1/4-Inch System-On-A-Chip (SOC) VGA NTSC and PAL CMOS Digital Image Sensor

MT9V125 Datasheet, Rev. W

For the latest datasheet revision, please visit www.onsemi.com

Features

- System-on-a-chip (SOC)—completely integrated camera system
- NTSC and PAL (true two field) analog composite video output
- Low power, interlaced scan CMOS image sensor
- ITU-R BT.656 parallel output (8-bit, interlaced)
- Serial LVDS data output
- Supports use of external devices for addition of custom overlay graphics
- Superior low-light performance
- On-chip image flow processor (IFP) performs sophisticated processing
- Color recovery and correction, sharpening, gamma, lens shading correction, and on-the-fly defect correction
- Automatic Features:
 - Auto exposure (AE), auto white balance (AWB), auto black reference (ABR), auto flicker avoidance, auto color saturation, and auto defect identification and correction
- Simple two-wire serial programming interface

Applications

- Automotive
 - Rear view camera
 - Side mirror replacement
 - Blind spot view
 - Occupant monitoring
- Security cameras
- Consumer video products

Data Sheet Applicable To

Silicon Revision: Rev4

Table 1: Key Performance Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical format</td>
<td>1/4-inch (4:3)</td>
</tr>
<tr>
<td>Active imager size</td>
<td>3.63 mm (H) x 2.78 mm (V)</td>
</tr>
<tr>
<td></td>
<td>4.57 mm diagonal</td>
</tr>
<tr>
<td>Active pixels</td>
<td>640H x 480V</td>
</tr>
<tr>
<td>NTSC output</td>
<td>720H x 486V</td>
</tr>
<tr>
<td>PAL output</td>
<td>720H x 576V</td>
</tr>
<tr>
<td>Pixel size</td>
<td>5.6 μm x 5.6 μm</td>
</tr>
<tr>
<td>Color filter array</td>
<td>RGB paired Bayer pattern</td>
</tr>
<tr>
<td>Shutter type</td>
<td>Electronic rolling shutter (ERS)</td>
</tr>
<tr>
<td>Maximum data rate/master clock</td>
<td>13.5 Mp/s 27 MHz</td>
</tr>
<tr>
<td>Frame rate (VGA 640H x 480V)</td>
<td>30 fps at 27 MHz (NTSC) 25 fps at 27 MHz (PAL)</td>
</tr>
<tr>
<td>Integration time</td>
<td>16 μs–33 ms (NTSC) 16 μs–40 ms (PAL)</td>
</tr>
<tr>
<td>ADC resolution</td>
<td>10-bit, on-chip</td>
</tr>
<tr>
<td>Responsivity</td>
<td>5 V/lux-sec (550nm)</td>
</tr>
<tr>
<td>Pixel dynamic range</td>
<td>70 dB</td>
</tr>
<tr>
<td>SNR_{MAX}</td>
<td>39 dB</td>
</tr>
</tbody>
</table>

Supply voltage

	I/O digital	2.5–3.1 V (2.8 V nominal)
Core digital	2.5–3.1 V (2.8 V nominal)	
Analog	2.5–3.1 V (2.8 V nominal)	

Power consumption

| | Operating | 320 mW |
| Standby | 0.56 mW |

Operating temperature

| | –40°C to +85°C (functional to +105°C) |

Package

| | 52-Ball iBGA |

Notes: 1. Measured at 2.8 V, 30 fps, 25°C

Downloaded from Arrow.com.
Ordering Information

Table 2: Available Part Numbers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Product Description</th>
<th>Orderable Product Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT9V125IA7XTC-DP</td>
<td>Color, 0deg CRA, iBGA Package</td>
<td>Drypack, Protective Film</td>
</tr>
<tr>
<td>MT9V125IA7XTC-DR</td>
<td>Color, 0deg CRA, iBGA Package</td>
<td>Drypack</td>
</tr>
<tr>
<td>MT9V125IA7XTC-TP</td>
<td>Color, 0deg CRA, iBGA Package</td>
<td>Tape & Reel, Protective Film</td>
</tr>
<tr>
<td>MT9V125IA7XTC-TR</td>
<td>Color, 0deg CRA, iBGA Package</td>
<td>Tape & Reel</td>
</tr>
</tbody>
</table>

See the ON Semiconductor Device Nomenclature document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com.
Table of Contents

- Features .. 1
- Applications .. 1
- Ordering Information 2
- General Description 6
- Functional Overview 6
- Typical Connections 8
- Ball Assignments .. 9
- Detailed Architecture Overview 11
- Sensor Core Modes and Timing 26
- Modes and Timing ... 33
- Electrical Specifications 52
- Package and Die Dimensions 56
- Appendix A: Serial Bus Description 57
- Appendix B–Sensor Core Characteristics 63
- Revision History ... 67
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Functional Block Diagram</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Typical Usage Configuration with Overlay</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Typical Configuration Without Use of Overlay</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4</td>
<td>52-Ball iBGA Assignment</td>
<td>9</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Sensor Core Block Diagram</td>
<td>11</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Pixel Array Description</td>
<td>11</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Image Capture Example</td>
<td>12</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Pixel Color Pattern Detail (top right corner)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Spatial Illustration of Image Readout</td>
<td>14</td>
</tr>
<tr>
<td>Figure 10</td>
<td>IFP Block Diagram</td>
<td>16</td>
</tr>
<tr>
<td>Figure 11</td>
<td>AWB Measurement Window (Maximum)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 12</td>
<td>A WB Adjusted Window Size</td>
<td>18</td>
</tr>
<tr>
<td>Figure 13</td>
<td>MT9V125 in Analog Composite Video Mode</td>
<td>23</td>
</tr>
<tr>
<td>Figure 14</td>
<td>MT9V125 in Sensor Stand-Alone Mode</td>
<td>24</td>
</tr>
<tr>
<td>Figure 15</td>
<td>MT9V125 in Overlay Output Mode</td>
<td>25</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Six Pixels in Normal and Column Mirror Readout Modes</td>
<td>27</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Six Rows in Normal and Row Mirror Readout Modes</td>
<td>27</td>
</tr>
<tr>
<td>Figure 18</td>
<td>LINE_VALID Formats</td>
<td>30</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Integration Window of Each Sensor Row for NTSC Mode (Interlaced Readout)</td>
<td>32</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Single-Ended Termination—SMPTE Compliant</td>
<td>34</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Single-Ended Termination</td>
<td>35</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Differential Connection—SMPTE-Compliant</td>
<td>36</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Differential Connection—Grounded Terminations</td>
<td>37</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Differential Connection—Floating Termination</td>
<td>37</td>
</tr>
<tr>
<td>Figure 25</td>
<td>LVDS Serial Output Data Format</td>
<td>39</td>
</tr>
<tr>
<td>Figure 26</td>
<td>CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems</td>
<td>40</td>
</tr>
<tr>
<td>Figure 27</td>
<td>Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System</td>
<td>41</td>
</tr>
<tr>
<td>Figure 28</td>
<td>Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System</td>
<td>42</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Parallel Input Data Timing Waveform Using DIN_CLK</td>
<td>43</td>
</tr>
<tr>
<td>Figure 30</td>
<td>Parallel Input Data Timing Waveform Using the EXTCLK</td>
<td>44</td>
</tr>
<tr>
<td>Figure 31</td>
<td>Primary Clock Relationships</td>
<td>45</td>
</tr>
<tr>
<td>Figure 32</td>
<td>Typical I/O Equivalent Circuits</td>
<td>49</td>
</tr>
<tr>
<td>Figure 33</td>
<td>LVDS and NTSC Blocks</td>
<td>50</td>
</tr>
<tr>
<td>Figure 34</td>
<td>Digital Output I/O Timing</td>
<td>51</td>
</tr>
<tr>
<td>Figure 35</td>
<td>52-Ball iBGA Package Outline Drawing</td>
<td>56</td>
</tr>
<tr>
<td>Figure 36</td>
<td>WRITE Timing to R0x009—Value 0x0284</td>
<td>59</td>
</tr>
<tr>
<td>Figure 37</td>
<td>READ Timing From R0x009; Returned Value 0x0284</td>
<td>59</td>
</tr>
<tr>
<td>Figure 38</td>
<td>WRITE Timing to R0x009—Value 0x0284</td>
<td>60</td>
</tr>
<tr>
<td>Figure 39</td>
<td>READ Timing From R0x009; Returned Value 0x0284</td>
<td>60</td>
</tr>
<tr>
<td>Figure 40</td>
<td>Serial Host Clock Period and Duty Cycle</td>
<td>61</td>
</tr>
<tr>
<td>Figure 41</td>
<td>Serial Host Interface Start Condition Timing</td>
<td>61</td>
</tr>
<tr>
<td>Figure 42</td>
<td>Serial Host Interface Stop Condition Timing</td>
<td>61</td>
</tr>
<tr>
<td>Figure 43</td>
<td>Serial Host Interface Data Timing for Write</td>
<td>61</td>
</tr>
<tr>
<td>Figure 44</td>
<td>Serial Host Interface Data Timing for Read</td>
<td>62</td>
</tr>
<tr>
<td>Figure 45</td>
<td>Acknowledge Signal Timing after an 8-bit Write to the Sensor</td>
<td>62</td>
</tr>
<tr>
<td>Figure 46</td>
<td>Acknowledge Signal Timing after an 8-bit Read from the Sensor</td>
<td>62</td>
</tr>
<tr>
<td>Figure 47</td>
<td>Typical Signal to Noise Ratio as a function of Exposure</td>
<td>65</td>
</tr>
<tr>
<td>Figure 48</td>
<td>Typical Spectral Characteristic</td>
<td>66</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Key Performance Parameters ... 1
Table 2: Available Part Numbers ... 2
Table 3: Ball Descriptions ... 9
Table 4: Readout Mode Register Settings – DOUT Not Qualified 20
Table 5: MT9V125 Readout Modes ... 20
Table 6: Readout Mode Register Settings – DOUT Qualified 21
Table 7: Register Address Functions .. 28
Table 8: Blanking Minimum Values (in sensor stand-alone mode) 28
Table 9: LVDS Packet Format ... 38
Table 10: Serial Output Data Timing Values (for EXTCLK = 27 MHz) 39
Table 11: Field, Vertical Blanking, EAV, and SAV States 42
Table 12: Field, Vertical Blanking, EAV, and SAV States 42
Table 13: Parallel Input Data Timing Values Using DIN_CLK 43
Table 14: Parallel Input Data Timing Values Using EXTCLK 44
Table 15: STANDBY Effect on the Output State 46
Table 16: Signal State During Standby ... 47
Table 17: Output Data Ordering in DOUT RGB Mode 48
Table 18: Output Data Ordering in Sensor Stand-Alone Mode 48
Table 19: Data Ordering in LVDS Serial Mode 48
Table 20: Digital Output I/O Timing .. 51
Table 21: Electrical Characteristics and Operating Conditions 52
Table 22: Video DAC Electrical Characteristics 53
Table 23: Digital I/O Parameters .. 54
Table 24: Power Consumption ... 54
Table 25: NTSC Signal Parameters .. 55
Table 26: Two-Wire Interface ID Address Switching 57
Table 27: MT9V125 Rev4 Imager Sensor Core Characteristics 63
General Description

The ON Semiconductor MT9V125 is a VGA-format, single-chip camera CMOS active-pixel digital image sensor. It captures high-quality color images at VGA resolution and outputs NTSC or PAL interlaced composite video.

This VGA CMOS image sensor features ON Semiconductor’s breakthrough technology—a low-noise CMOS imaging technology that achieves CCD image quality (based on signal-to-noise ratio and low-light sensitivity) while maintaining the inherent size, cost, low-power, and integration advantages of CMOS.

The sensor is a complete camera-on-a-chip solution. It incorporates sophisticated camera functions on-chip and is programmable through a simple two-wire serial interface.

The MT9V125 performs sophisticated processing functions including color recovery, color correction, sharpening, programmable gamma correction, auto black reference clamping, auto exposure, automatic 50/60Hz flicker avoidance, lens shading correction, auto white balance (AWB), and on-the-fly defect identification and correction.

The MT9V125 outputs interlaced-scan images at 30 or 25 fps, supporting both NTSC and PAL video formats.

The image data can be output on any one of three output ports:

- Composite analog video (support for both single-ended and differential-ended)
- Low-voltage differential signaling (LVDS)
- Parallel 8-bit digital

Functional Overview

The MT9V125 is a fully-automatic, single-chip camera, requiring only a single power supply, lens, and clock source for basic operation. Output video is streamed through the chosen output port. The MT9V125 internal registers are configured using a two-wire serial interface.

The device can be put into a low-power sleep mode by asserting STANDBY and shutting down the clock. Output signals can be tri-stated. Both tri-stating output signals and entry into standby mode can be achieved through two-wire serial interface register writes.

The MT9V125 requires an input clock of 27 MHz to support correct NTSC or PAL timing.

Internal Architecture

Internally, the MT9V125 consists of a sensor core and an image flow processor (IFP). The sensor core captures raw images that are then input into the IFP. The IFP is divided in two sections: the color pipe and the camera controller. The color pipe section processes the incoming stream to create interpolated, color-corrected output, and the camera controller section controls the sensor core to maintain the desired exposure and color balance.

The IFP scales the image and an integrated video encoder generates either NTSC or PAL analog composite output. The MT9V125 supports three different output ports: analog composite video out, LVDS serial out, and parallel data out.
Figure 1 shows the major functional blocks of the MT9V125. Figure 2 demonstrates an MT9V125 usage scenario. A DSP takes the MT9V125’s image output, overlays text, and feeds the resulting image back to the MT9V125 to be output as NTSC or PAL.

Notes: 1. The DSP shown is an external device; it is not part of the MT9V125.
Figure 3 shows a detailed MT9V125 device configuration. For low-noise operation, the MT9V125 requires separate analog and digital power supplies. Incoming digital and analog ground conductors can be tied together next to the die.

Power supply voltages VAA (the primary analog voltage) and VAAPIX (the main voltage to the pixel array) should be decoupled from ground with an LC filter. The MT9V125 requires a single external voltage supply level.

Notes:
1. MT9V125 STANDBY can be connected directly to the customer’s ASIC controller or to DGND, depending on the controller’s capability.
2. A 1.5KΩ resistor value is recommended, but may be greater for slower two-wire speed (for example, 100 KB/sec).
3. LVDS_ENABLE must be tied HIGH if LVDS is to be used.
4. Pull down DAC_REF with a 2.8KΩ resistor for 1.0V peak-to-peak video output.
5. VAA and VAAPIX must be tied to the same potential for proper operation.
6. Low pass filter (3dB attenuation at 4.2 MHz).
Ball Assignments

Figure 4 shows the location of the balls and their corresponding signals on the MT9V125. The 12 balls in the middle of the package are unconnected.

Figure 4: 52-Ball iBGA Assignment

Table 3: Ball Descriptions

<table>
<thead>
<tr>
<th>Ball Assignment</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>EXTCLK</td>
<td>Input</td>
<td>Master clock in sensor.</td>
</tr>
<tr>
<td>G1</td>
<td>RESET_BAR</td>
<td>Input</td>
<td>Active LOW: asynchronous reset.</td>
</tr>
<tr>
<td>G3</td>
<td>SADDR</td>
<td>Input</td>
<td>Two-wire serial interface device ID selection 1:0xBA, 0:0x90.</td>
</tr>
<tr>
<td>G4</td>
<td>RSVD</td>
<td>Input</td>
<td>Must be attached to DGND. G4</td>
</tr>
<tr>
<td>G2</td>
<td>SCLK</td>
<td>Input</td>
<td>Two-wire serial interface clock.</td>
</tr>
<tr>
<td>F2</td>
<td>STANDBY</td>
<td>Input</td>
<td>Multifunctional signal to control device addressing, power-down, and state functions (covering output enable function).</td>
</tr>
<tr>
<td>G5</td>
<td>HORIZ_FLIP</td>
<td>Input</td>
<td>If “0” at reset: Default horizontal setting. If “1” at reset: Flips the image readout format in the horizontal direction.</td>
</tr>
<tr>
<td>H3</td>
<td>NTSC_PAL_SELECT</td>
<td>Input</td>
<td>If “0” at reset: Default NTSC mode. If “1” at reset: Default PAL mode.</td>
</tr>
<tr>
<td>H5</td>
<td>PEDESTAL</td>
<td>Input</td>
<td>If “0” at reset: Does not add pedestal to composite video output. If “1” at reset: Adds pedestal to composite video output. Valid for NTSC only, pull LOW for PAL operation.</td>
</tr>
</tbody>
</table>
Table 3: Ball Descriptions (continued)

<table>
<thead>
<tr>
<th>Ball Assignment</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4</td>
<td>LVDS_Enable</td>
<td>Input</td>
<td>Active HIGH: Enables the LVDS output port. Must be HIGH if LVDS is to be used.</td>
</tr>
<tr>
<td>A2,B1,B2,C1, C2,D2,E2,D1</td>
<td>DIN[7:0]</td>
<td>Input</td>
<td>External data input port selectable at video encoder input.</td>
</tr>
<tr>
<td>E1</td>
<td>DIN_CLK</td>
<td>Input</td>
<td>Din capture clock. (This clock must be synchronous to EXTCLK.)</td>
</tr>
<tr>
<td>H2</td>
<td>S_DATA</td>
<td>Input/Output</td>
<td>Two-wire serial interface data I/O.</td>
</tr>
<tr>
<td>F7,E7,B3,A3, B4,A4,B5,A5</td>
<td>DOUT[7:0]</td>
<td>Output</td>
<td>Pixel data output DOUT7 (most significant bit [MSB]), DOUT0 (least significant bit [LSB]). Data output [9:2] in sensor stand-alone mode</td>
</tr>
<tr>
<td>C7</td>
<td>DOUT_LSB0</td>
<td>Output</td>
<td>Sensor stand-alone mode output 0—typically left unconnected for normal SOC operation.</td>
</tr>
<tr>
<td>D7</td>
<td>DOUT_LSB1</td>
<td>Output</td>
<td>Sensor stand-alone mode output 1—typically left unconnected for normal SOC operation.</td>
</tr>
<tr>
<td>B7</td>
<td>FRAME_VALID</td>
<td>Output</td>
<td>Active HIGH: FRAME_VALID (FV); indicates active frame.</td>
</tr>
<tr>
<td>A6</td>
<td>LINE_VALID</td>
<td>Output</td>
<td>Active HIGH: LINE_VALID (LV); indicates active pixel.</td>
</tr>
<tr>
<td>B6</td>
<td>PIXCLK</td>
<td>Output</td>
<td>Pixel clock output.</td>
</tr>
<tr>
<td>F8</td>
<td>DAC_POS</td>
<td>Output</td>
<td>Positive video DAC output in differential mode. Video DAC output in single-ended mode.</td>
</tr>
<tr>
<td>G7</td>
<td>DAC_NEG</td>
<td>Output</td>
<td>Negative video DAC output in differential mode. Tie to GND in single-ended mode.</td>
</tr>
<tr>
<td>H8</td>
<td>DAC_REF</td>
<td>Output</td>
<td>External reference resistor for video DAC.</td>
</tr>
<tr>
<td>B8</td>
<td>LVDS_POS</td>
<td>Output</td>
<td>LVDS positive output.</td>
</tr>
<tr>
<td>C8</td>
<td>LVDS_NEG</td>
<td>Output</td>
<td>LVDS negative output.</td>
</tr>
<tr>
<td>F6</td>
<td>AGND</td>
<td>Supply</td>
<td>Analog ground.</td>
</tr>
<tr>
<td>C3,C6,D8,F3,H7</td>
<td>DGND</td>
<td>Supply</td>
<td>Digital ground.</td>
</tr>
<tr>
<td>H6</td>
<td>VAA</td>
<td>Supply</td>
<td>Analog power: 2.5–3.1V (2.8V nominal).</td>
</tr>
<tr>
<td>G6</td>
<td>VAAPiX</td>
<td>Supply</td>
<td>Pixel array analog power supply: 2.5–3.1V (2.8V nominal).</td>
</tr>
<tr>
<td>A1,A8,E8,H1</td>
<td>VDD</td>
<td>Supply</td>
<td>Digital power: 2.5–3.1V (2.8V nominal).</td>
</tr>
<tr>
<td>G8</td>
<td>VDD_DAC</td>
<td>Supply</td>
<td>DAC power: 2.5–3.1V (2.8V nominal).</td>
</tr>
<tr>
<td>A7</td>
<td>VDD_PLL</td>
<td>Supply</td>
<td>LVDS PLL power: 2.5–3.1V (2.8V nominal).</td>
</tr>
</tbody>
</table>

Notes:
1. All power pins (VDD/VDD_DAC/VDD_PLL/VAA/VAAPiX) must be connected to 2.8V (nominal). Power pins cannot be floated.
2. All ground pins (AGND/DGND) must be connected to ground. Ground pins cannot be floated.
3. Inputs are not tolerant to signal voltages above 3.1V.
4. All unused inputs must be tied to GND or VDD.
5. VAA and VAAPiX must be tied to the same potential for proper operation.
Detailed Architecture Overview

Sensor Core

The sensor consists of a pixel array of 695 x 512, an analog readout chain, a 10-bit ADC with programmable gain and black offset, and timing and control as illustrated in Figure 5.

Figure 5: Sensor Core Block Diagram

Pixel Array Structure

The sensor core pixel array is configured as 695 columns by 512 rows, as shown in Figure 6. The first 42 columns and the first 13 rows of pixels are optically black, and can be used to monitor the black level. The last four columns and the last row of pixels are also optically black.

Figure 6: Pixel Array Description
The black row data are used internally for the automatic black level adjustment. However, these black rows can also be read out by setting the sensor to raw data output mode.

There are 649 columns by 498 rows of optically-active pixels that include a pixel boundary around the VGA (640 x 480) image to avoid boundary effects during color interpolation and correction.

The one additional active column and two additional active rows are used to enable horizontally and vertically mirrored readout to start on the same color pixel.

Figure 7 illustrates the process of capturing the image. The original scene is flipped and mirrored by the sensor optics. Sensor readout starts at the lower right corner. The image is presented in true orientation by the output display.

Figure 7: Image Capture Example
The sensor core uses a paired RGB Bayer color pattern, as shown in Figure 8. Row pairs consist of the following: rows 0, 1, rows 2, 3, rows 4, 5, and so on. The even-numbered row pairs (0/1, 4/5, and so on) in the active array contain green and red pixels. The odd-numbered row pairs (2/3, 6/7, and so on) contain blue and green pixels. The odd-numbered columns contain green and blue pixels; even-numbered columns contain red and green pixels.

Figure 8: Pixel Color Pattern Detail (top right corner)

Output Data Format

The sensor core image data are read out in an interlaced scan order. Progressive readout—which is not supported by the color pipe—is an option, but is only intended for raw data output. Valid image data are surrounded by horizontal and vertical blanking, shown in Figure 9 on page 14.

For NTSC output, the horizontal size is stretched from 640 to 720 pixels. The vertical size is 243 pixels per field; 240 image pixels and 3 dark pixels that are located at the bottom of the image field.

For PAL output, the horizontal size is also stretched from 640 to 720 pixels. The vertical size is 288 pixels per field; 240 image pixels with 24 dark pixels at the top of the image and 24 dark pixels at the bottom of the image field.
Figure 9: Spatial Illustration of Image Readout

Valid Image Odd Field

P_{0,0} P_{0,1} P_{0,2} \ldots P_{0,n-1} P_{0,n}

P_{2,0} P_{2,1} P_{2,2} \ldots P_{2,n-1} P_{2,n}

00 00 00 \ldots 00 00 00

00 00 00 \ldots 00 00 00

Valid Image Even Field

P_{m-2,0} P_{m-2,1} \ldots P_{m-2,n-1} P_{m-2,n}

P_{m,0} P_{m,1} \ldots P_{m,n-1} P_{m,n}

00 00 00 \ldots 00 00 00

00 00 00 \ldots 00 00 00

Vertical Even Blanking

00 00 00 \ldots 00 00 00

Vertical Odd Blanking

00 00 00 \ldots 00 00 00

Horizontal Blanking

00 00 00 \ldots 00 00 00

00 00 00 \ldots 00 00 00

Vertical/Horizontal Blanking

00 00 00 \ldots 00 00 00

00 00 00 \ldots 00 00 00
Image Flow Processor (IFP)

The MT9V125 IFP consists of a color processing pipeline as well as a measurement and control logic block (the camera controller)—see Figure 10 on page 16. The stream of raw data from the sensor enters the pipeline and undergoes several transformations. Image stream processing starts with conditioning the black level and applying a digital gain. The lens shading block compensates for signal loss caused by the lens.

