Octal Bus Buffer/Line Driver MC74VHC245, MC74VHCT245A The MC74VHC245/MC74VHCT245A is an advanced high speed CMOS octal bus buffer fabricated with silicon gate CMOS technology. It is intended for two-way asynchronous communication between data buses. The direction of data transmission is determined by the level of the DIR input. The output enable pin (OE) can be used to disable the device, so that the buses are effectively isolated. All inputs are equipped with protection circuits against static discharge. The MC74VHC245 inputs are compatible with standard CMOS levels while the MC74VHCT245A inputs are compatible with TTL levels. The MC74VHCT245A device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5.0 V CMOS level output swings. The MC74VHC245 and MC74VHCT245A inputs tolerate voltages up to 5.5 V, allowing the interface of 5 V systems to 3 V systems. The MC74VHCT245A output structures provide protection when VCC = 0 V. These output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc. #### **Features** - High Speed: $t_{PD} = 4.0 \text{ ns (Typ)}$ at $V_{CC} = 5.0 \text{ V (VHC)}$ - $t_{PD} = 4.9 \text{ ns (Typ)}$ at $V_{CC} = 5.0 \text{ V (VHCT)}$ - Low Power Dissipation: $I_{CC} = 4.0 \,\mu\text{A}$ (Max) at $T_{A} = 25^{\circ}\text{C}$ - High Noise Immunity: VNIH = VNIL = 28% - Power Down Protection Provided - Balanced Propagation Delays - Designed for: 2.0 V to 5.5 V (VHC) 4.5 V to 5.5 V (VHCT) • Low Noise: $V_{OLP} = 1.2 \text{ V (Max) (VHC)}$ $V_{OLP} = 1.6 \text{ V (Max) (VHCT)}$ - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 100 mA - ESD Performance: Human Body Model > 2000 V; - Chip Complexity: 308 FETs - –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable - These Devices are Pb-Free, Halogen Free and are RoHS Compliant #### **Application Notes** - Do not force a signal on an I/O pin when it is an active output, damage may occur. - All floating (high impedance) input or I/O pins must be fixed by means of pull up or pull down resistors or bus terminator ICs. - \bullet A parasitic diode is formed between the bus and V_{CC} terminals. Therefore, the VHC245 cannot be used to interface 5 V to 3 V systems directly. 1 SOIC-20 DW SUFFIX CASE 751D TSSOP-20 DT SUFFIX CASE 948E #### MARKING DIAGRAMS A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) #### **PIN ASSIGNMENT** #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 9 of this data sheet. #### **FUNCTION TABLE** | Control | Inputs | | |---------|--------|---------------------------------------| | OE | DIR | Operation | | L L | | Data Transmitted from Bus B to Bus A | | L | Н | Data Transmitted from Bus A to Bus B | | Н | Х | Buses Isolated (High-Impedance State) | Figure 1. Logic Diagram #### **MAXIMUM RATINGS** | Symbol | Para | ameter | Value | Unit | |----------------------|---|--|--|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | V _{IN} | DC Input Voltage | | -0.5 to +6.5 | V | | V _{OUT} | DC Output Voltage (MC74VHC) | | -0.5 to V _{CC} +0.5 | V | | | DC Output Voltage (MC74VHCT) | Active Mode (High or Low State) Tristate Mode (Note 1) Power-Off Mode ($V_{CC} = 0 V$) | -0.5 to V _{CC} +0.5
-0.5 to +6.5
-0.5 to +6.5 | | | I _{IN} | DC Input Current, per Pin | | ±20 | mA | | I _{OUT} | DC Output Current, Per Pin | | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | | ±75 | mA | | I _{IK} | Input Clamp Current | | -20 | mA | | I _{OK} | Output Clamp Current | MC74VHC
MC74VHCT | ±20
–20 | mA | | T _{STG} | Storage Temperature Range | | −65 to +150 | °C | | T_L | Lead Temperature, 1 mm from Case for | 10 secs | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | $ heta_{\sf JA}$ | Thermal Resistance (Note 2) | SOIC-20W
TSSOP-20 | 96
150 | °C/W | | P _D | Power Dissipation in Still Air at 25°C | SOIC-20W
TSSOP-20 | 1302
833 | mW | | MSL | Moisture Sensitivity | | Level 1 | _ | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.245 in | - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | 2000
N/A | V | | I _{LATCHUP} | Latchup Performance (Note 4) | | ±100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Applicable to devices with outputs that may be tri–stated. - Applicable to devices with outputs that may be the stated. Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued. - 4. Tested to EIA/JÉSD78 Class II. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Parameter | | | | |---------------------------------|----------------------------|--|-------------|-------------------------------|------| | MC74VHC | | | | | • | | V _{CC} | DC Supply Voltage | | 2.0 | 5.5 | V | | V _{IN} | DC Input Voltage (Note 5) | | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage (Note 5) | | 0 | V _{CC} | V | | T _A | Operating Temperature | | -40 | +85 | °C | | t _r , t _f | Input Rise or Fall Rate | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$
$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | 0
0 | 100
20 | ns/V | | MC74VHC | .
т | | • | • | • | | V _{CC} | DC Supply Voltage | | 4.5 | 5.5 | V | | V _{IN} | DC Input Voltage (Note 5) | | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage (Note 5) | Active Mode (High or Low State) Tristate Mode Power-Off Mode (V _{CC} = 0 V) | 0
0
0 | V _{CC}
5.5
5.5 | V | | T _A | Operating Temperature | | -40 | +85 | °C | | t _r , t _f | Input Rise or Fall Rate | V _{CC} = 4.5 V to 5.5 V | 0 | 20 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 5. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. #### DC ELECTRICAL CHARACTERISTICS (MC74VHC245) | | | | V _{CC} | , | T _A = 25°C | ; | T _A = - 40 |) to 85°C | | |-----------------|--|--|----------------------|-------------------------------|-----------------------|-------------------------------|-------------------------------|-------------------------------|------| | Symbol | Parameter | Test Conditions | v | Min | Тур | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level
Input Voltage | | 2.0
3.0 to
5.5 | 1.50
V _{CC} x 0.7 | | | 1.50
V _{CC} x 0.7 | | V | | V _{IL} | Maximum Low-Level
Input Voltage | | 2.0
3.0 to
5.5 | | | 0.50
V _{CC} x 0.3 | | 0.50
V _{CC} x 0.3 | V | | V _{OH} | Minimum High-Level
Output Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$ | 2.0
3.0
4.5 | 1.9
2.9
4.4 | 2.0
3.0
4.5 | | 1.9
2.9
4.4 | | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.80 | | | | V _{OL} | Maximum Low-Level
Output Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \ \mu\text{A}$ | 2.0
3.0
4.5 | | 0.0
0.0
0.0 | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$ | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | | I _{in} | Maximum Input
Leakage Current | $V_{in} = 5.5 \text{ V or GND}$
(DIR, $\overline{\text{OE}}$) | 0 to 5.5 | | | ±0.1 | | ±1.0 | μΑ | | I _{OZ} | Maximum Three-State
Leakage Current | $V_{in} = V_{IL} \text{ or } V_{IH}$
$V_{out} = V_{CC} \text{ or GND}$ | 5.5 | | | ±0.25 | | ±2.5 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current | V _{in} = V _{CC} or GND | 5.5 | | | 4.0 | | 40.0 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### AC ELECTRICAL CHARACTERISTICS (MC74VHC245) | | | | $T_A = 25^{\circ}C$ | | T _A = - 40 | 0 to 85°C | | | |--|--|--|---------------------|-------------|-----------------------|------------|--------------|------| | Symbol | Parameter | Test Conditions | Min | Тур | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay,
A to B or B to A | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ | | 5.8
8.3 | 8.4
11.9 | 1.0
1.0 | 10.0
13.5 | ns | | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ | | 4.0
5.5 | 5.5
7.5 | 1.0
1.0 | 6.5
8.5 | | | t _{PZL} ,
t _{PZH} | Output Enable Time OE to A or B | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ | | 8.5
11.0 | 13.2
16.7 | 1.0
1.0 | 15.5
19.0 | ns | | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ | | 5.8
7.3 | 8.5
10.6 | 1.0
1.0 | 10.0
12.0 | | | t _{PLZ} , | Output Disable Time OE to A or B | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 50 \text{ pF}$ | | 11.5 | 15.8 | 1.0 | 18.0 | ns | | t _{PHZ} | OE to A or B | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 50 \text{ pF}$ | | 7.0 | 9.7 | 1.0 | 11.0 | | | t _{OSLH} ,
t _{OSHL} | Output to Output Skew | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 50 \text{ pF}$ (Note 6) | | | 1.5 | | 1.5 | ns | | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 50 \text{ pF}$ (Note 6) | | | 1.0 | | 1.0 | ns | | C _{in} | Maximum Input Capacitance
DIR, OE | | | 4 | 10 | | 10 | pF | | C _{I/O} | Maximum Three-State I/O Capacitance | | | 8 | | | | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Note 7) | 21 | pF | #### **NOISE CHARACTERISTICS (MC74VHC245)** | | | T _A = 25°C | | | |------------------|--|-----------------------|------|------| | Symbol | Parameter | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 0.9 | 1.2 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | -0.9 | -1.2 | V | | V _{IHD} | Minimum High Level Dynamic Input Voltage | | 3.5 | V | | V_{ILD} | Maximum Low Level Dynamic Input Voltage | | 1.5 | V | ^{6.} Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|. 7. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC} / 8 (per bit). C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. #### DC ELECTRICAL CHARACTERISTICS (MC74VHCT245A) | | | | V _{CC} | Т | _A = 25° | С | $T_A = -40$ | 0 to 85°C | | |------------------|---------------------------------------|---|-----------------|------|--------------------|-----------|-------------|-----------|------| | Symbol | Parameter | Test Conditions | v | Min | Тур | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level Input
Voltage | | 4.5 to 5.5 | 2.0 | | | 2.0 | | V | | V _{IL} | Maximum Low-Level Input
Voltage | | 4.5 to 5.5 | | | 0.8 | | 0.8 | V | | V _{OH} | Minimum High-Level Output | I _{OH} = - 50 μA | 4.5 | 4.4 | 4.5 | | 4.4 | | V | | | Voltage $V_{in} = V_{IH}$ or V_{IL} | I _{OH} = – 8 mA | 4.5 | 3.94 | | | 3.80 | | | | V _{OL} | Maximum Low-Level Output | I _{OL} = 50 μA | 4.5 | | 0.0 | 0.1 | | 0.1 | V | | | Voltage $V_{in} = V_{IH}$ or V_{IL} | I _{OL} = 8 mA | 4.5 | | | 0.36 | | 0.44 | | | I _{in} | Maximum Input Leakage Current | V _{in} = 5.5 V or GND | 0 to 5.5 | | | ±[0.1 | | ±∏1.0 | μΑ | | l _{OZ} | Maximum 3-State Leakage
Current | $V_{in} = V_{IL} \text{ or } V_{IH}$
$V_{out} = V_{CC} \text{ or GND}$ | 5.5 | | | ±
0.25 | | ± 2.5 | μΑ | | Icc | Maximum Quiescent Supply
Current | V _{in} = V _{CC} or GND | 5.5 | | | 4.0 | | 40.0 | μА | | Ісст | Quiescent Supply Current | Per Input: V _{IN} = 3.4 V
Other Input: V _{CC} or GND | 5.5 | | | 1.35 | | 1.50 | mA | | I _{OPD} | Output Leakage Current | V _{OUT} = 5.5 V | 0 | | | 0.5 | | 5.0 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### AC ELECTRICAL CHARACTERISTICS (MC74VHCT245A) | | | | | T _A = 25°C | | | T _A = - 40 | to 85°C | | |--|---|---|--|-----------------------|------------|--------------|-----------------------|--------------|------| | Symbol | Parameter | Test Condit | tions | Min | Тур | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay
A to B or B to A | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15 \text{ pF}$
$C_L = 50 \text{ pF}$ | | 4.9
5.4 | 7.7
8.7 | 1.0
1.0 | 8.5
9.5 | ns | | t _{PZL} ,
t _{PZH} | Output Enable Time
OE to A or B | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 9.4
9.9 | 13.8
14.8 | 1.0
1.0 | 15.0
16.0 | ns | | t _{PLZ} ,
t _{PHZ} | Output Disable Time
OE to A or B | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | C _L = 50 pF | | 10.1 | 15.4 | 1.0 | 16.5 | ns | | t _{OSLH} ,
t _{OSHL} | Output to Output Skew | V _{CC} = 5.0 ± 0.5 V
(Note 8) | C _L = 50 pF | | | 1.0 | | 1.0 | ns | | C _{in} | Maximum Input Capacitance | | | | 4 | 10 | | 10 | pF | | C _{out} | Maximum 3–State Output Capacitance (Output in High–Impedance State) | | | | 13 | | | | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Note 9) | 16 | pF | #### NOISE CHARACTERISTICS (MC74VHCT245A) | | | T _A = 25°C | | | |------------------|--|-----------------------|------|------| | Symbol | Parameter | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 1.2 | 1.6 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | -1.2 | -1.6 | V | | V _{IHD} | Minimum High Level Dynamic Input Voltage | | 2.0 | V | | V _{ILD} | Maximum Low Level Dynamic Input Voltage | | 0.8 | V | Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/8 (per bit). C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. $^{^{\}star}C_L$ Includes probe and jig capacitance Input signal t_R = t_F = 3 ns | Test | Switch Position | CL | R_{L} | |-------------------------------------|-----------------|---------------------------|---------| | t _{PLH} / t _{PHL} | Open | See AC
Characteristics | 1 kΩ | | t _{PLZ} / t _{PZL} | V _{CC} | Table | | | t _{PHZ} / t _{PZH} | GND | | | Figure 2. Test Circuits #### **SWITCHING WAVEFORMS** Figure 3. Figure 4. | Device | V _{IN} , V | V _m , V | |--------------|---------------------|-----------------------| | MC74VHC245 | V _{CC} | 50% x V _{CC} | | MC74VHCT245A | 3 V | 1.5 V | Figure 5. Expanded Logic Diagram Figure 6. Input Equivalent Circuit Figure 7. Bus Terminal Equivalent Circuit #### **ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |-------------------|--------------|------------|-----------------------| | MC74VHC245DWG | VHC245G | SOIC-20 WB | 38 Units / Rail | | MC74VHC245DWR2G | VHC245G | SOIC-20 WB | 2500 / Tape & Reel | | MC74VHC245DTG | VHC
245 | TSSOP-20 | 75 Units / Rail | | MC74VHC245DTR2G | VHC
245 | TSSOP-20 | 1000 / Tape & Reel | | MC74VHCT245ADWG | VHCT245AG | SOIC-20 WB | 38 Units / Rail | | MC74VHCT245ADWR2G | VHCT245AG | SOIC-20 WB | 2500 / Tape & Reel | | MC74VHCT245ADTG | VHCT
245A | TSSOP-20 | 75 Units / Rail | | MC74VHCT245ADTR2G | VHCT
245A | TSSOP-20 | 1000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** # SCALE 1:1 - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 2.35 | 2.65 | | | A1 | 0.10 | 0.25 | | | b | 0.35 | 0.49 | | | С | 0.23 | 0.32 | | | D | 12.65 | 12.95 | | | E | 7.40 | 7.60 | | | е | 1.27 BSC | | | | Н | 10.05 | 10.55 | | | h | 0.25 | 0.75 | | | L | 0.50 | 0.90 | | | A | 0 ° | 7 ° | | #### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. 0.100 (0.004) -T- SEATING #### TSSOP-20 WB CASE 948E ISSUE D **DATE 17 FEB 2016** #### NOTES: - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K - (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W- | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | Ĺ | 6.40 BSC | | 0.252 BSC | | | M | 0° | 8° | 0° | 8° | #### **GENERIC SOLDERING FOOTPRINT MARKING DIAGRAM*** **DETAIL E** | <u>aaaaaaaa</u> | <u> </u> | |-----------------|----------| | XXXX | | | XXXX | | | ALYW ■ | | | 0 • | | | | H | = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | TSSOP-20 WB | | PAGE 1 OF 1 | | DIMENSIONS: MILLIMETERS ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 1.26 onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales