-by mode

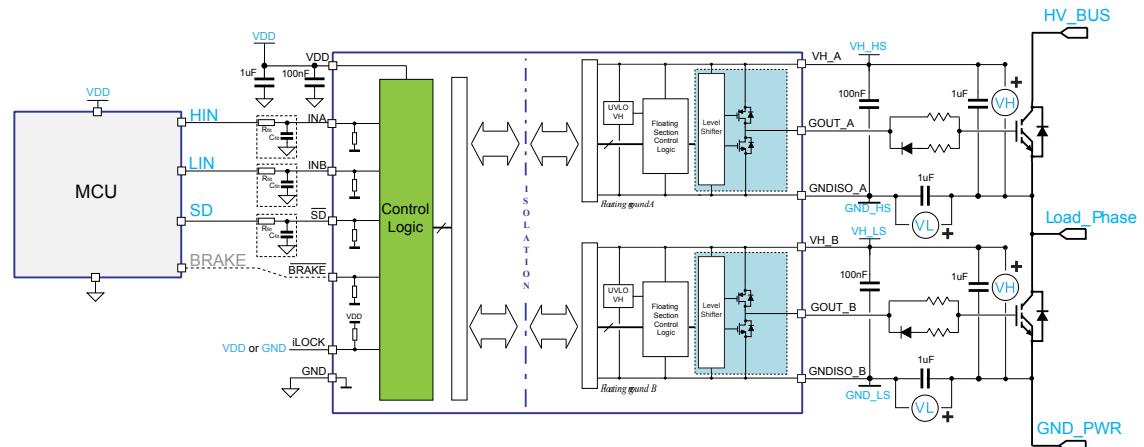
5.7

Interlocking function

The interlocking function prevents outputs GOUT_A and GOUT_B from being high at the same time, regardless of the status of the input pins INA and INB.


In half-bridge topologies this protection avoids shoot-through in case that wrong input signals are generated by the controller device. In case the status of INA and INB is such to require both channels to be ON at the same time, the driver turns both channels off.

In some topologies it is required to allow both channels to be ON at the same time: this can be achieved by disabling the interlocking function through the iLOCK pin. The iLOCK pin shall be either connected to VDD, which enables the interlocking function, or to GND, which disables the interlocking function and allows parallel operation of Channel_A and Channel_B.


Refer to Section 5.3 for complete logic inputs truth table.

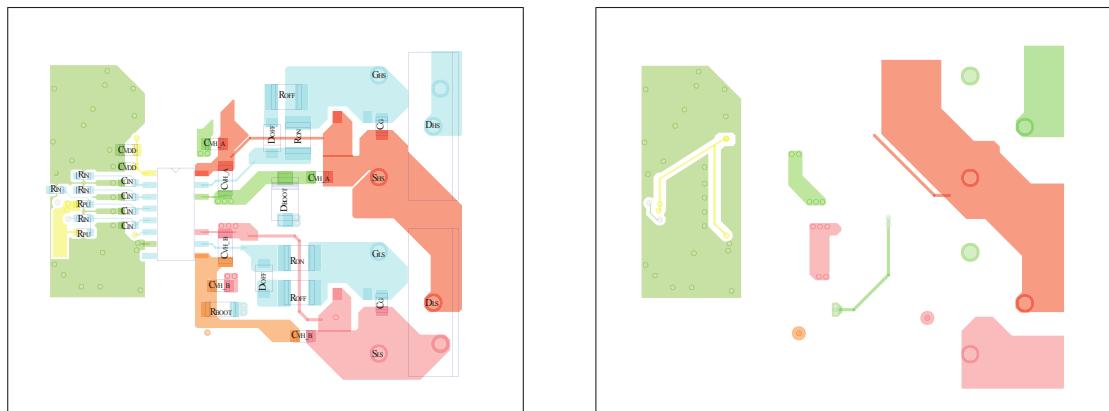
6 Typical application diagrams

Figure 5. Half-bridge configuration

Figure 6. Half-bridge configuration with negative gate driving

7 Layout

7.1 Layout guidelines and considerations


In order to optimize the PCB layout, the following considerations should be taken into account:

