

Features:

- 5.000 Vrms electrical isolation
- Choice of a Single and Dual LED
- Phototransistor or Photo Darlington Sensor
- Low-cost plastic Dual-In-Line (DIP) package

Agency Approvals:

UL Certification No: E58730
 VDE No: 40026625 40026536, 40026654

Description:

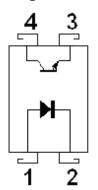
The OPIA series optocouplers are designed for applications that use an analog output (Phototransistor or Photodarlington) in a surface mount package. A wide selection of configurations are available. With typical isolation voltage of 5,000 Volts(RMS), these products meet typical power system isolation requirements.

Theory of operation: The LED transmitter is used to illuminate the Photosensor providing electrical isolation between two power systems while maintaining the ability to transmit information from one power system to the other. In many applications, analog signal levels may be required to be transmitted between two power systems while maintaining isolation between the power systems up to 5,000 Volts(RMS). A variety of LED and photosensor configurations are available depending on the system requirements.

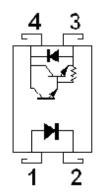
The ratio Current Transfer Ratio (CTR) is determined using the output current and input current for analog photosensors. CTR ratios can range from as low as 5 to over 9,000 depending on the device.

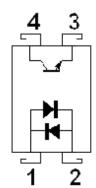
$$CTR = \frac{Photosensor - Current}{LED - Current} = \frac{20mA}{10mA} * 100 = 200$$

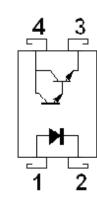
All SMD products are shipped in a shipping tube with "TR" identified on the end of the part number. Example: OPIA817ATRE is a 4-Pin SMD shipped in tape and reel (TR)


Applications:

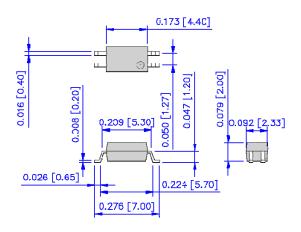
- High voltage isolation: 5,000 Volts(RMS)
- PCBoard power system isolation
- Industrial equipment power isolation
- Medical equipment power isolation
- Office equipment

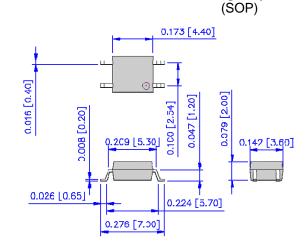



Package Outline Dimensions and Schematics: Top-View

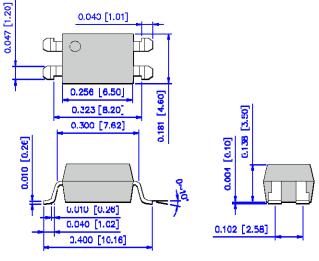

OPIA817 OPIA1210

OPIA4010


OPIA814


OPIA815

Package Style B


Package Style C (SSOP)

Dord Name to a	Pin #									
Part Number	1	2	3	4						
OPIA817A	Α	К	E	С						
OPIA814A	A-K	K-A	E	С						
OPIA815A	Α	К	E	С						
OPIA4010A	Α	K	E	С						
OPIA1210A	А	K	Е	С						

Package Style A (SMD)

	Analog Output Devices Ordering Information											
Part Number	Isolation Voltage Max. (Vrms)	CTR Min/Typ/Max	Typ. Tr / Tf (µs) R _L = 100 ohms	Package	Configuration							
OPIA817A	5,000	50 / - / 600	4/3	4-Pin SMD	A K—C E							
OPIA814A	5,000	60 / - / 600	5 / 4	4-Pin SMD	A K, K A—C E							
OPIA815A	5,000	70 / - / -	80 / 72	4-Pin SMD	A K—C E (Dar)							
OPIA4010A	5,000	600 / - / 9,000	60 / 50	4-Pin SMD	A K—C E (Dar)							
OPIA1210A	5,000	50 / - / 600	50 / - / 600 2 / 3 4-Pin SMD									
	·		n: Definition of Terms on—Sensor Identification									
Configuration	LED	A = Anode	K = Cathode									
Information	Sensor	B = Base	C = Collector	(Dar) = Photodarlington								
Packaging	Packaging Part Number Suffix: TU = Shipped in Tubes Example: OPIA817D <u>TI</u>											

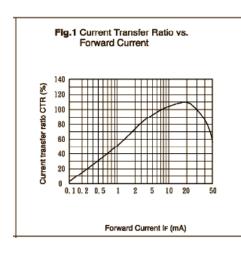
Storage Temperature	
OPIA817, OPIA4010, OPIA1210	-55° C to +125°
Operating Temperature All except the part numbers noted below	-30° C to +100°
Isolation voltage (1 minute) OPIA817, OPIA814, OPIA815, OPIA4010, OPIA1210	5,000 Vrn
Total Package Power Dissipation OPIA817, OPIA814, OPIA815, OPIA4010, OPIA1210	200 m
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron)	260°
ut Diode	•
Continuous Forward Current All except the part number noted below	50 n
Peak Forward current (1 μs pulse width, 300 pps) All except the part number noted below	1
Reverse Voltage OPIA817, OPIA815, OPIA4010, OPIA1210, OPIA814, OPIA4010	6
Power Dissipation OPIA817, OPIA814, OPIA4010, OPIA1210, OPIA815	70 m
Output Phototransistor	_ I
Collector-Emitter Voltage OPIA817, OPIA814 OPIA4010 OPIA815 OPIA1210	60 300 35 350
Emitter-Collector Voltage OPIA817, OPIA814, OPIA815 OPIA4010 OPIA1210	6 0.1 7
Collector Current OPIA817, OPIA814, OPIA1210, OPIA414 OPIA4010 OPIA815	50 n 150 n 80 n
Power Dissipation All except the part numbers noted below OPIA4010	150 m

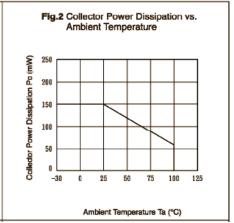
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

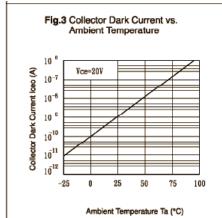
OPIA4010

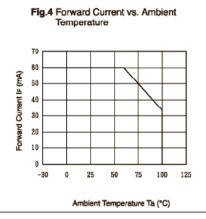
200 mW

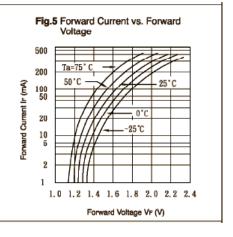
Electrical Characteristics

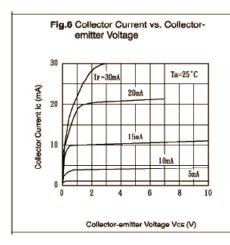

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
nput Dio	de					
V_{F}	Forward Voltage All except those noted below OPIA1210	1.0	1.2 1.2	1.4 1.3	V	I _F = 20 mA I _F = 10 mA
$V_{\sf FM}$	Peek Forward Voltage OPIA814, OPIA4010 OPIA817, OPIA815, OPIA1210	-	- -	3.5 3.0	V	I _{FM} = 500 mA
I _R	Reverse Current All except those noted below OPIA814 OPIA1210		- - -	10 10	μА	V _R = 4 V - V _R = 5 V
C_{t}	Terminal Capacitance All except those noted below OPIA815	- -	30 30	- 250	pf	V = 0.0 V, f = 1K Hz V = 0.0 V, f = 1K Hz
Output Ph	nototransistor					
I _{CEO}	Collector dark Current OPIA817, OPIA814 OPIA1210		- 10	100 200	nA	$I_F = 0$ mA, $V_{CE} = 20$ V $I_F = 0$ mA, $V_{CE} = 300$ V
V _{CE(SAT)}	Collector-emitter Saturation Voltage OPIA817 OPIA814 OPIA1210	- - -	0.1 0.1 -	0.2 0.3 0.4	٧	$I_F = 20 \text{ mA}, I_C = 1 \text{ mA}$ $I_F = 20 \text{ mA}, I_C = 1 \text{ mA}$ $I_F = 8 \text{ mA}, I_C = 2.4 \text{ mA}$
f _C	Cutt-Off frequency All except those noted below OPIA817, OPIA814, OPIA1210		- 80		K Hz	$V_{CC} = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega$
t _R	Rise Time OPIA817 OPIA814 OPIA1210	- - -	4 5 2	18 20 -	μs	$V_{CC} = 2 \text{ V, } I_C = 2 \text{ mA, } R_L = 100 \ \Omega$ $V_{CC} = 2 \text{ V, } I_C = 2 \text{ mA, } R_L = 100 \ \Omega$ $V_{CC} = 10 \text{ V, } I_C = 2 \text{ mA, } R_L = 100 \ \Omega$
t _F	Fall Time OPIA817D OPIA814 OPIA1210	- - -	3 4 3	18 20 -	μs	$\begin{split} &V_{CC}=2 \; V, \; I_{C}=2 \; mA, \; R_{L}=100 \; \Omega \\ &V_{CC}=2 \; V, \; I_{C}=2 \; mA, \; R_{L}=100 \; \Omega \\ &V_{CC}=10 \; V, \; I_{C}=2 \; mA, \; R_{L}=100 \; \Omega \end{split}$
	<u> </u>	Continued	l on Nev	Page		<u> </u>

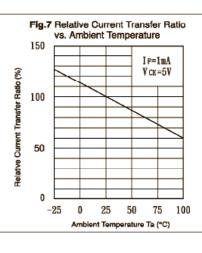


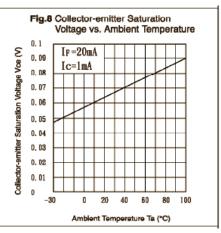

Electrical Characteristics (OPIA817 Series) - Continued from Previous Page

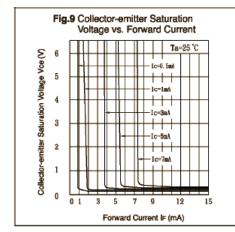

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Output Ph	otoDarlington	•			•	
I _{CEO}	Collector dark Current OPIA4010 OPIA815	-	-	1.0 1.0	μA	$I_F = 0$ mA, $V_{CE} = 200$ V $I_F = 0$ mA, $V_{CE} = 10$ V
$V_{CE(SAT)}$	Collector-emitter Saturation Voltage OPIA815 OPIA4010	-	0.8	1.0 1.5	V	$I_F = 20 \text{ mA}, I_C = 5 \text{ mA}$ $I_F = 20 \text{ mA}, I_C = 5 \text{ mA}$
f _C	Cut-Off frequency OPIA815 OPIA4010	1.0	6.0 7.0	-	K Hz	$V_{CC} = 2 \text{ V}, I_{C} = 20 \text{ mA}, R_{L} = 100 \Omega$ $V_{CC} = 5 \text{ V}, I_{C} = 2 \text{ mA}, R_{L} = 100 \Omega$
t _R	Rise Time OPIA815 OPIA4010	-	80 60	300 300	μs	V_{CC} = 2 V, I_C = 20 mA, R_L = 100 Ω V_{CC} = 2 V, I_C = 20mA, R_L = 100 Ω
t _F	Fall Time OPIA815 OPIA4010	-	72 50	250 250	μs	$V_{CC} = 2 \text{ V}, I_{C} = 20 \text{ mA}, R_{L} = 100 \Omega$ $V_{CC} = 2 \text{ V}, I_{C} = 20 \text{ mA}, R_{L} = 100 \Omega$
Coupled C	l haracteristics					
	Current Transfer Ratio OPIA817, OPIA1210 OPIA814 OPIA815 OPIA4010	50 60 70 600	- - -	600 600 - 9,000		$I_{F} = 5.00 \text{ mA}, \ V_{CE} = 5.0 \text{ V}$ $I_{F} = 1.00 \text{ mA}, \ V_{CE} = 2.0 \text{ V}$ $I_{F} = 0.05 \text{ mA}, \ V_{CE} = 3.3 \text{ V}$ $I_{F} = 1.00 \text{ mA}, \ V_{CE} = 2.0 \text{ V}$
CTR					%	
C_{f}	Floating Capacitance	-	0.6	1.0	pF	V = 0.0 V, f = 1M Hz
	Isolation resistance	5X10 ¹⁰	10 ¹¹	_	ohm	C500V, 40% to 60%RH

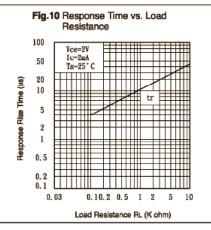












OPIA814

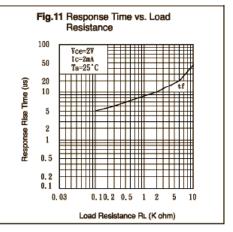


Fig. 1 Forward Current vs.

Ambient Temperature

60

(PH) 40

40

20

-30

0

25

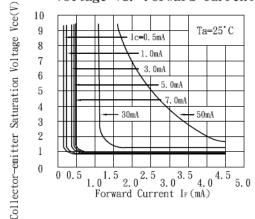
50

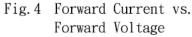
75

100

125

Ambient temperature Ta(°C)


Fig. 2 Collector Power Dissipation


vs. Ambient Temperature

vs. Ambient Temperature

150
100
50
-30
0
25
50
75
100
125
Ambient Temperature Ta(°C)

Fig. 3 Collector-emitter Saturation Voltage vs. Forward Current

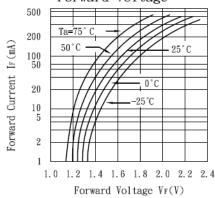


Fig. 5 Current Transfer Ratio vs. Forward Current

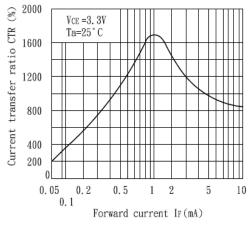


Fig. 6 Collector Current vs.
Collector-emitter Voltage

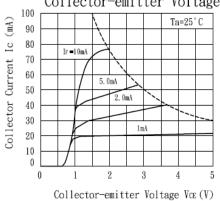


Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

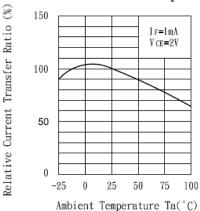


Fig. 7 Collector-emitter Saturation Voltage vs. Ambient Temperature

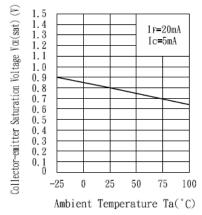


Fig. 9 Collector Dark Current vs.

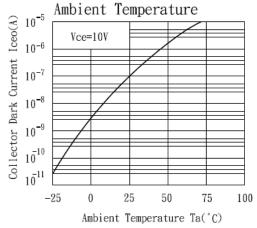
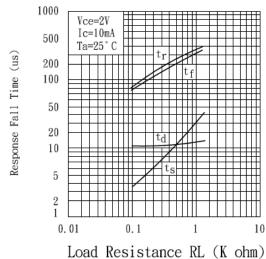



Fig. 10 Response Time vs. Load Resistance

OPIA817

Fig.1 Current Transfer Ratio vs. Forward Current

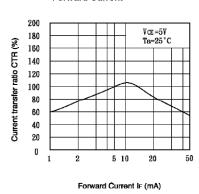


Fig.2 Collector Power Dissipation vs. Ambient Temperature

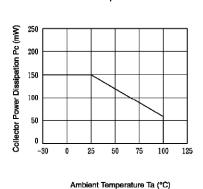


Fig.3 Collector Dark Current vs. Ambient Temperature

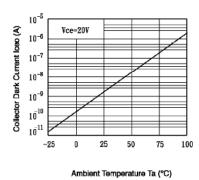


Fig.4 Forward Current vs. Ambient Temperature

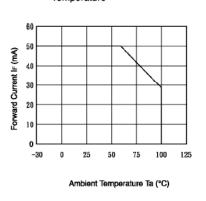


Fig.5 Forward Current vs. Forward Voltage

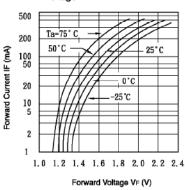


Fig.6 Collector Current vs. Collectoremitter Voltage

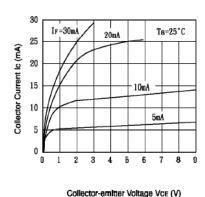
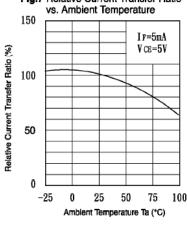
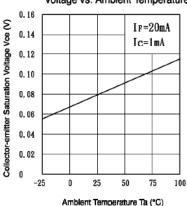
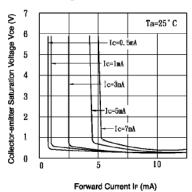
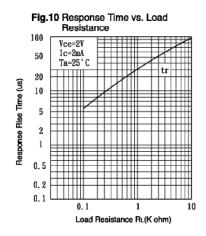


Fig.7 Relative Current Transfer Ratio


Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature



OPIA817

Fig.9 Collector-emitter Saturation Voltage vs. Forward Current

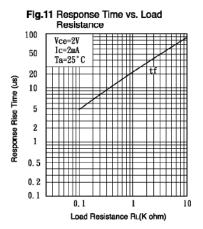


Fig.4 Forward Current vs.

Ambient Temperature

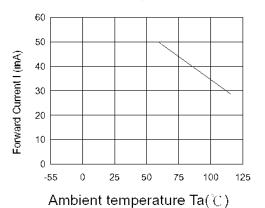


Fig.6 Collector Current vs.

Collector-emitter Voltage

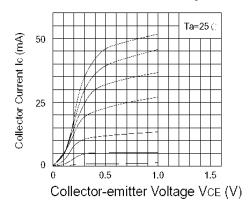


Fig.2 Collector Power Dissipation vs. Ambient Temperature

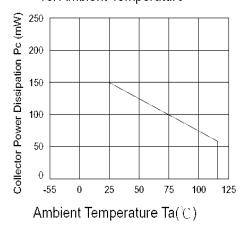


Fig.5 Forward Current vs. Forward Voltage

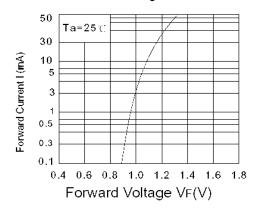


Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

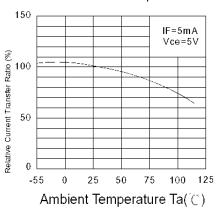


Fig.3 Collector Dark Current vs. Ambient Temperature

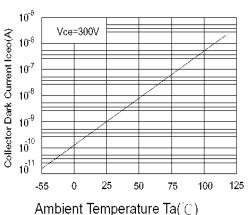
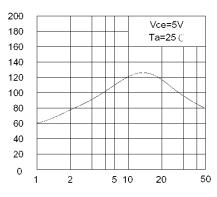



Fig. 1 Current Transfer Ratio Vs. Forward Current

Forward current IF(mA)

Fig. 10 Response Time vs. Load Resistance

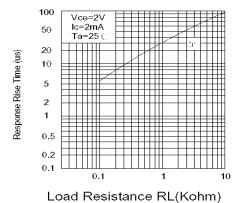


Fig.11 Response Time vs. Load Resistance

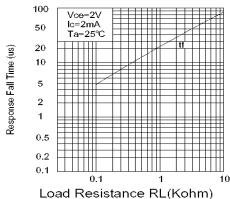


Fig.8 Collector-emitter Saturation
Voltage vs. Ambient Temperature

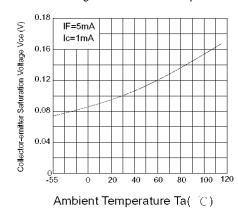
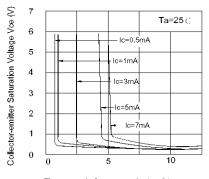



Fig.9 Collector-emitter Saturation Voltage vs. Forward Current

Forward Current IF(mA)

Fig. 4 Forward Current vs.

Ambient Temperature

50

40

30

20

-30

0

25

50

75

100

125

Ambient temperature Ta(°C)

Fig. 2 Collector Power Dissipation

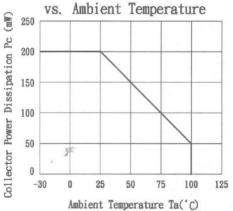


Fig. 6 Collector Current vs.

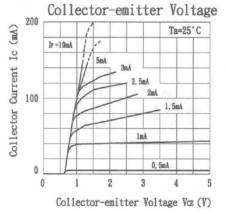


Fig. 5 Forward Current vs.

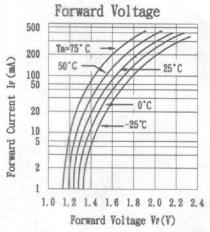
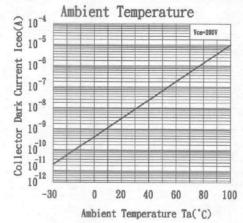
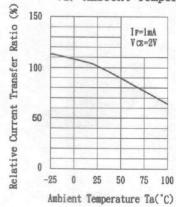
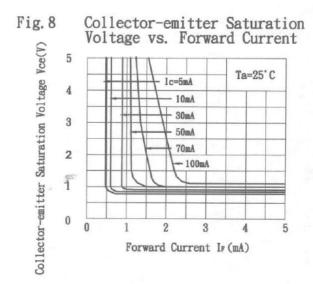
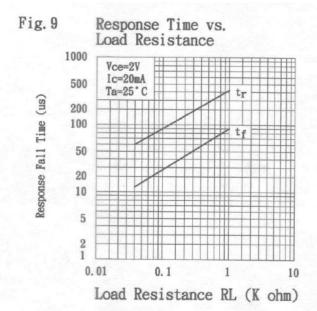


Fig. 3 Collector Dark Current vs.


Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

OPIA4010

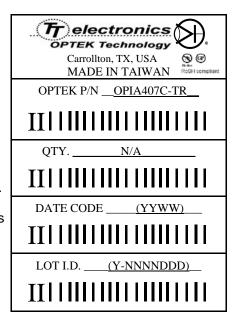
Quality / Reliability Requirements

Parameter	Failure Criteria	Conditions
LITER D.I	± 10%	11 samples after 500Hrs
HTRB D I _{C(OFF)}	0 Fail	@ VCE = 5.0VDC, Ta = 70°C
HTED DI	± 10%	50 samples after 96Hrs
HTFB D I _{C(ON)}	0 Fail	@ Max P _D , Ta = 25°C
MTTF @ 90% confidence	150,000 Min.	@ 25°C, 25mADC
Moisture Sensitivity Level	MSL 1	per JDEC stnd J-STD-020B
Lead Solderability	0 Fail	per Method 208 of MIL-STD-202.
Glass Transition of body	125°C Min.	DSC test method
Temperature Humidity-Bias	± 20%	85°C, 85%RH, 500Hrs, 80% min Iceo
Temperature Cycle	± 20%	per Method 1010.7 of MIL-STD-883E
High Temperature Storage	± 20%	85°C, 500Hrs
Autoclave	0 Fail	T _A = 121°C, Pressure = 15psi, Humidity = 100%, Time = 96Hrs

Note: This is to be performed when a change occurs to form, fit or function.

Government and Industry Standard Compliance Requirements

European Union's Reduction of Hazardous Substances (RoHS) Directive 2002/95/EC


Label Identification

DESCRIPTION:

Size: 3" (7.4 cm) X 2.2" (5.5 cm) Lettering shall be black on white background. Format shall be as:

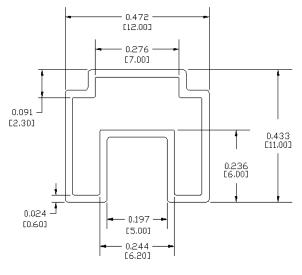
Notes:

- 1. The DATE CODE is a 4-digit code for date of manufacture where YY is the last two digits of the year, and WW is week number of manufacture.
- 2. The LOT I.D. is the manufacturing location lot identification where Y is the year of manufacture, NNNN is a sequential lot identifier, and DDD is the day of the year of manufacture. or use equivalent label format.

Tube Packaging Information:

			Tu	ıbe	lnı	ner	Sm	all Car	ton	Med	ium Ca	arton	Large Carton		
		Packaging			52 x 7 x 7.5 cm		53.5 x 16 x 17.5 cm			53.5 x 30.7 x 17.5 cm			53.5 x 30.7 x 25 cm		
		Quantities	Qty Weight		Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weig ht	
P/H and SMD	4-PIN OPIA817D/A, OPIA814 OPIA1210D/A	D/A -	100	44	3,000	1.40	12,000	6.0	6.5	24,000	12.0	12.5	36,000	18.0	18.5
	6-PIN OPIA6XXD/A Series		65	44	1,950	1.50	7,800	6.5	7.0	15,600	12.0	12.5	23,400	18.5	19.0
	8-PIN OPIA8XXD Series and	OPID804D	48	44	1,440	1.44	5,760	6.0	6.5	11,520	12.0	12.5	17,290	18.0	18.5
M/F SOP	4-PIN and 5-PIN OPIA401B - OPIA404B, OPIA414B, OPIA500B		100	24	6,000	1.60	24,000	6.5	7.0	48,000	13.0	13.5	72,000	19.5	20.0
SSOP	4-PIN OPIA405C - OPIA409C		170		10,200										

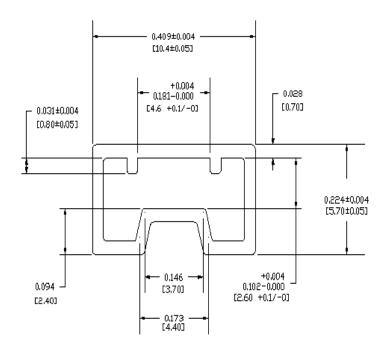
P/H = Pin-Hole Packages (Referred as D = Dual-In-Line Package)

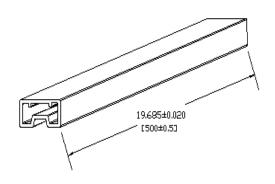

SMD = Standard Surface Mount Packages (Referred as A = 6.5mil SMD)

M/F or SOP = Mini-Flat Packages or Small Outside Packages (Referred as B = 4.40mil SMD w/ 2.54mil Lead-Spacing)

SSOP = Shrink SOP Packages (Referred as C = 3.60mil SMD with 1.27mil Lead-Spacing)

Tube Packaging Specifications—SMD— (TU):

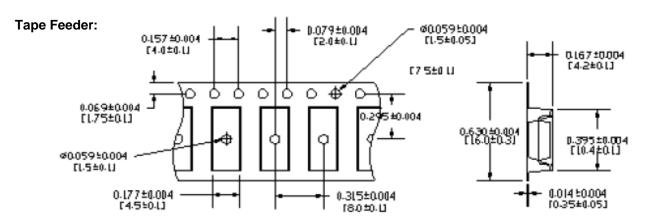

19.685±0.020 [500±0.5]

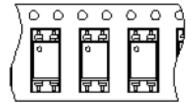

DIMENSIONS ARE IN: INCHES [MILLIMETERS]

TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Quantity: 4-pin (SMD): 100pcs/tube

Tube Packaging Specifications— SOP (Mini-flats) and SSOP— (TU):

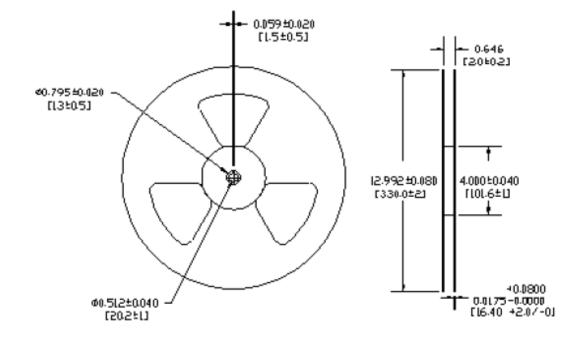



Quantity: 4-pin (SOP): 100pcs/tube 4-pin (SSOP): 170pcs/tube

Tape and Reel Packaging Specifications— SMD and SOP—(TR):

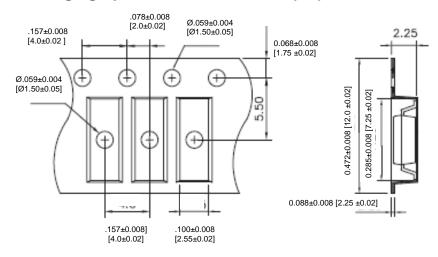
Direction:

Quantity: 4-pin (SMD): 1000pcs/Reel

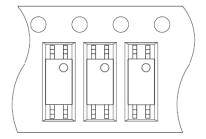

4-pin (SOP): 1000pcs/Reel

4-pin (SSOP): 3000pcs/Reel

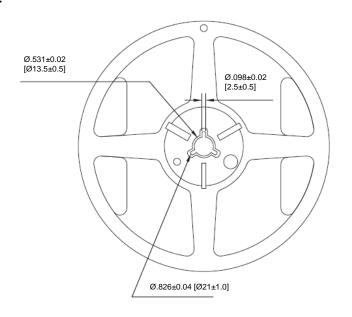
DIMENSIONS ARE IN: INCHES [MILLIMETERS]

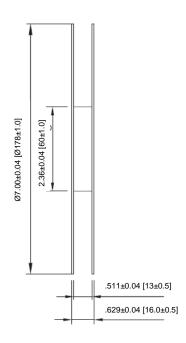

TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Reel:



Tape and Reel Packaging Specifications— SSOP—(TR):


Direction:



DIMENSIONS ARE IN: INCHES [MILLIMETERS]

TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Reel:

Quantity: 4-pin (SSOP): 2000pcs/Reel