Next, the data is interpolated to recover missing color components for each pixel. The resulting interpolated RGB data passes through the current color correction matrix (CCM), gamma, and saturation corrections, and is formatted for final output.

The measurement and control logic continuously accumulate image brightness and color statistics. Based on these measurements, the IFP calculates updated values for exposure time and sensor analog gains that are sent to the sensor core via the control bus.

Black Level Conditioning

The sensor core black level calibration works to maintain black pixel values at a constant level, independent of analog gain, reference current, voltage settings, and temperature conditions. If this black level is above zero, it must be reduced before color processing can begin. The black level subtraction block in the IFP re-maps the black level of the sensor to zero prior to lens shading correction. Following lens shading correction, the black level addition block provides capability for another black level adjustment. However, for good contrast, this level should be set to zero.

Digital Gain

Controlled by auto exposure logic, the input digital gain stage amplifies the raw image in low-light conditions (range: x1–x8).

Test Pattern

A built-in test pattern generator produces a test image stream that can be multiplexed with the gain stage. The test pattern can be selected through register settings (see R72:1). There is another set of test patterns at the end of the color pipe that can be selected through register R155:1[5:4]. (See “Register Notation” on page 4 of the register reference.)
MT9V125: SOC VGA Digital Image Sensor
Detailed Architecture Overview

Figure 10: IFP Block Diagram

- Two-Wire Serial Interface
- Control Registers
- Sensor Core
 - VGA Pixel Sensor including Sensor Control Logic
 - Black Level Conditioning; Digital Gain; Test Pattern at Beginning of IFP; Lens Correction
 - SRAM Line Buffers
 - Register Kernel
 - Interpolate + Aperture Correct
 - RGB to YCrCb
 - Horizontal Interpolator
 - Y Gamma Correct + Color Sat Ctl + YCrCb → RGB
 - Test Pattern at End of IFP; Camera Interface
- Raw Bayer Bypass
- Defect Correction
- Colorpipe
- Camera Control
 - AWB
 - AE
 - DOUT[7:0] PIXCLK, FRAME_VALID, LINE_VALID

Downloaded from Arrow.com.
Lens Shading Correction (LC)

Inexpensive lenses tend to attenuate image intensity near the edges of pixel arrays. Other factors also cause signal and coloration differences across the image. The net result of all these factors is known as lens shading. Lens shading correction (LC) compensates for these differences.

Typically, the profile of lens shading-induced anomalies across the frame is different for each color component. Therefore, LC is independently calibrated for the color channels.

Interpolation and Aperture Correction

A demosaicing engine converts the single-color-per-pixel Bayer data from the sensor into RGB (10-bit per color channel). The demosaicing algorithm analyzes neighboring pixels to generate a best guess for the missing color components. Edge sharpness is preserved as much as possible.

Aperture correction sharpens the image by an adjustable amount. To avoid amplifying noise, sharpening can be programmed to phase out as light levels drop.

Defect Correction

This device supports 2D defect correction. In 2D defect detection and correction, pixels with values different from their neighbors by greater than a defined threshold are considered defects unless near the image boundary. The approach is termed 2D, as pixels on neighboring lines as well as neighboring pixels on the same line are considered in both detection and correction.

In Figure 10 on page 16, the register kernel gathers same color pixels and sends the information to the 2D defect correction engine.

Color Correction

To obtain good color rendition and saturation, it is necessary to compensate for the differences between the spectral characteristics of the imager color filter array and the spectral response of the human eye. This compensation, also known as color separation, is achieved through linear transformation of the image with a 3 x 3 element correction matrix. The optimal values for the color correction coefficients depend on the spectra of the incident illumination and can be programmed by the user.

Automatic White Balance (AWB)

The MT9V125 has a built-in AWB algorithm designed to compensate for the effects of changing scene illumination on the color rendition quality. This sophisticated algorithm consists of three major submodules:

- A measurement engine (ME) performing statistical analysis of the image
- A module selecting the optimal color correction matrix
- A module selecting the analog color channel gains in the sensor core
While the default algorithm settings are adequate in most situations, the user can reprogram base color correction matrices and limit color channel gains. The AWB does not attempt to locate the brightest or grayest elements in the image; it performs in-depth image analysis to differentiate between changes in predominant spectra of illumination and changes in predominant scene colors. Factory defaults are suitable for most applications; however, a wide range of algorithm parameters can be overwritten by the user through the serial interface.

AWB Measurement Window

Register R0x22D specifies the boundaries of the window used by the WB measurement engine. It describes the size of the window within the image. Horizontally, the image value varies from 0 to 9 (64 pixels per unit). Vertically, the image value varies from 0 to 6 (32 lines per unit on a per field basis). See Figure 12 for an example of adjusting the AWB window size (R0x22D = 0x5281).

The values in R0x22D are the desired boundaries, in units of square blocks of pixels vertically and horizontally. The size of the block is determined by the resolution of the image seen by the WB measurement engine. For NTSC/PAL the size of the block is fixed at 64 x 32 pixels.

![Figure 11: AWB Measurement Window (Maximum)](image1.png)

![Figure 12: AWB Adjusted Window Size](image2.png)
Auto Exposure

The auto exposure algorithm performs automatic adjustments to image brightness by controlling exposure time and analog gains in the sensor core, as well as digital gain applied to the image. The algorithm relies on the auto exposure measurement engine that tracks speed and amplitude changes in the overall luminance of selected windows in the image.

Backlight compensation is achieved by weighting the luminance in the center of the image higher than the luminance on the periphery. Other algorithm features include: fast-fluctuating illumination rejection (time-averaging), response-speed control, and controlled sensitivity to small changes.

While the default settings are adequate in most situations, the user can program target brightness, measurement window, and other parameters, as described above. The auto exposure algorithm enables compensation for a broad range of illumination intensities.

Automatic Flicker Detection

Flicker occurs when integration time is not an integer multiple of the period of the light intensity. The automatic flicker detection block does not compensate for the flicker; it reduces flicker occurrence by detecting flicker frequency and adjusting the integration time. For integration times shorter than the light intensity period (10ms for 50Hz environments and 8.33ms for 60Hz environments), flicker is unavoidable.

Gamma Correction

To achieve more life-like quality in an image, the IFP includes gamma correction and color saturation control. Gamma correction operates on the luminance component of the image and enables compensation for nonlinear dependence of the display device output versus the driving signal (for example, monitor brightness versus CRT voltage).

In addition, gamma correction provides range compression, converting 10-bit luminance input to 8-bit output. Pre-gamma image processing generates 10-bit luminance values ranging from 0 to 896. Piecewise linear gamma correction utilized in this imager has 10 linear intervals, with end points corresponding to the following input values:

\[X_i = 0, 16, 32, 64, 128, 256, 384, 512, 640, 768, 896 \]

For each input value \(X_i \), the user can program the corresponding output value \(Y_i \). \(Y_i \) values must be monotonically increasing.

NTSC and PAL Encoder Formats Supported

The MT9V125 has an on-chip video encoder to format the data stream for composite video output in the supported NTSC or PAL formats. The encoder expects CCIR-656 interlaced NTSC or PAL data stream input. By default, the input is taken from the on-chip image stream. Input can also be taken from the external 8-bit DIN[7:0] port for external image processing used with the on-chip video encoder and composite output.

MT9V125 Readout Modes

NTSC and PAL are two of the target output formats for the MT9V125. Table 4 on page 20 identifies registers used to set NTSC or PAL modes.
Table 4: Readout Mode Register Settings — DOUT Not Qualified
When DOUT is not qualified with FV and LV

<table>
<thead>
<tr>
<th>Readout Format/Output Format/Output Port</th>
<th>NTSC or PAL</th>
<th>Hold FV HIGH</th>
<th>Output Select MUX</th>
<th>Sensor Stand-Alone Mode</th>
<th>Enable RGB</th>
<th>RGB Output Format</th>
<th>Output Odd Field Resolution</th>
<th>Output Even Field Resolution</th>
<th>Readout Format/Output Frame Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlaced/CCIR656/DOUT[7:0] & LVDS</td>
<td>0: NTSC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>720 x 244</td>
<td>720 x 243</td>
<td>720 x 487</td>
</tr>
<tr>
<td>Interlaced/CCIR656/DOUT[7:0] & LVDS</td>
<td>1: PAL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>720 x 288</td>
<td>720 x 288</td>
<td>720 x 576</td>
</tr>
</tbody>
</table>

Notes:
1. See “Register Reference for a description of the register notation.
2. R21:1[0]
4. R19:1[1:0]
5. R155:1[12]
6. R155:1[8]

Table 5 identifies the readout format, output format, and output ports supported by the MT9V125. This table gives output formats supported by the MT9V125. The “DevWare Video Output Mode” column identifies the name used by the ON Semiconductor DevWare demonstration program to execute the readout mode. MT9V125 registers that enable these modes are specified in Table 6 on page 21.

Table 5: MT9V125 Readout Modes

<table>
<thead>
<tr>
<th>Readout Format–Output Format</th>
<th>Parallel Dout</th>
<th>Composite Analog Out</th>
<th>LVDS</th>
<th>Devware Video Output Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlaced–CCIR656</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Interlaced/CCIR656</td>
</tr>
<tr>
<td>Interlaced–RGB</td>
<td>Supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Interlaced/RGB</td>
</tr>
<tr>
<td>Interlaced–Raw Bayer</td>
<td>Supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Interlaced/Raw Bayer</td>
</tr>
<tr>
<td>Progressive–Raw Paired Bayer</td>
<td>Supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Progressive/Raw Paired Bayer</td>
</tr>
</tbody>
</table>
Table 6: Readout Mode Register Settings — DOUT Qualified
When Dout is qualified with FV and LV

<table>
<thead>
<tr>
<th>Readout Format/Output Format/Output Port</th>
<th>NTSC or PAL<sup>2</sup></th>
<th>Hold FV High<sup>3</sup></th>
<th>Output Select MUX<sup>4</sup></th>
<th>Sensor Stand-alone Mode<sup>5</sup></th>
<th>Enable RGB<sup>6</sup></th>
<th>RGB Output Format<sup>7</sup></th>
<th>Output Odd Field Resolution</th>
<th>Output Even Field Resolution</th>
<th>Output Frame Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlaced/CCIR656/DOUT[7:0] & LVDS</td>
<td>0: NTSC</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>720 x 243</td>
<td>720 x 243</td>
<td>720 x 486</td>
</tr>
<tr>
<td></td>
<td>1: PAL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>720 x 288</td>
<td>720 x 288</td>
<td>720 x 576</td>
</tr>
<tr>
<td>Interlaced/RGB/DOUT[9:0]</td>
<td>x<sup>8</sup></td>
<td>x</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0: RGB 565</td>
<td>720 x 240</td>
<td>720 x 240</td>
<td>720 x 480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: RGB 555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2: RGB 444x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3: RGB x444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlaced/Raw Bayer/DOUT[9:0]</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>648 x 248</td>
<td>648 x 248</td>
<td>648 x 596</td>
</tr>
<tr>
<td>Progressive/Raw PAIRED Bayer/DOUT[9:0]</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>648 x 488</td>
</tr>
</tbody>
</table>

Notes:
1. See “Register Notation” on page 4 of the register reference for a description of the register notation.
3. R21:1[1:0]
4. R19:1[1:0]
5. R155:1[12]
6. R155:1[8]
8. x = Don’t Care

Readout Formats

Interlaced
The default output format, interlaced format, is required for NTSC or PAL output.

Progressive
Progressive format is used for raw Bayer output.

Output Formats

ITU-R BT.656 and RGB Output
The MT9V125 can output processed video as a standard ITU-R BT.656 (CCIR656) stream, an RGB stream, or as unprocessed Bayer data. The ITU-R BT.656 stream contains YCbCr 4:2:2 data with fixed embedded synchronization codes. This output is typically suitable for subsequent display by standard video equipment or JPEG/MPEG compression. RGB functionality provides support for LCD devices.

The MT9V125 can be configured to output 16-bit RGB (565RGB), 15-bit RGB (555RGB), and two types of 12-bit RGB (444RGB). Refer to Table 17 on page 48 and Table 18 on page 48 for details.
Bayer Output

Unprocessed paired Bayer data are generated when bypassing the IFP completely—that is, by simply outputting the sensor-paired Bayer stream as usual, using FV, LV, and PIXCLK to time the data. This mode is called sensor stand-alone mode.

Output Ports

Composite Video Output

The composite video output DAC is external-resistor-programmable and supports both single-ended and differential output. The DAC is driven by the on-chip video encoder output.

Serial Data Output

The processed image data stream can be output to the LVDS output port.

Parallel Output

Parallel output uses either 8-bit or 10-bit output. Eight-bit output is used for ITU-R BT.656 and RGB output. Ten-bit output is used for raw Bayer output.
Three Common Data Configurations

Figure 13, Figure 14 on page 24, and Figure 15 on page 25 demonstrate common configuration methods for the MT9V125. Figure 13 shows the most common usage mode. The processed data from the sensor is output in analog composite video (NTSC or PAL) and CCIR 656 format through the analog and parallel data output ports, respectively.

Figure 13: MT9V125 in Analog Composite Video Mode
Figure 14 shows the MT9V125 in sensor stand-alone mode. Raw Bayer data from the sensor bypasses the IFP to be output directly. Only parallel output is available for this mode.

Figure 14: MT9V125 in Sensor Stand-Alone Mode

Figure 15 on page 25 shows the MT9V125 in overlay output mode that allows the MT9V125 to be configured with an external DSP for text or image overlay. Processed sensor data in CCIR 656 format is output as parallel data (DOUT[7-0]). This data is input to a user-supplied DSP that overlays text or graphics on the processed sensor image. DSP outputs CCIR 656 image with overlay which is input through the DIN port to be multiplexed at the encoder. This encoded data is output as analog composite video (NTSC or PAL).
Figure 15: MT9V125 in Overlay Output Mode

MT9V125
Sensor

Encoder Preprocessor

DAC TEST DATA

R 19:1[2] = 0
R 20:1[15:14] = 0

Async FIFO

TV Encoder

Internal DAC

LVDS_POS/LVDS_NEG

LVDS

IFP

Data Flow Path

ANALOG COMPOSITE VIDEO (with overlay)

CCIR-656 OUTPUT
Dout[7:0], LV, FV (without overlay)

DSP
(adds overlay separate function off chip)

CCIR-656 INPUT
Din[7:0] (with overlay)
Sensor Core Modes and Timing

This section provides an overview of usage modes for the MT9V125 sensor core. An overview of typical usage modes for the complete MT9V125 is provided in “Modes and Timing” on page 33.

Readout Format

The sensor core supports two basic readout formats: interlaced and progressive. The interlaced format supports both NTSC and PAL timing. Progressive readout is intended for sensor stand-alone mode only (this is due to the paired Bayer pattern CFA).

Window Control

The window size and position need to be at the default settings for correct NTSC or PAL format support.

Window Start

The row and column start address of the displayed image can be set by R1:0 (row start) and R2:0 (column start).

Window Size

The default sensor resolution is 640 columns and 480 rows (VGA). For NTSC and PAL, this is expanded by the horizontal interpolator module to 720 columns. For proper NTSC or PAL operation, use only the default window size.

Pixel Border

When R32:0, Bits[9:8] are both set, a 4-pixel border will be added around the specified image. When enabled, the row and column widths will be 8 pixels larger than the values programmed in the row and column registers. If the border is enabled but not shown in the image (R32:0[9:8] = 01), the horizontal blanking and vertical blanking values will be 8 pixels larger than the values programmed into the blanking registers. For proper NTSC or PAL operation, use only default values in the above mentioned registers.

The border is read in an interlaced pattern when in interlaced readout mode. Each field has its own interlaced border on top and bottom of the active array.

Sensor Core Readout Modes

Column Mirror Image

At reset, the HORIZ_FLIP input pin is latched into R30:1[1]. This bit is XORed with register R21:1[1]. The result determines if horizontal flip is enabled (result = 1) or disabled (result = 0). Figure 16 on page 27 illustrates the readout order of the columns when they are reversed. The starting color is preserved when mirroring the columns.

Row Mirror Image

By setting R32:0[0] = 1, the readout order of the rows will be reversed, as shown in Figure 17 on page 27. The starting color is preserved when mirroring the rows.
Frame Rate Control

Operating Mode

Actual frame rates can be tuned by adjusting various sensor parameters. The sensor registers are in address page 0, some of which are shown in Table 7 on page 28.

Typical settings and parameters for NTSC and PAL modes are shown in Table 8 on page 23.

For a given window size, the blanking registers (R0x005, R0x006, R0x011) can be used to set a particular frame rate.
Sensor Core Modes and Timing

Table 8: Blanking Minimum Values (in sensor stand-alone mode)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal blanking</td>
<td>132 (sensor pixel clocks)</td>
</tr>
<tr>
<td>Vertical blanking</td>
<td>6 + # of dark rows</td>
</tr>
</tbody>
</table>

The sensor timing (Table 8 on page 28) is shown in terms of pixel clock and master clock cycles. The required master clock frequency is 27 MHz. The vertical blanking and total frame time equations assume that the number of integration rows (R0x009) is less than the number of active rows, plus blanking rows. If this is not the case, the number of integration rows must be used instead to determine the frame time.

In the MT9V125, the sensor core adds four border pixels all the way around the image, taking the active image size to 648 x 488. This is achieved through the default of oversize and show border bits set.

NTSC mode has 525 rows per frame; PAL mode has 625 rows per frame as enumerated below (all values in rows):

\[
\begin{align*}
\text{OddFieldActive} + \text{OddFieldVerticalBlanking} + \text{EvenFieldActive} + \text{EvenFieldVerticalBlanking} &= \text{RowsPerFrame} \\
\text{NTSC}: \quad (4 + 240 + 4) + 14 + (4 + 240 + 4) + 15 &= 525 \\
\text{PAL}: \quad (4 + 240 + 4) + 64 + (4 + 240 + 4) + 65 &= 625
\end{align*}
\]
Minimum Horizontal Blanking (in sensor stand-alone mode)

The minimum horizontal blanking value is constrained by the time used for sampling a row of pixels and the overhead in the row readout. This can be expressed in an equation as:

\[
H_{\text{BLANK}}(\text{min}) = (\text{startup overhead} + \text{sampling time} + \text{extra cb time} + \text{dark col time})
\]

\[
= (31 + \text{done_sample}/2 + 16 + (22 \times \text{read_dark_cols}))
\]

\[
= (47 + \text{done_sample}/2 + (22 \times \text{read_dark_cols}))
\]

where:

\[
\text{done_sample} = R0x07E \text{ (rounded up to nearest even number)}
\]

\[
\text{read_dark_cols} = R0x22:0, \text{ (bit}[8])
\]

with default settings:

\[
H_{\text{BLANK}}(\text{MIN}) = (47 + 152/2 + 22) = 145 \text{ PIXCLK periods}
\]

To get an aggressive minimum value for the horizontal blanking, the larger of R0x079[15:8] and R0x076[15:8] can be substituted for the R0x07E value in the above equation. With default settings, this gives a minimum HBLANK time of 127.

Valid Data Signals Options

LINE_VALID Signal

By setting bits[15:14] of R32:0, the LV signal is programmed for three different output formats. The formats shown below illustrate reading out four rows and two vertical blanking rows (Figure 18 on page 30).

The default line valid format is shown first; continuous line valid is shown second. In the last format, the LV signal is exclusive ORed (XOR) between the continuous LV signal and the FV signal.
Integration Time

Integration time is controlled by R0x009 (shutter width, in multiples of the row time) and R0x00C (shutter delay, in PIXCLK_PERIOD/2). R0x00C is used to control sub-row integration times and will only have a visible effect for small values of R0x009. The total integration time, \(t_{INT} \), is shown in the equations below (PIXCLK_PERIOD is in terms of master clock periods):

\[
\begin{align*}
\text{Row Time} & = (R0x004 + HBLANK_REG + 8(\text{when border is set})) \times PIXCLK_PERIOD \\
\text{Integration Overhead} & = 182 \text{ master clock periods} \\
\text{Shutter Delay} & = R0x00C/2 \times PIXCLK_PERIOD
\end{align*}
\]

where:

\[
\begin{align*}
182 & \text{ master clock periods} \\
806,388 & \text{ master clock periods} \\
811,978 & \text{ master clock periods}
\end{align*}
\]

with default settings for NTSC:

\[
\begin{align*}
t_{INT} & = R0x009 \times \text{Row Time} - \text{Integration Overhead} - \text{Shutter Delay} \\
& = (470 \times 858 \times 2) - 182 - 0 = 806,388 \text{ master clock periods} \\
& = (470 \times 864 \times 2) - 182 - 0 = 811,978 \text{ master clock periods}
\end{align*}
\]

In this equation, the integration overhead corresponds to the delay between the row reset sequence and the row sample (read) sequence.
The integration overhead shown is valid only for the default PIXCLK_PERIOD and default sample (R0x07E) and reset (R0x087) values.

Typically, the value of the shutter width register (R0x009) is limited to the number of rows per frame (which includes vertical blanking rows), such that the frame rate is not affected by the integration time.

If R0x009 is increased beyond the total number of rows per frame (525 for NTSC, 625 for PAL), the sensor will add additional blanking rows as needed and violate the frame time requirement of NTSC and PAL. However, the effective value of R0x009 is always limited by the settings in R0x013 and R0x014.

A second constraint is that tINT must be adjusted to avoid banding in the image caused by light flicker. This means that tINT must be a multiple of 1/120 of a second under 60Hz flicker, and a multiple of 1/100 of a second under 50Hz flicker.

Maximum Shutter Delay

The shutter delay can be used to reduce the integration time. A programmed value of \(N\) reduces the integration time by \(N\) master clock periods. The maximum shutter delay is set by the row time and the sample time, as shown in the equations below:

\[
\text{max shutter delay} = \text{Row Time} - \text{Shutter Overhead} \tag{EQ 15}
\]

where:

\[
\text{Row Time} = (R0x004 + \text{HBLANK_REG}) \times \text{PIXCLK}_\text{PERIOD} \tag{EQ 16}
\]

\[
\text{Shutter Overhead (NTSC)} = 356 \text{ master clock periods} \tag{EQ 17}
\]

\[
\text{Shutter Overhead (PAL)} = 368 \text{ master clock periods} \tag{EQ 18}
\]

with default settings:

\[
\text{NTSC max shutter delay} = (858 \times 2) - 356 = 1360 \text{ master clock periods} \tag{EQ 19}
\]

\[
\text{PAL max shutter delay} = (864 \times 2) - 368 = 1360 \text{ master clock periods} \tag{EQ 20}
\]

If the value in this register exceeds the maximum value given by this equation, the sensor may not generate an image. Again, the overhead time shown in this equation is only valid for the default PIXCLK_PERIOD, and the default sample (R0x7E:0) and reset (R0x87:0) values.

Figure 19 on page 32, illustrates the integration time for each sensor row versus the shutter width. Odd rows are integrated first followed by even rows.
Figure 19: Integration Window of Each Sensor Row for NTSC Mode (Interlaced Readout)

Integration window of each row when shutter width $R0x009[15:0] = 525$
Shutter delay $R0x00C[15:0] = 0$

Integration window of each row when shutter width $R0x009[15:0] = 1$
Shutter delay $R0x00C[15:0] = 0$

Note: Drawings not to scale
Modes and Timing

This section provides an overview of the typical usage modes and related timing information for the MT9V125.

Composite Video Output

The analog composite video output is enabled by default and is the main usage mode for the MT9V125.

The external pin NTSC_PAL_SELECT can be used to configure the device for default NTSC or PAL operation. This and other video configuration settings are available as register settings accessible through the serial interface. For proper NTSC and PAL operation, use only default register values.

NTSC

Both differential and single-ended connections of the full NTSC format are supported. The differential connection that uses two output lines is used for low noise or long distance applications. The single-ended connection is used for PCB tracks and screened cable where noise is not a concern. The NTSC format has three black lines at the bottom of each image for padding (which most LCDs do not display).

PAL

The PAL format is supported with 480 active image rows only. Black bars are padded on top and bottom of the image for PAL format support. The PAL format has 24 black lines at the top and bottom of each image for padding.

NTSC or PAL with External Image Processing

The on-chip video encoder and DAC can be used with external data stream input (DIn[7:0] port). Correct NTSC or PAL formatted CCIR656 data is required for correct composite video output.

This mode can typically be used together with data output on the parallel DOUT[7:0] port—for example, for external overlay solutions.

Single-Ended and Differential Composite Output

The composite output can be operated in a single-ended or differential mode by simply changing the external resistor configuration. For single-ended termination, two schematics are presented. The first is SMPTE-compliant; the second is a low-cost alternative.

For differential mode termination, the first differential schematic; Figure 22 on page 36, is SMPTE-compliant. The other two are lost-cost alternatives.

See Figure 20 on page 34 through Figure 24 on page 37 for termination schematics.

Note: The differential schematics have not been tested.
Figure 20: Single-Ended Termination—SMPTE Compliant

Typical Values for LC

- $R = 75\,\Omega$
- $C = 267\,\text{pF}$
- $L = 2.7\,\mu\text{H}$
- R_0, R_2, R_3
- C_2, L_3

MT9V125: SOC VGA Digital Image Sensor
Modes and Timing

Figure 21: Single-Ended Termination

VDD

i = IPLUS

Chip Boundary

75Ω Single-Ended

Typical Values for LC

L0 = 680 nH
L1 = 2.2 μH
L2 = 680 nH

C0 = 220 pF
C1 = 220 pF

Single-ended
e.g. PCB Track
e.g. 75Ω COAX

75Ω Terminated

R0 = 75Ω

75Ω Single-ended

Typical Values for LC

L = 2.2 μH
C = 220 pF

Downloaded from Arrow.com.
Figure 22: Differential Connection—SMPTE-Compliant

- Resonant lift (differential)
 - R10: R = 12.5
 - R11: R = 12.5
 - INYUKp
 - INYUKn
 - C0: C = 965pF
 - L0: L = 2.07μH
 - R3: R = 37.5
 - R4: R = 5.75

- Butterworth filter @ 12.825 MHz - 3dB (differential)
 - L1: L = 383nH
 - L2: L = 1.24μH
 - L3: L = 383nH
 - C1: C = 200pF
 - L4: L = 383nH
 - L5: L = 1.24μH
 - L6: L = 383nH
 - C2: C = 200pF

- IO
 - io
 - IDC
 - 2/37.5

- OUTYUKp
 - OUTYUKn
 - R2: R = 12.5

Resonant lift (differential):
- L0: L = 2.07μH
- C0: C = 965pF
- R3: R = 37.5
- R4: R = 5.75

Butterworth filter:
- L1: L = 383nH
- L2: L = 1.24μH
- L3: L = 383nH
- C1: C = 200pF
- L4: L = 383nH
- L5: L = 1.24μH
- L6: L = 383nH
- C2: C = 200pF
Figure 23: Differential Connection—Grounded Terminations

Figure 24: Differential Connection—Floating Termination

Typical Values for LC

R0 = 37.5Ω
R1 = 37.5Ω
R2 = 75Ω
R6 = 75Ω
R7 = 75Ω
Serial (LVDS) Output

The serial high-speed output port supports the interlaced CCIR-656 data format.

The LVDS port is disabled by default, but can be enabled by the external pin LVDS_ENABLE. This pin must be asserted for LVDS to function. LVDS can be disabled through R29:1[13]. LVDS is also disabled when STANDBY is asserted.

The output LVDS format is the standard 12-bit package with 10-bit payload format supported by off-the-shelf deserializers, including National (DS92LV1212A), Maxim (MAX9205), and TI (SN65LV1212). An on-chip x12 PLL is included for high-speed LVDS clock generation. LVDS output clock speed is 324 MHz for CCIR support. Table 9 describes the LVDS packet format; Figure 25 on page 39 shows the LVDS data format.

<table>
<thead>
<tr>
<th>Bit</th>
<th>CCIR-656</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit[0]</td>
<td>1 (START bit)</td>
</tr>
<tr>
<td>Bit[1]</td>
<td>PixelData[0]</td>
</tr>
<tr>
<td>Bit[9]</td>
<td>LV</td>
</tr>
<tr>
<td>Bit[10]</td>
<td>FV</td>
</tr>
<tr>
<td>Bit[11]</td>
<td>0 (STOP bit)</td>
</tr>
</tbody>
</table>
Figure 25: LVDS Serial Output Data Format

Notes:
1. Each LVDS packet contains 12 bits. It starts with a “1” (START bit) and ends with a “0” (STOP bit).
2. The 8-bit CCIR656-compliant video data byte is shifted out with the LSB bit out first, following the START bit.
3. The LV and the FV bits are sent out following the video data byte.
4. A 12x PLL generates the internal shift clock from EXTCLK input. The 8-bit \texttt{DOUT}[7:0] is concatenated with LV and FV outputs and shifted out through the differential LVDS\textunderscore POS/LVDS\textunderscore NEG outputs.
5. Refer to Table 10 for LVDS data timing.

Table 10: Serial Output Data Timing Values (for EXTCLK = 27 MHz)

<table>
<thead>
<tr>
<th>Name</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>tDW</td>
<td>2.5</td>
<td>2.7</td>
<td>3.08</td>
<td>ns</td>
</tr>
</tbody>
</table>
Parallel Output (Dout)

Interlaced

The DOUT[7:0] port supports outputting the interlaced data stream in a variety of formats, as described in more detail in “ITU-R BT.656 and RGB Output” on page 21.

Figure 26 shows the data that is output on the parallel port for CCIR656. Both NTSC and PAL formats are displayed. The blue values in Figure 26 represent NTSC (525/60). The red values represent PAL (625/50).

Figure 26: CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems

Figure 27 shows detailed vertical blanking information for NTSC timing. See Table 11 on page 42 for data on field, vertical blanking, EAV, and SAV states.

Figure 27: Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System
Table 11: Field, Vertical Blanking, EAV, and SAV States

<table>
<thead>
<tr>
<th>Line Number</th>
<th>F</th>
<th>V</th>
<th>H (EAV)</th>
<th>H (SAV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4–9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20–263</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>264–265</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>266–282</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>283–525</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 28 shows detailed vertical blanking information for PAL timing. See Table 12 for data on field, vertical blanking, EAV, and SAV states.

Figure 28: Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System

Table 12: Field, Vertical Blanking, EAV, and SAV States

<table>
<thead>
<tr>
<th>Line Number</th>
<th>F</th>
<th>V</th>
<th>H (EAV)</th>
<th>H (SAV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–22</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>23–310</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>311–312</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>313–335</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>336–623</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>624–625</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Progressive

The DOUT[7:0] port also supports progressive, raw data output. The on-chip color processor does not support reading out the pixel array progressively, but the raw pixel data can be made available in sensor stand-alone mode.

Parallel Input (DIN)

The data-in port allows external CCIR656 data to be multiplexed into the NTSC or PAL output data. Figure 29 shows the timing of the data-in (DIN[7:0]) signals. Table 13 describes timing values for the parallel input waveform. Both mode 0 and mode 1 waveforms are supported by the MT9V125.

![Figure 29: Parallel Input Data Timing Waveform Using DIN_CLK](image)

Table 13: Parallel Input Data Timing Values Using DIN_CLK

<table>
<thead>
<tr>
<th>Name</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>tDIN_CLK</td>
<td>36.975</td>
<td>–</td>
<td>–</td>
<td>DIN_CLK Period</td>
</tr>
<tr>
<td>ts</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>DIN Setup Time</td>
</tr>
<tr>
<td>th</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>DIN Hold Time</td>
</tr>
</tbody>
</table>

Notes:
1. If R19:1[4] = 1, then DIN_CLK is used to sample data on DIN bus.
2. Setup and hold time is measured with respect to the rising or falling edge of DIN_CLK which can be programmed by R19:1[3].
Modes and Timing

Interlaced Modes

True Interlaced

By default, the MT9V125 reads out the image array in a true interlaced fashion where each field maps to the odd and even rows respectively. The color pipe is supplied by a regular Bayer pattern data stream due to the “paired Bayer” CFA filters used with the pixel array, as described in “Pixel Array Structure” on page 11.

Mirroring

The MT9V125 supports both horizontal and vertical flips, regardless of the output format. Horizontal flip, column sequencing reversed, can be enabled by an external pin (HORIZ_FLIP) or a register setting (R21:1[1]). Vertical flip can be controlled through a register setting (R32:0[0]).
Reset, Clocks, and Standby

Reset

Power-up reset is asserted/de-asserted with the RESET_BAR pin, which is active LOW. In the reset state, all control registers are set to default values.

Soft reset is asserted/de-asserted by the two-wire serial interface program. In soft-reset mode, the two-wire serial interface and the register bus are still running. All control registers are reset using default values. See R13:0.

Clocks

The MT9V125 has three primary clocks:

1. A master clock coming from the EXTCLK signal.
2. A pixel clock using a clock-gated operation running at half frequency of the master clock in sensor stand-alone mode and the same frequency as EXTCLK in SOC mode.
3. DIN_CLK that is associated with the parallel DIN port.

All device clocks are turned off in power-down mode. When the MT9V125 operates in sensor stand-alone mode, the image flow pipeline clocks can be shut off to conserve power. See R13:0.

The sensor core is a master in the system. The sensor core frame rate defines the overall image flow pipeline frame rate. Horizontal blanking and vertical blanking are influenced by the sensor configuration, and are also a function of certain image flow pipeline functions. The relationship of the primary clocks is depicted in Figure 31 on page 45.

The image flow pipeline typically generates up to 16 bits per pixel—for example, YCbCr or 565RGB—but has only an 8-bit port through which to communicate this pixel data.

To generate NTSC or PAL format images, the sensor core requires a 27 MHz clock.

Figure 31: Primary Clock Relationships
Standby Pin

STANDBY is a multipurpose signal that controls three functions: low-power standby, the two-wire serial interface device address, and output signal state functions. Table 15 shows how STANDBY affects the output signal state.

Two-wire serial interface address is based on the SADDR pin XORed with the R13:0[10]; the R13:0[10] default is “0.” See Table 26 on page 57 for details. The R13:0[10] is not writable when STANDBY is asserted (“1”).

Hard standby is asserted or de-asserted on STANDBY, as described in “Power-Saving Modes” on page 47.

Table 15: STANDBY Effect on the Output State

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Driven</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>High-Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
<td>Driven</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>x</td>
<td>High-Z</td>
</tr>
</tbody>
</table>
Power-Saving Modes

The sensor can be put into the low-power standby state by either of the following mechanisms:

- Asserting STANDBY (provided that R13:0[7] = 0)
- Setting R13:0[3:2] = 01 by performing a register write through the serial register interface (R13:0[2]: analog standby = 1, R13:0[3]: chip enable = 0)

The two methods are equivalent and have the same effect:

- The source of standby is synchronized and latched. Once latched, the full standby sequence is completed even if the source of standby is removed.
- The readout of the current row is completed.
- Internal clocks are gated off.
- The analog signal chain and associated current and voltage sources are placed in a low-power state.

The standby state is maintained for as long as the standby source remains asserted. The state of the signal interface while in standby state is shown in Table 16.

<table>
<thead>
<tr>
<th>Signal</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV</td>
<td>0</td>
</tr>
<tr>
<td>LV</td>
<td>0</td>
</tr>
<tr>
<td>PIXCLK</td>
<td>1</td>
</tr>
<tr>
<td>DOUT[7:0], DOUT_LSB[1:0]</td>
<td>0</td>
</tr>
</tbody>
</table>

While in standby, the state of the internal registers is maintained. The sensor continues to respond to accesses through its serial register interface when STANDBY is asserted through a register write, as described above. The serial register interface does not respond when standby mode is entered by asserting the external STANDBY pin.

An even lower-power standby state can be achieved by stopping the input clock (EXTCLK) while in standby. If the input clock is stopped, the sensor will not respond to accesses through its two-wire serial register interface.

Exit from standby must be through the same mechanism as entry to standby. When the standby source is negated:
1. The internal clocks are restarted.
2. The analog circuitry is restored to its normal operating state.

After this sequence has completed, normal operation is resumed. If the input clock has been stopped during standby it must be restarted before leaving standby.

Floating Inputs

The following MT9V125 pins cannot be floated:

- DIN[7:0] (tie to GND if not used)
- DIN_CLK (tie to GND if not used)
- PEDESTAL—Valid for NTSC only, this pin should be pulled LOW for PAL
- LVDS ENABLE—This pin must always be pulled HIGH if LVDS is used
- SDATA—This pin is bidirectional and should not be floated
Output Data Ordering

Table 17: Output Data Ordering in DOUT RGB Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Byte</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>565RGB</td>
<td>First</td>
<td>R7</td>
<td>R6</td>
<td>R5</td>
<td>R4</td>
<td>R3</td>
<td>G7</td>
<td>G6</td>
<td>G5</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>G4</td>
<td>G3</td>
<td>G2</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
<td>B3</td>
</tr>
<tr>
<td>555RGB</td>
<td>First</td>
<td>0</td>
<td>R7</td>
<td>R6</td>
<td>R5</td>
<td>R4</td>
<td>R3</td>
<td>G7</td>
<td>G6</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>G5</td>
<td>G4</td>
<td>G3</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
<td>B3</td>
</tr>
<tr>
<td>444xRGB</td>
<td>First</td>
<td>R7</td>
<td>R6</td>
<td>R5</td>
<td>R4</td>
<td>G7</td>
<td>G6</td>
<td>G5</td>
<td>G4</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x444RGB</td>
<td>First</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R7</td>
<td>R6</td>
<td>R5</td>
<td>R4</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>G7</td>
<td>G6</td>
<td>G5</td>
<td>G4</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
</tr>
</tbody>
</table>

Notes: 1. PIXCLK is 27 MHz when EXTCLK is 27 MHz.

Table 18: Output Data Ordering in Sensor Stand-Alone Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>DOUT_LSB1</th>
<th>DOUT_LSB0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-bit Output</td>
<td>B9</td>
<td>B8</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
<td>B3</td>
<td>B2</td>
<td>B1</td>
</tr>
</tbody>
</table>

Notes: 1. PIXCLK is 13.5 MHz when EXTCLK is 27 MHz.

Table 19: Data Ordering in LVDS Serial Mode

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Start bit “1”</td>
<td>DOUT[7:0]</td>
<td>LINE_VALID</td>
<td>FRAME_VALID</td>
<td>Stop bit “0”</td>
</tr>
</tbody>
</table>

Notes: 1. Data output rate is 324 Mb/s when EXTCLK is 27 MHz.
I/O Circuitry

Figure 32 and Figure 33 on page 50 illustrate typical circuitry used for each input, output or I/O pad.

Figure 32: Typical I/O Equivalent Circuits

![I/O Circuit Diagram]

Notes:
1. All I/O circuitry shown above is for reference only. The actual implementation may be different.
Figure 33: LVDS and NTSC Blocks

Notes: 1. All I/O circuitry shown above is for reference only. The actual implementation may be different.
I/O Timing

Digital Output

By default, the MT9V125 launches pixel data, FV, and LV synchronously with the falling edge of PIXCLK. The expectation is that the user captures data, FV, and LV using the rising edge of PIXCLK. The timing diagram is shown in Figure 34.

As an option, the polarity of the PIXCLK can be inverted from the default. This is achieved by programming R155:1[9] to “0.”

Figure 34: Digital Output I/O Timing

![Timing Diagram for MT9V125 I/O Output](image)

Table 20: Digital Output I/O Timing

<table>
<thead>
<tr>
<th>Signal</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTCLK</td>
<td>(t_{\text{extclk_high}})</td>
<td></td>
<td>17</td>
<td>–</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{extclk_low}})</td>
<td></td>
<td>17</td>
<td>–</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{extclk_period}})</td>
<td>–</td>
<td>37.0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{extclk}})</td>
<td>max +/- 100 ppm</td>
<td>27</td>
<td>–</td>
<td>–</td>
<td>MHz</td>
</tr>
<tr>
<td>PIXCLK</td>
<td>(t_{\text{pixclk_low}})</td>
<td></td>
<td>14</td>
<td>–</td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{pixclk_high}})</td>
<td></td>
<td>14</td>
<td>–</td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{pixclk_period}})</td>
<td>36.7</td>
<td>37</td>
<td>37.4</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DATA[7:0]</td>
<td>(t_{\text{dout_dout}})</td>
<td></td>
<td>14</td>
<td>18.5</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{dout_su}})</td>
<td></td>
<td>14</td>
<td>18.5</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td>FV/LV</td>
<td>(t_{\text{fvlv_fvlv}})</td>
<td></td>
<td>8</td>
<td>14</td>
<td>18</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{fvlv_su}})</td>
<td></td>
<td>14</td>
<td>18.5</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(t_{\text{fvlv_ho}})</td>
<td></td>
<td>14</td>
<td>18.5</td>
<td>23</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes: 1. PIXCLK may be inverted by programming register R155:1[9] = 0.
Electrical Specifications

Table 21: Electrical Characteristics and Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O and core digital voltage (VDD)</td>
<td>–</td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
<td>V</td>
</tr>
<tr>
<td>LVDS PLL voltage (VDDPLL)</td>
<td>–</td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
<td>V</td>
</tr>
<tr>
<td>Video DAC voltage (VDDDAC)</td>
<td>–</td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
<td>V</td>
</tr>
<tr>
<td>Analog voltage (VAA)</td>
<td>–</td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
<td>V</td>
</tr>
<tr>
<td>Pixel supply voltage (VAAPIX)</td>
<td>–</td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
<td>V</td>
</tr>
<tr>
<td>Leakage current</td>
<td>STANDBY, EXTCLK: HIGH or LOW</td>
<td>10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imager operating temperature</td>
<td>–</td>
<td>–40</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Functional operating temperature</td>
<td>–</td>
<td>–40</td>
<td>+105</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>–</td>
<td>–40</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. VDD, VAA, and VAAPIX must all be at the same potential to avoid excessive current draw. Care must be taken to avoid excessive noise injection in the analog supplies if all three supplies are tied together.
Table 22: Video DAC Electrical Characteristics

$T_A = $ Ambient $= 25^\circ$C; All supplies at 2.8V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Single-ended mode</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>bits</td>
</tr>
<tr>
<td>DNL</td>
<td>Single-ended mode</td>
<td>–</td>
<td>0.8</td>
<td>1.1</td>
<td>bits</td>
</tr>
<tr>
<td>INL</td>
<td>Single-ended mode</td>
<td>–</td>
<td>5.7</td>
<td>8.1</td>
<td>bits</td>
</tr>
<tr>
<td>Output local load</td>
<td>Single-ended mode, output pad (DAC_POS)</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Single-ended mode, unused output (DAC_NEG)</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td>Output voltage</td>
<td>Single-ended mode, code 000h</td>
<td>–</td>
<td>0.02</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Single-ended mode, code 3FFh</td>
<td>–</td>
<td>1.42</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td>Single-ended mode, code 000h</td>
<td>–</td>
<td>0.6</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Single-ended mode, code 3FFh</td>
<td>–</td>
<td>37.9</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential mode</td>
<td>–</td>
<td>0.7</td>
<td>1</td>
<td>bits</td>
</tr>
<tr>
<td>INL</td>
<td>Differential mode</td>
<td>–</td>
<td>1.4</td>
<td>3</td>
<td>bits</td>
</tr>
<tr>
<td>Output local load</td>
<td>Differential mode per pad (DAC_POS and DAC_NEG)</td>
<td>–</td>
<td>37.5</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td>Output voltage</td>
<td>Differential mode, code 000h, pad dacp</td>
<td>–</td>
<td>0.37</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Differential mode, code 000h, pad dacn</td>
<td>–</td>
<td>1.07</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Differential mode, code 3FFh, pad dacp</td>
<td>–</td>
<td>1.07</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Differential mode, code 3FFh, pad dacn</td>
<td>–</td>
<td>0.37</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>Differential mode, code 000h, pad dacp</td>
<td>–</td>
<td>0.6</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Differential mode, code 000h, pad dacn</td>
<td>–</td>
<td>37.9</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Differential mode, code 3FFh, pad dacp</td>
<td>–</td>
<td>37.9</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Differential mode, code 3FFH, pad dacn</td>
<td>–</td>
<td>0.6</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Differential output, mid level</td>
<td>Differential mode</td>
<td>–</td>
<td>0.72</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>Estimate</td>
<td>–</td>
<td>–</td>
<td>55</td>
<td>mA</td>
</tr>
<tr>
<td>DAC_REF1</td>
<td>DAC Reference</td>
<td>–</td>
<td>1.15\pm0.2</td>
<td>–</td>
<td>V</td>
</tr>
</tbody>
</table>

Notes: 1. $R_{DAC_REF} = 2.8\,k\Omega$
Table 23: Digital I/O Parameters

<table>
<thead>
<tr>
<th>Signal</th>
<th>Parameter</th>
<th>Definitions</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Outputs</td>
<td>Load capacitance</td>
<td></td>
<td></td>
<td>1</td>
<td>–</td>
<td>30</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>Output signal slew</td>
<td></td>
<td>2.8V, 30pF load</td>
<td>–</td>
<td>0.72</td>
<td>–</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8V, 5pF load</td>
<td>–</td>
<td>1.25</td>
<td>–</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td>VOH</td>
<td>Output high voltage</td>
<td></td>
<td>2.5</td>
<td>2.8</td>
<td>3.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VOL</td>
<td>Output low voltage</td>
<td></td>
<td>–0.3</td>
<td>–</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>IOH</td>
<td>Output high current</td>
<td>VDD = 2.8V, VOH = 2.4V</td>
<td>16</td>
<td>–</td>
<td>26.5</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>IOL</td>
<td>Output low current</td>
<td>VDD = 2.8V, VOL = 0.4V</td>
<td>15.9</td>
<td>–</td>
<td>21.3</td>
<td>mA</td>
</tr>
<tr>
<td>All Inputs</td>
<td>VIH</td>
<td>Input high voltage</td>
<td>VDD = 2.8V</td>
<td>1.48</td>
<td>–</td>
<td>VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>Input low voltage</td>
<td>VDD = 2.8V</td>
<td>–</td>
<td>–</td>
<td>1.43</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>In</td>
<td>Input leakage current</td>
<td></td>
<td>–2</td>
<td>–</td>
<td>2</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Signal CAP</td>
<td>Input signal capacitance</td>
<td></td>
<td>–</td>
<td>3.5</td>
<td>–</td>
<td>pF</td>
</tr>
</tbody>
</table>

Power Consumption

Table 24: Power Consumption

<table>
<thead>
<tr>
<th>Mode</th>
<th>Sensor (mW)</th>
<th>Image-Flow Proc (mW)</th>
<th>I/Os (mW)¹</th>
<th>DAC (mW)</th>
<th>LVDS (mW)</th>
<th>Total (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active mode ²</td>
<td>60</td>
<td>100</td>
<td>10</td>
<td>150</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>Standby</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.56</td>
</tr>
</tbody>
</table>

Notes:
1. 10pF nominal.
2. (NTSC or PAL) and LVDS should not be operated at the same time.
NTSC Signal Parameters