- SMD ceramic capacitors (or different types of low-ESR and low-ESL capacitors) must be placed close to each supply rail pin. A 100 nF capacitor must be placed between VDD and GND and between VH_x and GNDISO_x, as close as possible to device pins, in order to filter high-frequency noise and spikes. In order to provide local storage for pulsed current a second capacitor with value in the range between 1 μ F and 10 μ F should also be placed close to the supply pins.
 - As a good practice it is suggested to add filtering capacitors close to logic inputs of the device (INA, INB, BRAKE, SD), in particular for fast switching or noisy applications.
- The power transistors must be placed as close as possible to the gate driver, so to minimize the gate loop area and inductance that might bring about noise or ringing.
- To avoid degradation of the isolation between the primary and secondary side of the driver, there should not be any trace or conductive area below the driver.
- If the system has multiple layers, it is recommended to connect the VH_x and GNDISO_x pins to internal ground or power planes through multiple vias of adequate size. These vias should be located close to the IC pins to maximize thermal conductivity.

7.2 Layout example

An example of STGAP2D suggested half-bridge with negative gate driving PCB layout is shown in Figure 7; the main signals have been highlighted by different colors. It is recommended to follow this example for proper positioning and connection of filtering capacitors.

Figure 7. Suggested PCB layout for half-bridge configuration with negative driving voltage

8 Testing and characterization information

Figure 8. Timings definition

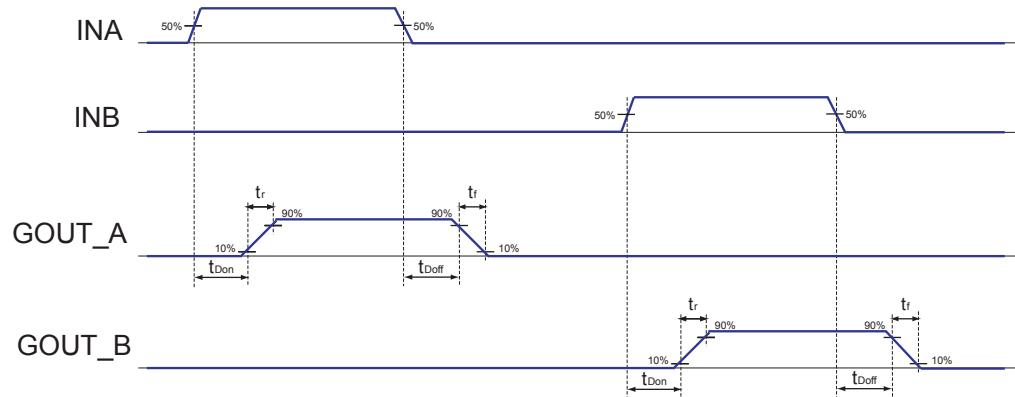
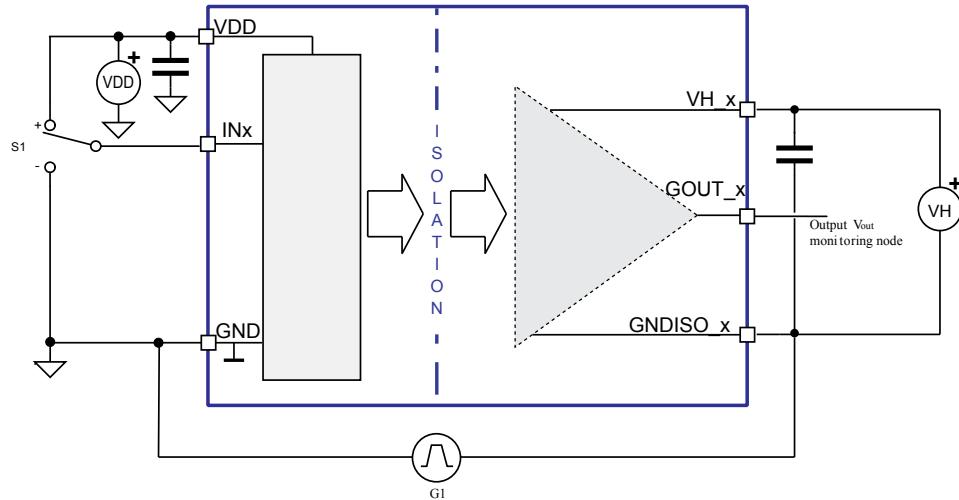



Figure 9. CMTI test circuit

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

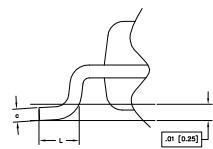
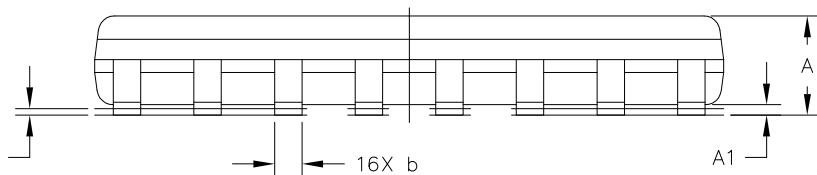
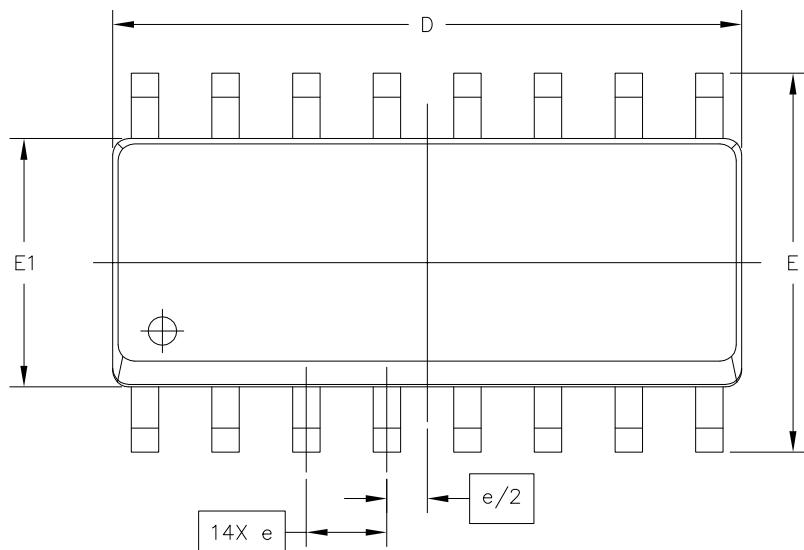



9.1 SO-16 narrow package information

Table 10. SO-16 narrow package dimensions

Dim.	mm			NOTES
	Min.	Typ.	Max.	
A	1.35	-	1.75	-
A1	0.10	-	0.25	-
b	0.35	-	0.49	(1)
c	0.19	-	0.25	-
D	9.80	-	10.00	(2)
E	5.80	-	6.20	-
E1	3.80	-	4.00	(2)
e	1.27BSC			-
L	0.40	-	1.25	-
h	0.25	-	0.50	-
Θ	0	-	7	degrees

