

V_{DSS}	25	V
R_{DS(on)} max (@ V _{GS} = 10V)	1.15	mΩ
Q_g (typical)	52	nC
R_g (typical)	1.3	Ω
I_D (@T _{C(Bottom)} = 25°C)	300	A

Applications

- OR-ing MOSFET for 12V (typical) Bus in-Rush Current
- Battery Operated DC Motor Inverter MOSFET

Features

Low RD _{DSon} (<1.15 mΩ)
Low Thermal Resistance to PCB (< 0.8°C/W)
100% R _g tested
Low Profile (< 0.9mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification

Benefits

Lower Conduction Losses
Enable better Thermal Dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

results in

⇒

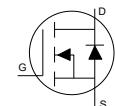
Orderable Part Number	Package Type	Standard Pack		Note
		Form	Quantity	
IRFH5250TRPbF	PQFN 5mm x 6mm	Tape and Reel	4000	
IRFH5250TR2PbF	PQFN 5mm x 6mm	Tape and Reel	400	EOL notice #259

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	25	V
V _{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑥	45	A
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ⑥	36	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑥	300	
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V ⑥	190	
I _{DM}	Pulsed Drain Current ①	1200	
P _D @ T _A = 25°C	Power Dissipation ⑤	3.6	W
P _D @ T _{C(Bottom)} = 25°C	Power Dissipation ④	156	
	Linear Derating Factor ⑤	0.029	
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Notes ① through ⑥ are on page 9

Static @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)


	Parameter	Min.	Typ.	Max.	Units	Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	25	—	—	V	$\text{V}_{\text{GS}} = 0\text{V}$, $\text{I}_D = 250\mu\text{A}$
$\Delta \text{BV}_{\text{DSS}}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.02	—	V/ $^\circ\text{C}$	Reference to 25°C , $\text{I}_D = 1.0\text{mA}$
$\text{R}_{\text{DS(on)}}$	Static Drain-to-Source On-Resistance	—	0.9	1.15	$\text{m}\Omega$	$\text{V}_{\text{GS}} = 10\text{V}$, $\text{I}_D = 50\text{A}$ ③
		—	1.4	1.75		$\text{V}_{\text{GS}} = 4.5\text{V}$, $\text{I}_D = 50\text{A}$ ③
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	1.35	1.8	2.35	V	$\text{V}_{\text{DS}} = \text{V}_{\text{GS}}$, $\text{I}_D = 150\mu\text{A}$
$\Delta \text{V}_{\text{GS(th)}}$	Gate Threshold Voltage Coefficient	—	-6.3	—	$\text{mV}/^\circ\text{C}$	
I_{DSS}	Drain-to-Source Leakage Current	—	—	5.0	μA	$\text{V}_{\text{DS}} = 20\text{V}$, $\text{V}_{\text{GS}} = 0\text{V}$
		—	—	150		$\text{V}_{\text{DS}} = 20\text{V}$, $\text{V}_{\text{GS}} = 0\text{V}$, $T_J = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	100	nA	$\text{V}_{\text{GS}} = 20\text{V}$
	Gate-to-Source Reverse Leakage	—	—	-100		$\text{V}_{\text{GS}} = -20\text{V}$
g_{fs}	Forward Transconductance	181	—	—	S	$\text{V}_{\text{DS}} = 13\text{V}$, $\text{I}_D = 50\text{A}$
Q_g	Total Gate Charge	—	110	—	nC	$\text{V}_{\text{GS}} = 10\text{V}$, $\text{V}_{\text{DS}} = 13\text{V}$, $\text{I}_D = 50\text{A}$
Q_g	Total Gate Charge	—	52	78	nC	$\text{V}_{\text{DS}} = 13\text{V}$ $\text{V}_{\text{GS}} = 4.5\text{V}$ $\text{I}_D = 50\text{A}$
Q_{gs1}	Pre-V _{th} Gate-to-Source Charge	—	13	—		
Q_{gs2}	Post-V _{th} Gate-to-Source Charge	—	7.8	—		
Q_{gd}	Gate-to-Drain Charge	—	17	—		
Q_{godr}	Gate Charge Overdrive	—	15	—		
Q_{sw}	Switch Charge ($\text{Q}_{\text{gs2}} + \text{Q}_{\text{gd}}$)	—	25	—	pF	$\text{V}_{\text{DS}} = 16\text{V}$, $\text{V}_{\text{GS}} = 0\text{V}$
Q_{oss}	Output Charge	—	36	—		
R_G	Gate Resistance	—	1.3	—		
$\text{t}_{\text{d(on)}}$	Turn-On Delay Time	—	28	—		$\text{V}_{\text{DD}} = 13\text{V}$, $\text{V}_{\text{GS}} = 4.5\text{V}$ $\text{I}_D = 50\text{A}$ $\text{R}_G = 1.8\Omega$
t_r	Rise Time	—	46	—		
$\text{t}_{\text{d(off)}}$	Turn-Off Delay Time	—	30	—		
t_f	Fall Time	—	19	—	ns	
C_{iss}	Input Capacitance	—	7174	—		
C_{oss}	Output Capacitance	—	1758	—		
C_{rss}	Reverse Transfer Capacitance	—	828	—	f = 1.0MHz	

Avalanche Characteristics

	Parameter	Typ.	Max.	Units
E_{AS}	Single Pulse Avalanche Energy ②	—	468	mJ
I_{AR}	Avalanche Current ①	—	50	A

Diode Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
I_S	Continuous Source Current (Body Diode)	—	—	156	A	MOSFET symbol showing the integral reverse p-n junction diode.
I_{SM}	Pulsed Source Current (Body Diode) ①	—	—	1200		
V_{SD}	Diode Forward Voltage	—	—	1.0	V	$T_J = 25^\circ\text{C}$, $\text{I}_S = 50\text{A}$, $\text{V}_{\text{GS}} = 0\text{V}$ ③
t_{rr}	Reverse Recovery Time	—	37	56	ns	$T_J = 25^\circ\text{C}$, $\text{I}_F = 50\text{A}$, $\text{V}_{\text{DD}} = 13\text{V}$
Q_{rr}	Reverse Recovery Charge	—	68	102	nC	$\text{di}/\text{dt} = 200\text{A}/\mu\text{s}$ ③

Thermal Resistance

	Parameter	Typ.	Max.	Units
$\text{R}_{\text{QJC}} \text{ (Bottom)}$	Junction-to-Case ④	0.5	0.8	$^\circ\text{C}/\text{W}$
$\text{R}_{\text{QJC}} \text{ (Top)}$	Junction-to-Case ④	—	15	
R_{QJA}	Junction-to-Ambient ⑤	—	35	
$\text{R}_{\text{QJA}} \text{ (<10s)}$	Junction-to-Ambient ⑤	—	21	

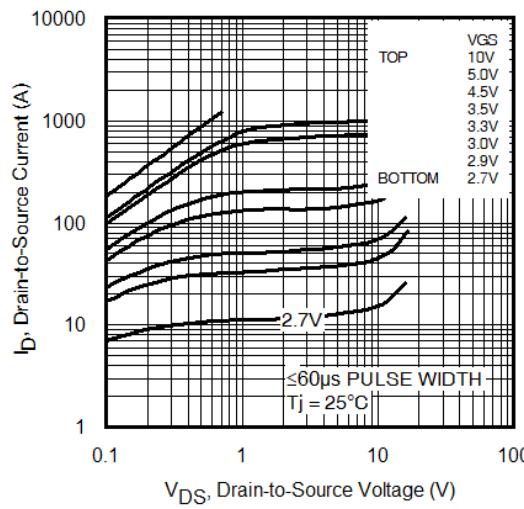


Fig 1. Typical Output Characteristics

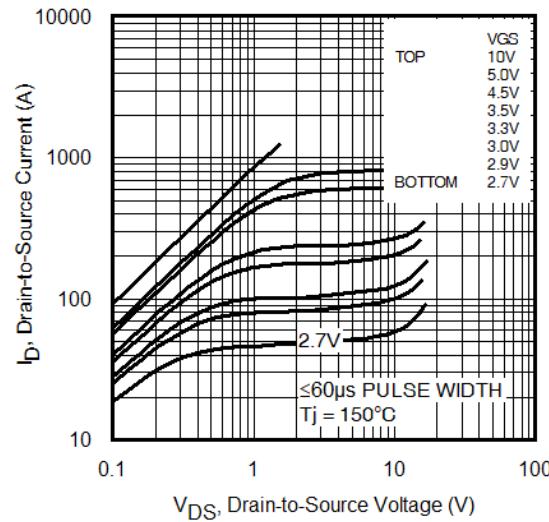


Fig 2. Typical Output Characteristics

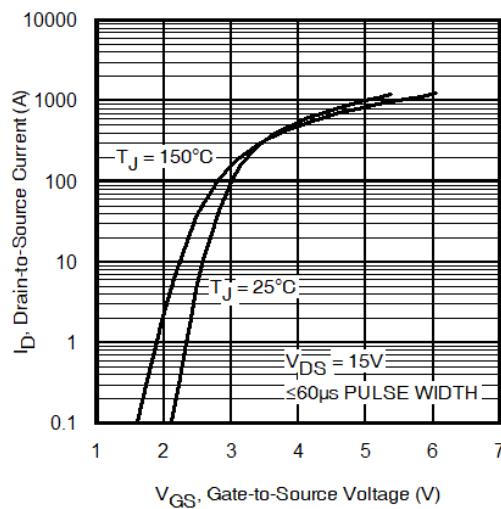


Fig 3. Typical Transfer Characteristics

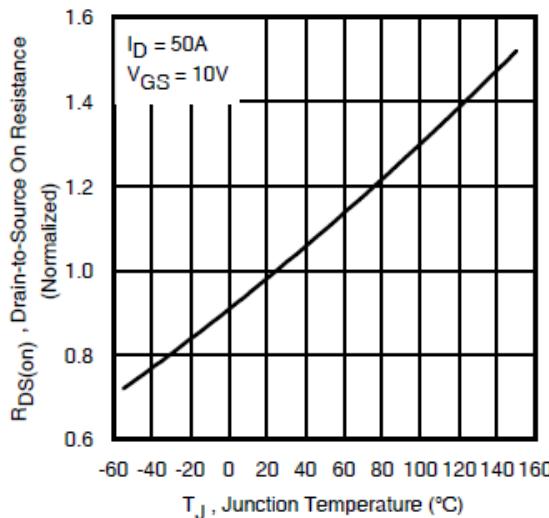


Fig 4. Normalized On-Resistance vs. Temperature

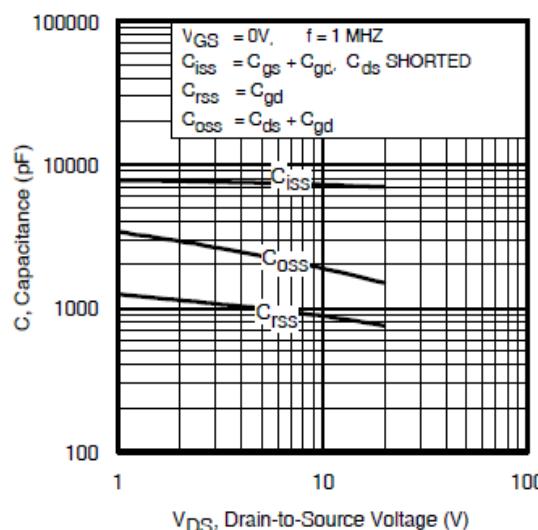


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

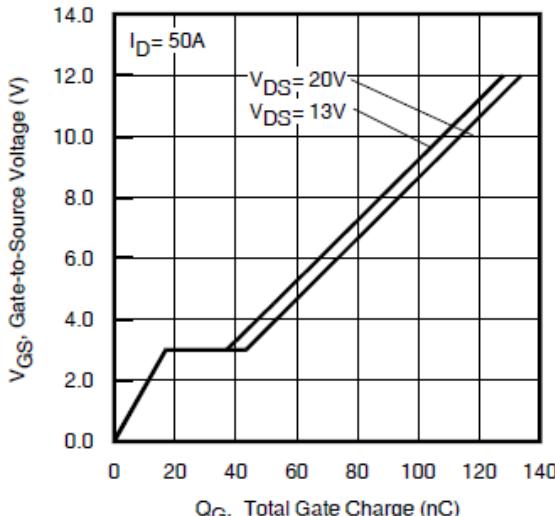


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

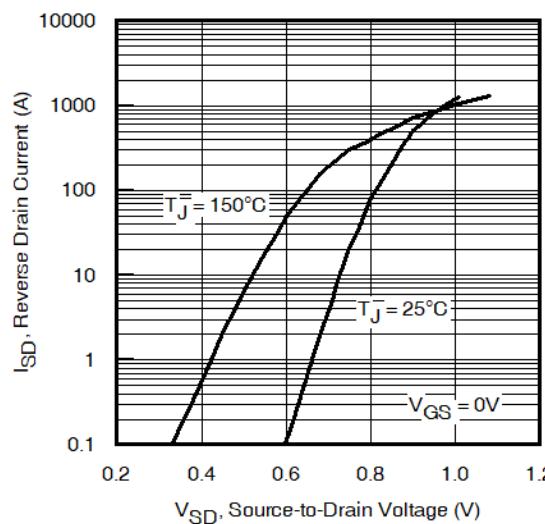


Fig 7. Typical Source-Drain Diode Forward Voltage

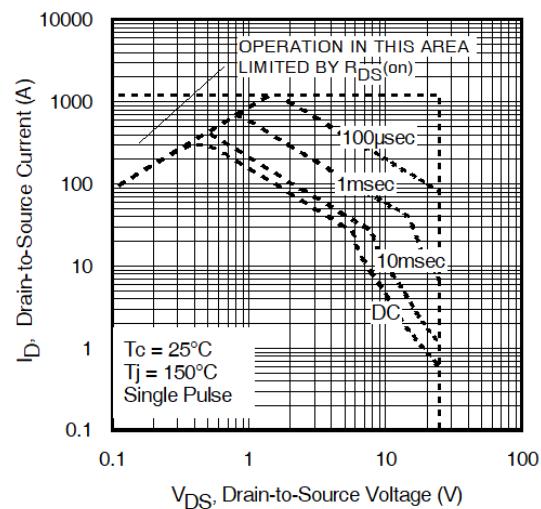


Fig 8. Maximum Safe Operating Area

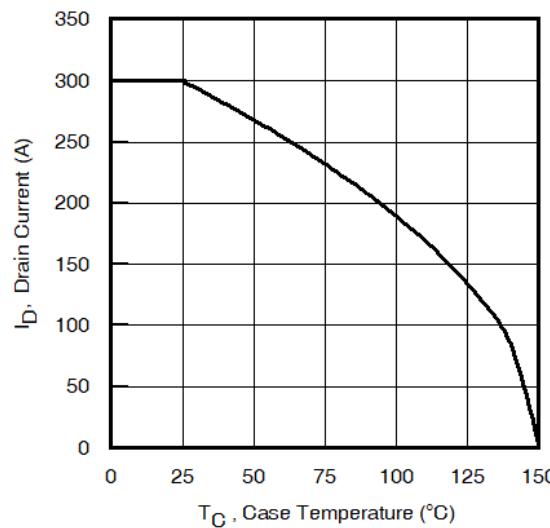


Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature

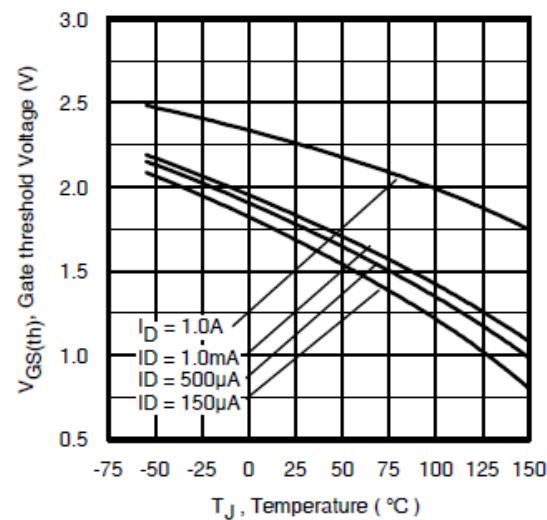


Fig 10. Threshold Voltage vs. Temperature

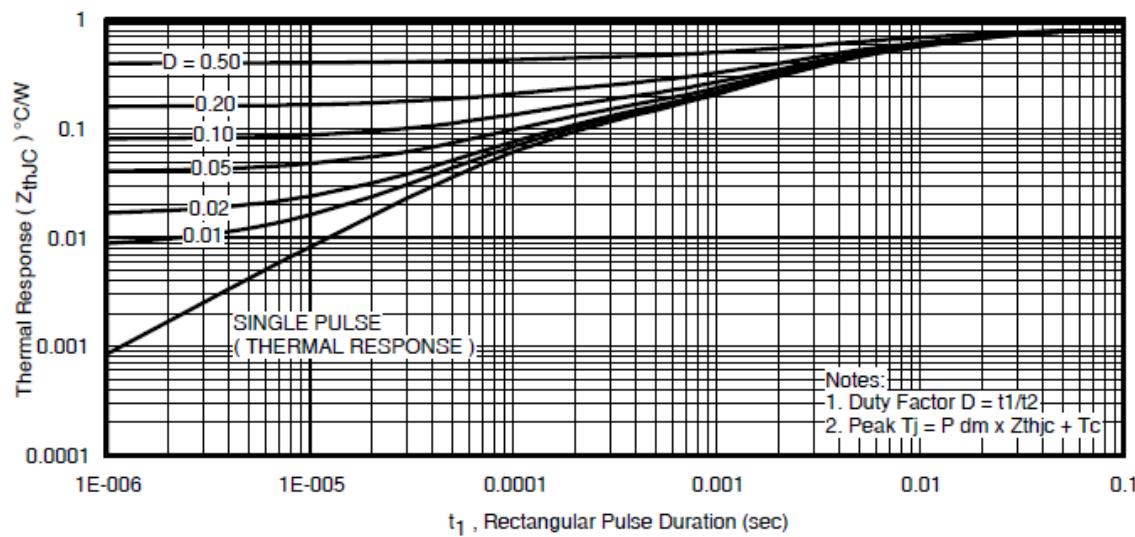


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

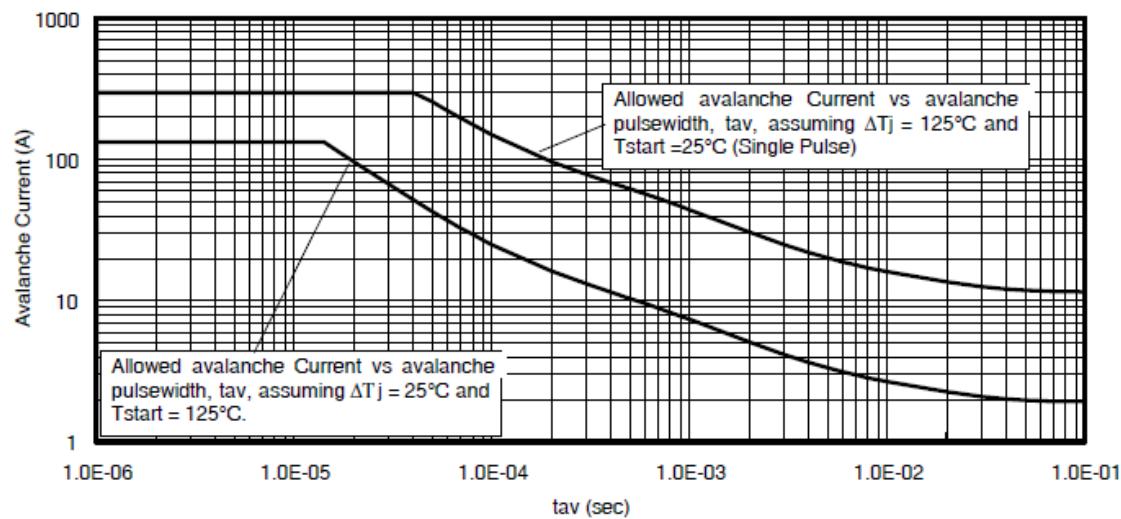
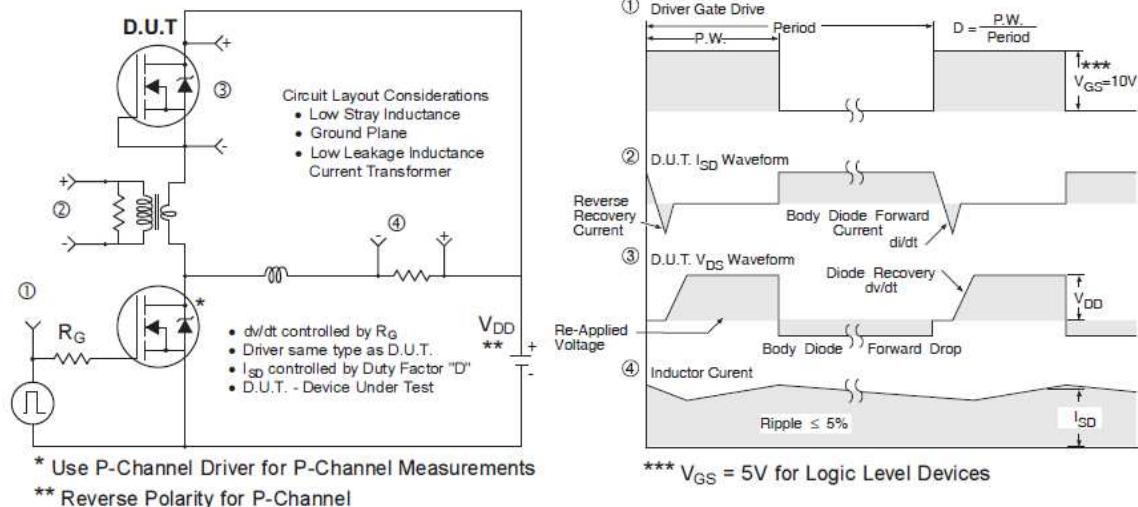
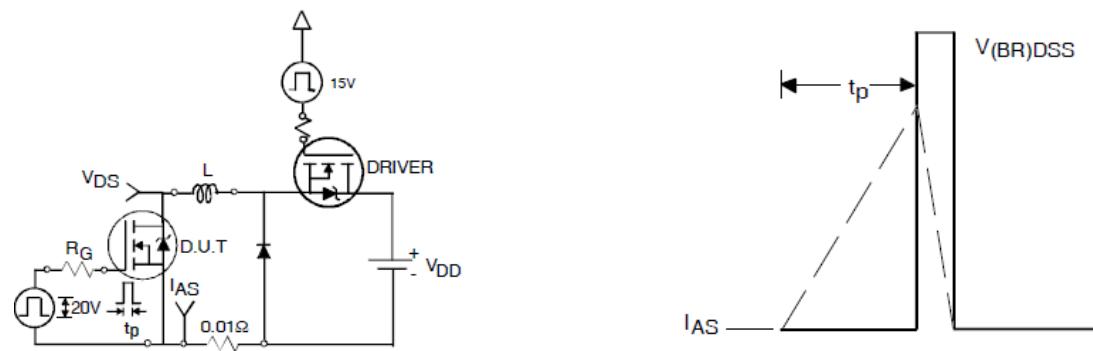




Fig 14. Typical Avalanche Current vs. Pulsewidth

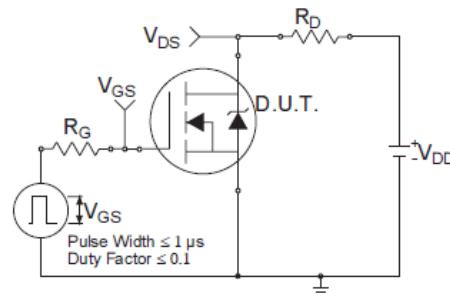


Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

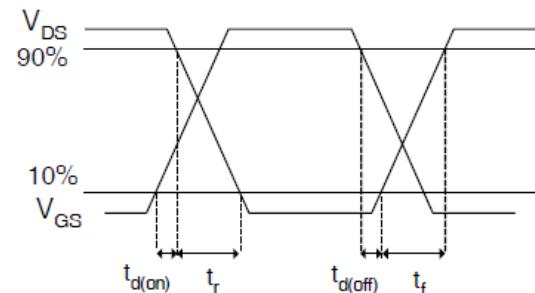
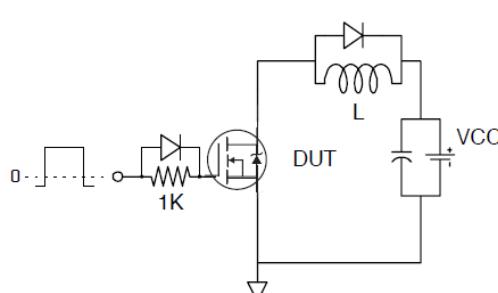


Fig 16a. Unclamped Inductive Test Circuit


Fig 16b. Unclamped Inductive Waveforms

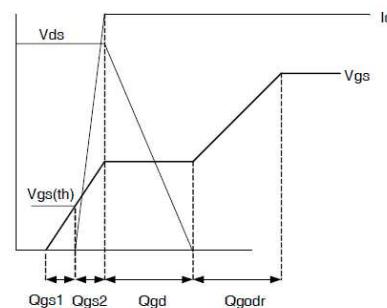

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

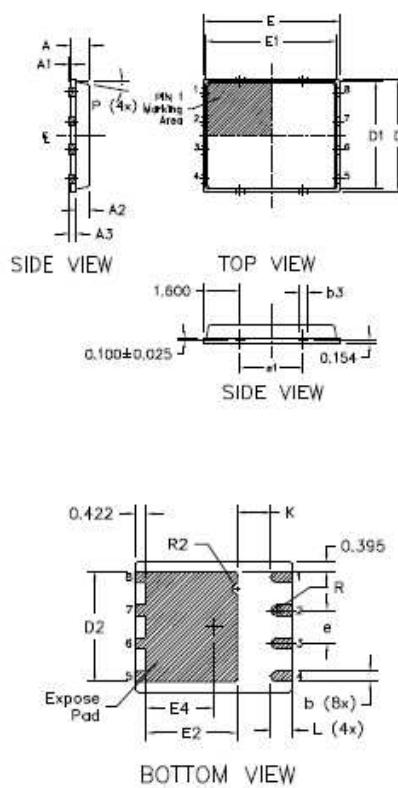
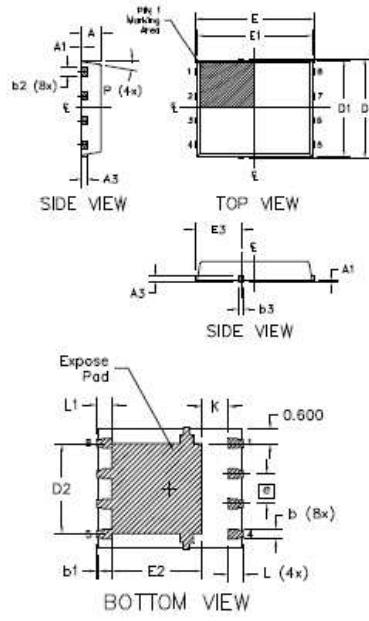


Fig 17a. Gate Charge Test Circuit

Fig 17b. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details



DIM SYMBOL	MILLIMETERS		INCH	
	MIN	MAX	MIN	MAX
A	0.800	0.900	0.0315	0.0543
A1	0.000	0.050	0.0000	0.0020
A3	0.200	REF	0.0079	REF
b	0.350	0.470	0.0138	0.0185
b1	0.025	0.125	0.0010	0.0049
b2	0.210	0.410	0.0083	0.0161
b3	0.150	0.450	0.0059	0.0177
D	5.000	BSC	0.1969	BSC
D1	4.750	BSC	0.1870	BSC
D2	4.100	4.300	0.1614	0.1693
E	6.000	BSC	0.2362	BSC
E1	5.750	BSC	0.2264	BSC
E2	3.380	3.780	0.1331	0.1488
e	1.270	REF	0.0500	REF
e1	2.800	REF	0.1102	REF
K	1.200	1.420	0.0472	0.0559
L	0.710	0.900	0.0280	0.0354
P	0°	12°	0°	12°
R	0.200	REF	0.0079	REF
R2	0.150	0.200	0.0059	0.0079

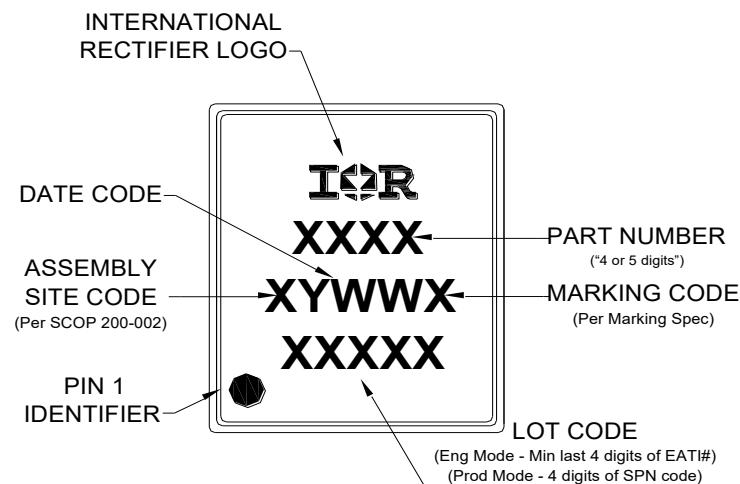
Note:

1. Dimensions and tolerancing confirm to ASME Y14.5M-1994
2. Dimension L represents terminal 1&11 back from package edge up to 0.1mm is acceptable
3. Coplanarity applies to the expose Heat Slug as well as the terminal
4. Radius on terminal is optional

PQFN 5x6 Outline "G" Package Details

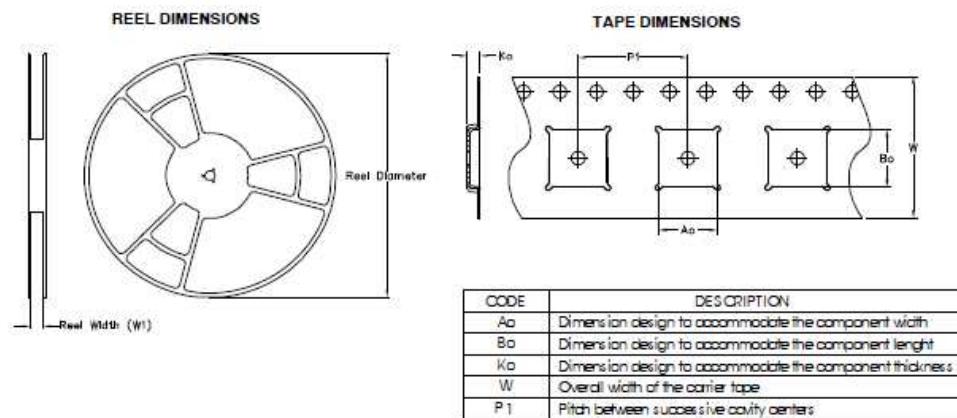
DIM SYMBOL	MILLIMETERS		INCH	
	MIN.	MAX.	MIN.	MAX.
A	0.950	1.050	0.0374	0.0413
A1	0.000	0.050	0.0000	0.0020
A3	0.254	REF	0.0100	REF
b	0.310	0.510	0.0122	0.0201
b1	0.025	0.125	0.0010	0.0049
b2	0.210	0.410	0.0083	0.0161
b3	0.180	0.450	0.0071	0.0177
D	5.150	BSC	0.2028	BSC
D1	5.000	BSC	0.1969	BSC
D2	3.700	3.900	0.1457	0.1535
E	6.150	BSC	0.2421	BSC
E1	6.000	BSC	0.2362	BSC
E2	3.560	3.760	0.1402	0.1488
E3	2.270	2.470	0.0894	0.0972
e	1.27	REF	0.050	REF
K	0.830	1.400	0.0327	0.0551
L	0.510	0.710	0.0201	0.0280
L1	0.510	0.710	0.0201	0.0280
P	10 deg	12 deg	0 deg	12 deg

Note:

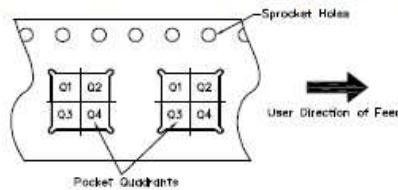

1. Dimensions and tolerancing confirm to ASME Y14.5M-1994
2. Dimension L represents terminal 1&11 back from package edge up to 0.1mm is acceptable
3. Coplanarity applies to the expose Heat Slug as well as the terminal
4. Radius on terminal is optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: <http://www.irf.com/technical-info/appnotes/an-1136.pdf>

For more information on package inspection techniques, please refer to application note AN-1154:


<http://www.irf.com/technical-info/appnotes/an-1154.pdf>

PQFN 5x6 Part Marking



Note: For the most current drawing please refer to website at <http://www.irf.com/package/>

PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5X6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to website at <http://www.irf.com/package/>

Qualification Information

Qualification level	Industrial (per JEDEC JESD47F [†] guidelines)	
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D [†])
RoHS Compliant	Yes	

[†] Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^\circ\text{C}$, $L = 0.37\text{mH}$, $R_G = 25\Omega$, $I_{AS} = 50\text{A}$.
- ③ Pulse width $\leq 400\mu\text{s}$; duty cycle $\leq 2\%$.
- ④ R_θ is measured at T_J of approximately 90°C .
- ⑤ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Please refer to AN-994 for more details: <http://www.irf.com/technical-info/appnotes/an-994.pdf>
- ⑥ Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C . For higher case temperature please refer to Diagram 9. De-rating will be required based on the actual environmental conditions.

Revision History

Date	Rev.	Comments
12/16/2013	2.1	<ul style="list-style-type: none"> • Updated ordering information to reflect the End-Of-Life (EOL) of the mini-reel option (EOL notice #259). • Updated data sheet with the new IR corporate template.
4/28/2015	2.2	<ul style="list-style-type: none"> • Updated package outline for "option B" and added package outline for "option G" on page 7 • Updated tape and reel on page 8.
5/19/2015	2.3	<ul style="list-style-type: none"> • Updated package outline for "option G" on page 7. • Updated "IFX logo" on page 1 and page 9.
12/10/2020	2.4	<ul style="list-style-type: none"> • Updated datasheet based on IFX template. • Updated Datasheet based on new current rating and application note : App-AN_1912_PL51_2001_180356 • Removed "HEXFET® Power MOSFET" -page1

Trademarks of Infineon Technologies AG

μHVIC™, μIPM™, μPFC™, AU-Converter™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGAT™, OptiMOS™, ÖRIGAT™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIST™, SOLIDFLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMCT™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-16

Published by

**Infineon Technologies AG
81726 Munich, Germany**

**© 2016 Infineon Technologies AG.
All Rights Reserved.**

**Do you have a question about this
document?**

Email: erratum@infineon.com

Document reference
ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie")**.

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is **subject to customer's compliance with its obligations** stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in **customer's applications**.

The data contained in this document is exclusively intended for technically trained staff. It is the **responsibility of customer's technical departments** to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, **Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.**