Table 25: NTSC Signal Parameters

\[T_A = \text{Ambient} = 25^\circ\text{C}; \text{All supplies at 2.8V} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Frequency</td>
<td></td>
<td>15730</td>
<td>15735</td>
<td>15740</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Field Frequency</td>
<td></td>
<td>59.00</td>
<td>59.94</td>
<td>60.00</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Sync Rise Time</td>
<td></td>
<td>120</td>
<td>164</td>
<td>170</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Sync Fall Time</td>
<td></td>
<td>120</td>
<td>167</td>
<td>170</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Sync Width</td>
<td></td>
<td>4.60</td>
<td>4.74</td>
<td>4.80</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Sync Level</td>
<td></td>
<td>37</td>
<td>39.9</td>
<td>43</td>
<td>IRE</td>
<td>2, 4</td>
</tr>
<tr>
<td>Burst Level</td>
<td></td>
<td>37</td>
<td>39.7</td>
<td>43</td>
<td>IRE</td>
<td>2, 4</td>
</tr>
<tr>
<td>Sync to Setup (with pedestal off)</td>
<td></td>
<td>9.10</td>
<td>9.40</td>
<td>9.40</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Sync to Burst Start</td>
<td></td>
<td>5.00</td>
<td>5.31</td>
<td>5.60</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Front Porch</td>
<td></td>
<td>1.40</td>
<td>1.40</td>
<td>1.60</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Burst Width</td>
<td></td>
<td>8.0</td>
<td>8.5</td>
<td>10.0</td>
<td>cycles</td>
<td></td>
</tr>
<tr>
<td>Black Level</td>
<td></td>
<td>6.5</td>
<td>7.5</td>
<td>8.5</td>
<td>IRE</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>White Level</td>
<td></td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>IRE</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Notes:
1. Black and white levels are referenced to the blanking level.
2. NTSC convention standardized by the IRE (1 IRE = 7.14mV).
3. Encoder contrast setting R0x011 = R0x001 = 0.
4. DAC ref = 2.8kΩ, load = 37.5Ω
Package and Die Dimensions

Figure 35: 52-Ball iBGA Package Outline Drawing

Notes: 1. All dimensions in millimeters.
Appendix A: Serial Bus Description

Registers are written to and read from the MT9V125 through the two-wire serial interface bus. The sensor is a serial interface slave controlled by the serial clock (SCLK), which is driven by the serial interface master. Data is transferred in and out of the MT9V125 through the serial data (SDATA) line. The SDATA and SCLK lines are pulled up to VDD off-chip by a 1.5KΩ resistor. Either the slave or the master device can pull the SDATA line down—the serial interface protocol determines which device is allowed to pull the SDATA line down at any given time.

Protocol

The two-wire serial interface defines several different transmission codes, as follows:
- a start bit
- an acknowledge bit
- a no-acknowledge bit
- an 8-bit message
- a stop bit
- the slave device 8-bit address

The SADDR pin and R13:0[10] are used to select between two different addresses in case of conflict with another device. If SADDR XOR R13:0[10] is LOW, the slave address is 0x90; if SADDR XOR R13:0[10] is HIGH, the slave address is 0xBA. See Table 26 below.

Table 26: Two-Wire Interface ID Address Switching

<table>
<thead>
<tr>
<th>SADDR</th>
<th>R13:0[10]</th>
<th>Two-Wire Interface Address ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0x90</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0xBA</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0xBA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0x90</td>
</tr>
</tbody>
</table>

Sequence

A typical read or write sequence begins with the master sending a start bit. After the start bit, the master sends the 8-bit slave device address. The last bit of the address determines if the request is a READ or a WRITE, where a “0” indicates a WRITE and a “1” indicates a READ. The slave device acknowledges its address by sending an acknowledge bit back to the master.

If the request was a write, the master transfers the 8-bit register address for where a WRITE should take place. The slave sends an acknowledge bit to indicate that the register address has been received. The master then transfers the data, 8 bits at a time, with the slave sending an acknowledge bit after each 8 bits.

The MT9V125 uses 16-bit data for its internal registers, thus requiring two 8-bit transfers to write to one register. After 16 bits are transferred, the register address is automatically incremented, so that the next 16 bits are written to the next register address. The master stops writing by sending a start or stop bit.

A typical read sequence is executed as follows. The master sends the write mode slave address and 8-bit register address, just as in the write request. The master then sends a start bit and the read mode slave address. The master clocks out the register data, 8 bits
at a time and sends an acknowledge bit after each 8-bit transfer. The register address is auto-incremented after every 16 bits is transferred. The data transfer is stopped when the master sends a no-acknowledge bit.

Bus Idle State

The bus is idle when both the data and clock lines are HIGH. Control of the bus is initiated with a start bit, and the bus is released with a stop bit. Only the master can generate the start and stop bits.

Start Bit

The start bit is defined as a HIGH-to-LOW transition of the data line while the clock line is HIGH.

Stop Bit

The stop bit is defined as a LOW-to-HIGH transition of the data line while the clock line is HIGH.

Slave Address

The 8-bit address of a two-wire serial interface device consists of seven bits of address and one bit of direction. A “0” in the LSB of the address indicates write mode, and a “1” indicates read mode. The write address of the sensor is 0xBA; the read address is 0xBB. This applies only when the SADDR is set HIGH.

Data Bit Transfer

One data bit is transferred during each clock pulse. The serial interface clock pulse is provided by the master. The data must be stable during the HIGH period of the two-wire serial interface clock—it can only change when the serial clock is LOW. Data is transferred eight bits at a time, followed by an acknowledge bit.

Acknowledge Bit

The master generates the acknowledge clock pulse. The transmitter (which is the master when writing or the slave when reading) releases the data line, and the receiver signals an acknowledge bit by pulling the data line LOW during the acknowledge clock pulse.

No-Acknowledge Bit

The no-acknowledge bit is generated when the data line is not pulled down by the receiver during the acknowledge clock pulse. A no-acknowledge bit is used to terminate a read sequence.
Two-Wire Serial Interface Sample

Write and read sequences (SADDR = 1).

16-Bit WRITE Sequence

A typical write sequence for writing 16 bits to a register is shown in Figure 36. A start bit sent by the master starts the sequence, followed by the write address. The image sensor sends an acknowledge bit and expects the register address to come first, followed by the 16-bit data. After each 8-bit transfer, the image sensor sends an acknowledge bit. All 16 bits must be written before the register is updated. After 16 bits are transferred, the register address is automatically incremented so that the next 16 bits are written to the next register. The master stops writing by sending a start or stop bit.

Figure 36: WRITE Timing to R0x009—Value 0x0284

16-Bit READ Sequence

A typical read sequence is shown in Figure 37. The master writes the register address, as in a write sequence. Then a start bit and the read address specify that a read is about to occur from the register. The master then clocks out the register data, 8 bits at a time. The master sends an acknowledge bit after each 8-bit transfer. The register address should be incremented after every 16 bits is transferred. The data transfer is stopped when the master sends a no-acknowledge bit.

Figure 37: READ Timing From R0x009; Returned Value 0x0284

8-Bit WRITE Sequence

To be able to write one byte at a time to the register, a special register address is added. The 8-bit WRITE is started by writing the upper 8 bits to the desired register, then writing the lower 8 bits to the special register address (R0x0F1). The register is not updated until all 16 bits have been written. It is not possible to update just half of a register. In Figure 38 on page 60, a typical sequence for an 8-bit WRITE is shown. The second byte is written to the special register (R0x0F1).
Figure 38: WRITE Timing to R0x009—Value 0x0284

8-Bit READ Sequence

To read one byte at a time, the same special register address is used for the lower byte. The upper 8 bits are read from the desired register. By following this with a read from the special register (R0x0F1), the lower 8 bits are accessed (Figure 39). The master sets the no-acknowledge bits.

Figure 39: READ Timing From R0x009; Returned Value 0x0284

Continued
Two-Wire Serial Bus Timing

The two-wire serial interface operation requires a certain minimum of master clock cycles between transitions. These are specified below in master clock cycles.

Figure 40: Serial Host Clock Period and Duty Cycle

Figure 41: Serial Host Interface Start Condition Timing

Figure 42: Serial Host Interface Stop Condition Timing

Notes: 1. All timing are in units of master clock cycle.

Figure 43: Serial Host Interface Data Timing for Write

Notes: 1. SDATA is driven by an off-chip transmitter.
Figure 44: Serial Host Interface Data Timing for Read

Notes: 1. SDATA is pulled LOW by the sensor or allowed to be pulled HIGH by a pull-up resistor off-chip.

Figure 45: Acknowledge Signal Timing after an 8-bit Write to the Sensor

Figure 46: Acknowledge Signal Timing after an 8-bit Read from the Sensor

Notes: 1. After a read, the master receiver must pull down SDATA to acknowledge receipt of data bits. When read sequence is complete, the master must generate a no acknowledge by leaving SDATA to float HIGH. On the following cycle, a start or stop bit may be used.
Appendix B–Sensor Core Characteristics

Table 27: MT9V125 Rev4 Imager Sensor Core Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Unit</th>
<th>Typ (average)</th>
<th>Measurement condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sg</td>
<td>Green response</td>
<td>LSB</td>
<td>516</td>
<td>Conditions 1</td>
<td>T int = 1/120 s</td>
</tr>
<tr>
<td>Rr</td>
<td>Response Comparison</td>
<td></td>
<td>0.611</td>
<td>Conditions 1</td>
<td>T int = 1/120 s</td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td></td>
<td>0.539</td>
<td>Conditions 1</td>
<td>T int = 1/120 s</td>
</tr>
<tr>
<td>Vsat</td>
<td>Pixel saturation signal</td>
<td>LSB</td>
<td>1023</td>
<td>Conditions 2</td>
<td></td>
</tr>
<tr>
<td>g_t</td>
<td>Readout noise</td>
<td>LSB</td>
<td>4.11</td>
<td>Conditions 3</td>
<td>Gain = Max</td>
</tr>
<tr>
<td>g_t</td>
<td></td>
<td>LSB</td>
<td>0.59</td>
<td>Conditions 3</td>
<td>Gain = 1</td>
</tr>
<tr>
<td>Vdark</td>
<td>Dark current</td>
<td>LSB/s</td>
<td>162</td>
<td>Conditions 4</td>
<td>T_s = 55°C, Gain = Max</td>
</tr>
<tr>
<td>PRNU</td>
<td>Photoresponse non-uniformity</td>
<td>%</td>
<td>0.87</td>
<td>Conditions 5</td>
<td>Gain = 1</td>
</tr>
<tr>
<td>DSNU</td>
<td>Dark signal non-uniformity</td>
<td>%</td>
<td>0.045</td>
<td>Conditions 6</td>
<td>Gain = Max</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
<td>dB</td>
<td>38.5</td>
<td>Conditions 5</td>
<td>Gain = 1</td>
</tr>
<tr>
<td>DynR</td>
<td>Dynamic Range</td>
<td>dB</td>
<td>71.7</td>
<td>Conditions 6</td>
<td>Gain = Max</td>
</tr>
</tbody>
</table>

Table 27: MT9V125 Rev4 Imager Sensor Core Characteristics

Description of Measurement Conditions

Note: All measurements are done at nominal power supply voltages, at default settings, and at ambient room temperature except where noted. For microlens shifted array, measurements are performed in the window 32 x 32 pixels in the center of pixel array, where the signal value is maximum. All measurements in the dark are performed across the whole pixel array.

Measurement Conditions 1

A standard pattern box (luminance 706 cd/m², color temperature of 3100K halogen source) is used as an illumination source. A lens with F5.6 and a standard CM500 IR-cut filter (t = 1mm) is used to project the image from a uniformly illuminated surface of the pattern box to the sensor. Signals in the center of each color plane, as an average of 128 frames, at default integration time and unity gain. Signals in the center of each color plane, as an average of 128 frames, at default integration time and unity gain. Values of dark signals, (see “Measurement Conditions 6” on page 64) are subtracted from light signals. Green response and response comparison are calculated according to the following formula:

\[V_G = \frac{(V_{Gr} + V_{Gb})}{2} \] (EQ 21)
\[S_G = V_G \text{ (LSB)} \] (EQ 22)
\[R_r = \frac{V_R}{V_G} \] (EQ 23)
\[R_b = \frac{V_B}{V_G} \] (EQ 24)

Measurement Conditions 2

Illumination source and lens-filter are the same as in “Measurement Conditions 1”. Image sensor characteristics are calculated for green pixels only, in a 16 x16 pixels windows for Gr and Gb color planes, in LSB on the sensor output. Saturation signal is measured at exposure 10 times higher than exposure corresponding to 500 LSB on the sensor output at unity gain:

\[V_{sat} = \frac{(V_{Grsat} + V_{Gbsat})}{2} \] (EQ 25)
Measurement Conditions 3

The array is isolated from light. Readout noise – σ_t – is measured as average temporal noise across the whole pixel array, as an average for Gr and Gb color planes. Readout noise is measured in LSB on the sensor output, using 128 frames, default integration time with two different settings for gain: unity gain and maximum analog gain (511/32).

Measurement Conditions 4

The array is isolated from light. Dark current is measured at maximum analog gain (511/32), across the whole pixel array, in LSBs on the sensor output, at sensor temperature equal to 55°C.

Measurement Conditions 5

Illumination source and lens-filter are the same as in Conditions 1. PRNU (an average for Gr and Gb color planes) is calculated as a ratio of Fixed Pattern Noise to the Signal, for the signal equivalent to 50% of saturation (exposure time is adjusted), at unity gain, 16 by 16 pixels windows for Gr and Gb color planes, using 128 frames. Values of dark signals (see Conditions 6) are subtracted from light signals:

$$\text{PRNU}_\text{Gr} = \left(\frac{\text{FPN}_\text{Gr}}{V_{\text{Grsat}}} \right) \times 100\% \quad (\text{EQ} \ 26)$$

$$\text{PRNU}_\text{Gb} = \left(\frac{\text{FPN}_\text{Gb}}{V_{\text{Gbsat}}} \right) \times 100\% \quad (\text{EQ} \ 27)$$

$$\text{PRNU} = \frac{\text{PRNU}_\text{Gr} + \text{PRNU}_\text{Gb}}{2} \quad (\text{EQ} \ 28)$$

SNR (an average of Gr and Gb color planes) is calculated as a ratio of green signal to temporal noise at the signal equivalent to 50% of saturation (exposure time is adjusted), at unity gain, using 128 frames, 16 x 16 pixels windows for Gr and Gb color planes, according to the next formulas:

$$\text{SNR}_\text{Gr} = 20 \log_{10} \left(\frac{V_{\text{Gr}}}{\sigma_{t\text{Gr}}} \right) \quad (\text{EQ} \ 29)$$

$$\text{SNR}_\text{Gb} = 20 \log_{10} \left(\frac{V_{\text{Gb}}}{\sigma_{t\text{Gb}}} \right) \quad (\text{EQ} \ 30)$$

$$\text{SNR} = \frac{\text{SNR}_\text{Gr} + \text{SNR}_\text{Gb}}{2} \quad (\text{EQ} \ 31)$$

Measurement Conditions 6

The array is isolated from light. Dark signal non-uniformity is measured across the whole pixel array at default settings except gain, which is set to the maximum analog value (511/32). Dark signal non-uniformity (an average of Gr and Gb color planes) is calculated as a ratio of measured fixed pattern noise to the saturation signal (see “Measurement Conditions 2” on page 63):

$$\text{DSNU}_\text{Gr} = \left(\frac{32 \times \text{FPN}_\text{Gr}}{511} \right) / V_{\text{Grsat}} \times 100\% \quad (\text{EQ} \ 32)$$

$$\text{DSNU}_\text{Gb} = \left(\frac{32 \times \text{FPN}_\text{Gb}}{511} \right) / V_{\text{Gbsat}} \times 100\% \quad (\text{EQ} \ 33)$$

$$\text{DSNU} = \frac{\text{DSNU}_\text{Gr} + \text{DSNU}_\text{Gb}}{2} \quad (\text{EQ} \ 34)$$

Dynamic range (an average of Gr and Gb color planes) is calculated as a ratio of the saturation signal (see “Measurement Conditions 2” on page 63) to readout noise measured at the maximum analog gain value (511/32) (see “Measurement Conditions 3”), according to next formulas:

$$\text{DynR}_\text{Gr} = 20 \log_{10} \left(\frac{V_{\text{Grsat}}}{\sigma_{t\text{Gr}}} \times \frac{511}{32} \right) \quad (\text{EQ} \ 35)$$

$$\text{DynR}_\text{Gb} = 20 \log_{10} \left(\frac{V_{\text{Gbsat}}}{\sigma_{t\text{Gb}}} \times \frac{511}{32} \right) \quad (\text{EQ} \ 36)$$

$$\text{DynR} = \frac{\text{DynR}_\text{Gr} + \text{DynR}_\text{Gb}}{2} \quad (\text{EQ} \ 37)$$
Supplementary Plots

Figure 47: Typical Signal to Noise Ratio as a function of Exposure

The array is illuminated from Davidson Optronic TVO system using green spectral filter with $\lambda_{max} = 550\pm5$nm and full width half maximum (FWHM) = 40nm. During measurements, gain was adjusted to optimal for each value of exposure.
Figure 48: Typical Spectral Characteristic

![MT9V125 Rev4 Quantum Efficiency Graph](image-url)
Revision History

Rev. W .. 6/19/15
- Updated “Ordering Information” on page 2

Rev. V .. 4/16/15
- Updated “Ordering Information” on page 2

Rev. U .. 3/31/15
- Converted to ON Semiconductor template

Rev. T .. 5/4/11
- Updated trademarks
- Applied updated template

Rev. S .. 6/2/10
- Updated to non-confidential

Rev. R, Production 5/6/10
- Updated to Aptina template
- Transferred registers to register reference

Rev. Q, Production 1/3/08
- Updated Figure 2: “Typical Usage Configuration with Overlay,” on page 7, moved labels closed to their respective buses
- Added Figure 11 and Figure 12 on page 18 to explain AWB measurement area
- Updated description of AWB Window Boundaries in Table 15, “Camera Control Register—Address Page 2,” on page 63
- Updated Figure 29 and Table 13 on page 43
- Added Figure 30 and Table 14 on page 44
- Updated Figure 3 on page 8
- Updated Note 1 in Table 13, “Parallel Input Data Timing Values Using DIN_CLK,” on page 43

Rev. P, Production 8/3/07
- Added “Appendix B—Sensor Core Characteristics” on page 63.
- Added Figure 47: “Typical Signal to Noise Ratio as a function of Exposure,” on page 66.
- Added Figure 48: “Typical Spectral Characteristic,” on page 66.
- Updated Table 23, “Digital I/O Parameters,” on page 54.
- Updated Figure 40 and Figure 41 on page 61.
- Updated Figure 45 on page 62.

Rev. N, Production 4/03/07
- Updated Figure 32 on page 49, Figure 33 on page 50, Table 3 on page 9, Table 21 on page 52 and, Table 22 on page 53.

Rev. M, Production 3/13/07
- Added I/O circuitry diagrams see Figure 32 on page 49 and Figure 33 on page 50.
- Re-ordered pads for DIN[7:0] and DOUT[7:0] in Table 3 on page 9.
- Updated Figure 34 on page 51.
- Fixed typos.
- Added DigitalClarity to trademarks on last page.
Rev. L, Production ... 1/17/07

- Updates to Table 1 on page 1, Table 2 on page 2, and Table 20 on page 51.
- Updates to Figure 3 on page 8, Figure 15 on page 25, Figure 19 on page 32.
- Updates to Figures 20 through Figure 24 on page 37.
- Updates to Figure 34 on page 51.
- Added Figure 40 on page 61.
- Minor changes for typos throughout document.

Rev. K, Production .. 11/29/06

- Updates to Figure 34 and Table 19 on page 48.
- Updates to Table 23 and Table 25 on page 55.

Rev. J, Production .. 11/21/06

- Updated register/variable information in the following tables: Table 10 on page 30, Table 11 on page 32, Table 12 on page 34, Table 13 on page 39, Table 14 on page 48, and Table 15 on page 63 for Rev4_3.
- Added ordering information in Table 2 on page 2.

Rev. H, Production .. 10/6/06

- Changed colors in Figure 1 on page 7, Figure 2 on page 7, Figure 3 on page 8, Figure 5 on page 11, and Figure 6 on page 11.

Rev. G, Production .. 8/29/06

- Added “Data Sheet Applicable To” on page 1.
- Added Table 25, “NTSC Signal Parameters,” on page 55.
- Updated See “Sensor Registers—Short Descriptions” on page 30.
- Updated register information in Table 13 on page 39, Table 14 on page 48, and Table 15 on page 63.
- Updated package drawing Figure 35: 52-Ball iBGA Package Outline Drawing on page 56.

Rev. F, Production .. 8/1/06

- Updated all figures that were not using MarCom standard colors. No technical content of the figures was changed.
- Updated Equation 1 on page 28 through Equation 20 on page 31 using FrameMaker equation tool.
- Many changes were made to make the document more consistent with MarCom standards.
- Latin abbreviations were removed.
- NTSC/PAL changed to “NTSC and PAL” or “NTSC or PAL” where appropriate.

Rev. E, Production .. 4/28/06

- Updated Table 13 on page 43.
- Updated Figure 33 on page 50.
- Updated Figure 3 on page 8 and added note about Vaa and VAAPIX.
- Added note about Vaa and VAAPIX to Table 3 on page 9.
- Fixed notes in Table 4, Readout Mode Register Settings – Dout Not Qualified and Table 6, Readout Mode Register Settings – Dout Qualified.
- Removed “Preliminary” designation on Figure 20 on page 34, Figure 21 on page 35, Figure 23 on page 37, and Figure 24 on page 37.
- Updated Figure 19 on page 32.
MT9V125: SOC VGA Digital Image Sensor
Revision History

Rev. D, Preliminary .. 4/06/06
 • Updated Figure 22 on page 36.

Rev. C, Preliminary .. 11/3/05
 • Updated register definitions from Rev1 to Rev2. New register listing formation.
 • Updated NTSC/PAL termination recommendations with SMTPE Compliant schematics.
 • Updated "Minimum Horizontal Blanking (in sensor stand-alone mode)" on page 29.
 • Updated "Maximum Shutter Delay" on page 31.

Rev. B ... 04/29/05
 • Updated to Advance
 • Added Register summaries; updated notation.
 • Added Register descriptions; updated notation.
 • Added multiple chapters and art.

Rev A, ... 02/05
 • Initial release

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf.

This literature is subject to all applicable copyright laws and is not for resale in any manner.

Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

Updated to Advance

Updated Figure 22 on page 36.

Updated register definitions from Rev1 to Rev2. New register listing formation.

Updated NTSC/PAL termination recommendations with SMTPE Compliant schematics.

Updated "Minimum Horizontal Blanking (in sensor stand-alone mode)" on page 29.

Updated "Maximum Shutter Delay" on page 31.

Updated Figure 22 on page 36.

Updated register definitions from Rev1 to Rev2. New register listing formation.

Updated NTSC/PAL termination recommendations with SMTPE Compliant schematics.

Updated "Minimum Horizontal Blanking (in sensor stand-alone mode)" on page 29.

Updated "Maximum Shutter Delay" on page 31.

Updated register definitions from Rev1 to Rev2. New register listing formation.

Updated NTSC/PAL termination recommendations with SMTPE Compliant schematics.

Updated "Minimum Horizontal Blanking (in sensor stand-alone mode)" on page 29.

Updated "Maximum Shutter Delay" on page 31.

Updated to Advance

Added Register summaries; updated notation.

Added Register descriptions; updated notation.

Added multiple chapters and art.

Updated to Advance

Added Register summaries; updated notation.

Added Register descriptions; updated notation.

Added multiple chapters and art.

Updated to Advance

Added Register summaries; updated notation.

Added Register descriptions; updated notation.

Added multiple chapters and art.

Updated to Advance

Added Register summaries; updated notation.

Added Register descriptions; updated notation.

Added multiple chapters and art.