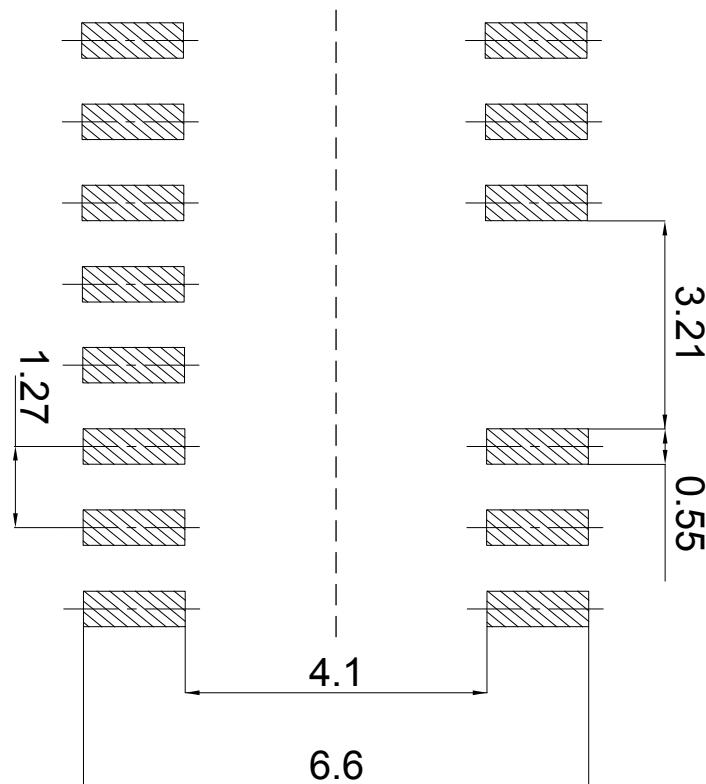

1. Dimension "b" and "E1" does not include dam bar protrusion (allowable dam bar protrusion shall be 0.127 mm total).
2. Dimension "D" and "E1" do not include mold protrusions (maximum 0.15 mm per side).

Figure 10. SO-16 package outline

10 Suggested land pattern

Figure 11. SO-16 suggested land pattern

11 Ordering information

Table 11. Device summary

Order code	Output configuration	Package	Package marking	Packaging
STGAP2DM	GOUT	SO-16	GAP2DM	Tube
STGAP2DMTR	GOUT	SO-16	GAP2DM	Tape and Reel

Revision history

Table 12. Document revision history

Date	Version	Changes
24-Aug-2018	1	Initial release.
26-Jan-2022	2	Added iLOCK pin for interlocking function disable. Added Table 6 , Table 7 , and Table 8 . Updated Table 2 , Table 4 , and Table 5 . Updated Figure 3 .

Contents

1	Block diagram	2
2	Pin description and connection diagram	3
3	Electrical data	4
3.1	Absolute maximum ratings	4
3.2	Thermal data	4
3.3	Recommended operating conditions	5
4	Electrical characteristics	6
5	Functional description	9
5.1	Gate driving power supply and UVLO	9
5.2	Power-up, power-down and safe state	9
5.3	Control Inputs	10
5.4	Watchdog	10
5.5	Thermal shutdown protection	10
5.6	Standby function	10
5.7	Interlocking function	11
6	Typical application diagrams	12
7	Layout	13
7.1	Layout guidelines and considerations	13
7.2	Layout example	13
8	Testing and characterization information	14
9	Package information	15
9.1	SO-16 narrow package information	15
10	Suggested land pattern	17
11	Ordering information	18
Revision history		19
Contents		20
List of tables		21
List of figures		22

List of tables

Table 1.	Pin description	3
Table 2.	Absolute maximum ratings	4
Table 3.	Thermal data	4
Table 4.	Recommended operating conditions	5
Table 5.	Electrical characteristics ($T_J = 25^\circ\text{C}$, $VH_x = 15\text{ V}$, $VDD = 5\text{ V}$ unless otherwise specified)	6
Table 6.	Isolation related specifications	7
Table 7.	Isolation characteristics	8
Table 8.	UL 1577 tests	8
Table 9.	Inputs truth table (applicable when device is not in UVLO or "safe state")	10
Table 10.	SO-16 narrow package dimensions	15
Table 11.	Device summary	18
Table 12.	Document revision history	19

List of figures

Figure 1.	Block diagram	2
Figure 2.	Pin connection (top view)	3
Figure 3.	Power supply configuration for unipolar and bipolar gate driving	9
Figure 4.	Standby state sequences	11
Figure 5.	Half-bridge configuration	12
Figure 6.	Half-bridge configuration with negative gate driving	12
Figure 7.	Suggested PCB layout for half-bridge configuration with negative driving voltage	13
Figure 8.	Timings definition	14
Figure 9.	CMTI test circuit	14
Figure 10.	SO-16 package outline	16
Figure 11.	SO-16 suggested land pattern	17

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved