S32R372141EVB QUICK START GUIDE (QSG)

Ultra-Reliable MCUs for Industrial and Automotive Applications

S32R372141EVB Webpage

Contents

- Quick Start Package Overview
- Step-by-Step Installation Instructions
- Hardware: S32R372141EVB Board
 - Features
 - S32R372141EVB Overview
 - S32R372141EVB Pinout Settings
 - Communication and Debug Interfaces
 - Power Supply
- Software:
 - Software Development Tools
 - Pre-compiled Code Examples
- Documentation
- Radar Family Comparison
- Recommendations

Quick Start Package Overview

Board:

S32R372141EVB S32R372 evaluation board for 141 BGA package. Can run standalone or with Radar front-end

Documents:

Name	Description
Quick Start Guide(QSG)	Detailed description on availability of Hardware, Software and Documents to quick start with S32R372 project (this document)
Software Installation Guide(SWIG)	Detailed walk through on how to install and use S32 Design Studio for Power Architecture
Application Notes	Detailed documents covering topics from 'how to design hardware' to 'how to write software'
Fact Sheets, Reference Manuals and Data Sheets	Detailed manuals for S32R family of MCU and S32R372141EVB board

Downloads:

Name	Description
Integrated Development Environment (IDE)	Eclipse based S32DS IDE with free GCC compiler and Debugger support
S32R372141EVB Quick Start Package	Software examples and supporting documents for getting started with the S32R372141EVB
S32R372141EVB Schematics	PDF schematic files for the S32R372141EVB board
S32R372141EVB PCB Design Package	Gerber files and Bill of Material

Step-by-Step Installation Instructions

In this quick start guide, you will learn how to set up the **S32R372141EVB** board and run the default program.

Install Software and Tools

Install S32 Design Studio IDE for Power Architecture.

S32 Design Studio for Power

See Software Installation Guide (SWIG) for detailed procedure

Connect the Debugger

2

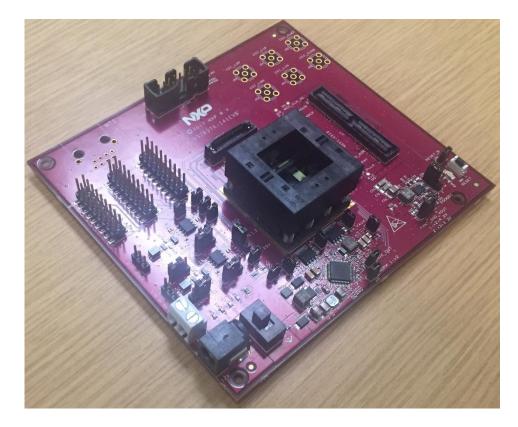
3

4

Connect the debugger (e.g. P&E USB Multilink) to the board.

Observe the Default Program reaction

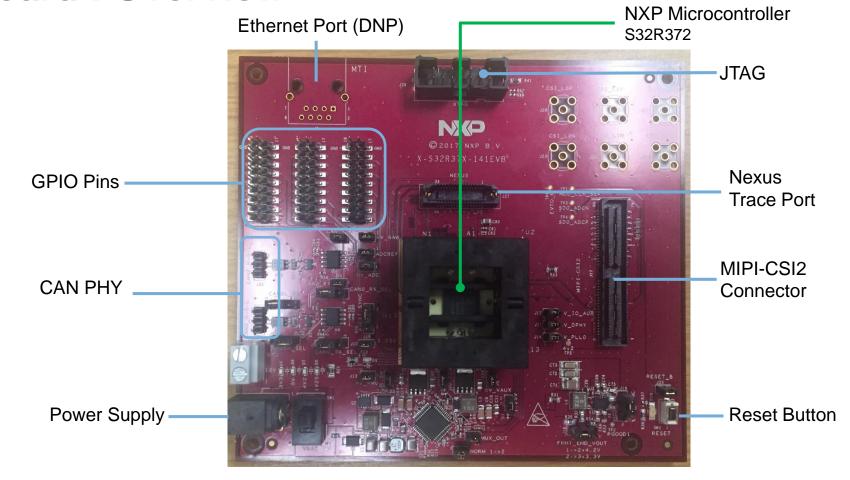
The pre-loaded example project utilizes the **S32R's multiple cores**. Once the board is plugged in, the S32R's PLLs will be programmed to max frequency. The CLKOUT pin will display the frequency of each PLL in a round-robin fashion as each core takes turns controlling CLKOUT.


Learn More About the S32R37x-141BGA

Read release notes and documentation on the S32R372 Product Page S32R274RRUEVB Product Page

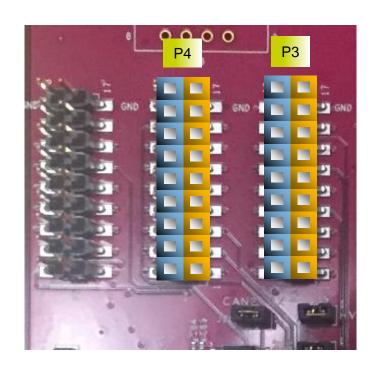
S32R372141EVB Board: Features

- S32R27 has 2 x 240 MHz Power Architecture® e200Z7 computation cores
- S32Rx qualified to AEC-Q100 Grade 1 and ambient temperature of -40 to +150 °C
- S32R372141EVB is a low cost standalone radar EVB. Attach a radar transceiver to the MIPI-CSI2 connector to take advantage of its radar processing capability
- Integrated JTAG interface for easy debugging
- Easy access to the MCU I/O header pins for prototyping
- Nexus traceport
- Solder points for Gb Ethernet port
- MIPI_CSI2 connector
- Flexible power supply options
 - 12V and GND pins to allow you to supply from DC generator
 - 12V External power supply via barrel connector


- Box includes:
 - S32R372141EVB Board
- Downloads includes:
 - Quick Start Package
 - S32 Design Studio IDE
 - Application notes

S32R372141EVB Board: Overview

The S32R372141EVB is NXP's evaluation board for the S32R372 radar processor. It is designed to be paired with an analog front end. NXP supports the TEF810 and MR3003 radar transceivers, but third-party options are possible.


This EVB features I/O headers, trace ports, and CAN ports to meet any prototyping needs at a low cost.

S32R372141EVB: Pinout

1 of 2

FUNCTION	PORT	PIN
	GND	GND
GPIO[15]	PA15	P3-16
DSPI2_SIN	PA13	P3-14
DSPI2_SCK	PA11	P3-12
GPIO[9]	PA9	P3-10
TX2_PS	PA7	P3-8
EIRQ_5	PA5	P3-6
SSN-MEM	PA3	P3-4
EIRQ_1	PA1	P3-2

			P4			
FUNCTION	PORT	PIN		PIN	PORT	FUNCTION
	GND	GND	G	GND	GND	
GPIO[62]	PD14	P4-16	P4	4-15	PD6	GPIO[54]
GPIO[51]	PD3	P4-14	P4	4-13	PD1	ETIMER_ETC2
TIMER_ETC0	PC15	P4-12	P4	4-11	PC12	ETIMER_ETC2
GPIO[32]	PC0	P4-10	P	P4-9	PB15	ADC1_AN2
ADC1_AN0	PB13	P4-8	P	P4-7	PB6	GPIO[22]_CLKOUT
TDI	PB5	P4-6	P	P4-5	PB4	TDO
GPIO[19]	PB3	P4-4	P	P4-3	PB2	GPIO[18]
CANO_RXD	PB1	P4-2	P.	P4-1	PB0	CANO_TXD

S32R372141EVB: Pinout

FUNCTION	PORT	PIN	P5	PIN	PORT	FI
	GND	GND		GND	GND	
	NC	P5-16	P	5-15	NC	
FCCU_1	FCCU_F1	P5-14	P	5-13	FCCU_F0	FCCU_0
NMI	NMI	P5-12	P	5-11	PI5	CAN2_TXD
RESET	PI4	P5-10		P5-9	PH7	GPIO[119]
GPIO[104]	PG8	P5-8		P5-7	PF15	CAN2_RXD
CTE_RCS	PF0	P5-6		P5-5	PE15	GPIO[79]_C
GPIO[77]	PE13	P5-4		P5-3	PE6	GPIO[70]
GPIO[68]	PE4	P5-2	P P	P5-1	PE2	GPIO[66]

1 of 3

2 of 3

Ethernet (DNP)

PORT	DESCRIPTION
MTI_P0	MTI_P0_IUC
MTI_NO	MTI_N0_IUC
MTI_N2	MTI_N2_IUC
MTI_P1	MTI_P1_IUC
MTI_N1	MTI_N1_IUC
MTI_P2	MTI_P2_IUC
MTI_N3	MTI_N3_IUC
MTI_P3	MTI_P3_IUC

^{*}These pins map to special purpose pads on the S32R274 MCU instead of general purpose ports as controlled by the SIUL module. Information for these can be found under "Misc Pins" of "S32R274_IO_Signal_Description_and_Input_multiplexing_tables_Revn.xlsx".

3 of 3

MIPI-CSI2

DESCRIPTION	PORT
GND	GND
GND	GND
GND	GND
TX2 PS	PA7
GND	GND
TX3 PS	PA6
GND	GND
TX1_PS	PA8
GND	GND
RESET	PI4
GND	GND
ERROR_N	PA1
GND	GND
ERROR RST	PA4
GND	GND
SSN_MEM	PA3
GND	GND
GND	GND
RESET_B	RESET_B
GND	GND
EIRQ_5	PA5
GND	GND
GND	GND
GND	GND
CSI_LANE1P	CSI_LANE1P
CSI_LANE1N	CSI_LANE1N
GND	GND
CSI_LANE0N	CSI_LANEON
CSI_LANEOP	CSI_LANE0P
GND	GND
CSI_CLKP	CSI_CLKP
CSI_CLKN	CSI_CLKN
GND	GND
FRNT_END_REG	FRNT_END_REG
FRNT_END_REG	FRNT_END_REG
FRNT_END_REG	FRNT_END_REG
FRNT END REG	FRNT_END_REG
FRNT_END_REG	FRNT_END_REG
GND	GND

MIPI-CSI2

DESCRIPTION	PORT		
GND	GND		
ETIMER_ETC0	PC15		
GND	GND		
CTE_RCS	PF0		
GND	GND		
CTE_RFS	PE13		
GND	GND		
SIUL_EIRQ13	PA14		
GND	GND		
DSPI2_SCK	PA11		
GND	GND		
DSPI2 CS0	PA10		
GND	GND		
DSPI2_SIN	PA13		
GND	GND		
DSPI2_SOUT	PA12		
GND	GND		
ETIMER ETC2	PD1		
GND	GND		
ADC1_AN_0	PB13		
GND	GND		
SD_0_ADCP	TP4 (EVB Test Pt.)		
SD 0 ADCN	TP3 (EVB Test Pt.)		
GND	GND		
GND	GND		
GND	GND		
MCU_CLK_SE	TP1 (EVB Test Pt.)		
GND	GND		
GND	GND		
MCU_CLK_N	XOSC_XTAL		
MCU_CLK_P	XOSC_EXTAL		
GND	GND		

2 of 2

Ethernet (DNP)

PORT	DESCRIPTION
MTI_P0	MTI_P0_IUC
MTI_N0	MTI_N0_IUC
MTI_N2	MTI_N2_IUC
MTI_P1	MTI_P1_IUC
MTI_N1	MTI_N1_IUC
MTI_P2	MTI_P2_IUC
MTI_N3	MTI_N3_IUC
MTI_P3	MTI_P3_IUC

PORT	DESCRIPTION
PC12	ETIMER2_ETC3
SDADCO Neg. In	SD_0_ADCN*
SDADCO Pos. In	SD_0_ADCP*
PE13	CTE_RFS
PA12	DSPI2_SOUT
PA13	DSPI2_SIN
PA10	DSPI2_CS0
PA11	DSPI2_SCK
PA5	SIUL_EIRQ5
XOSC_XTAL (DN	MCU_CLK_P*
XOSC_EXTAL (DI	MCU_CLK_N*
PB2	ETIMER2_ETC0
XOSC_EXTAL (DI	MCU_CLK_SE*
PB7	ADC0_AN_0
RESET_B	RESET_B*
PF0	CTE_RCS
Lane2 Neg. Inp	CSI_LANE2N*
Lane2 Pos. Inp	CSI_LANE2P*
Lane0 Neg. Inp	CSI_LANE0P*
Lane0 Pos. Inp	CSI_LANEON*
Clock Neg. Inp	CSI_CLKN*
Clock Pos. Inp	CSI_CLKP*
Lane1 Pos. Inp	CSI_LANE1P*
Lane1 Neg. Inp	CSI_LANE1N*
Lane3 Neg. Inp	CSI_LANE3N*
Lane3 Pos. Inp	CSI_LANE3P*

MIPI-CSI2

^{*}These pins map to special purpose pads on the S32R274 MCU instead of general purpose ports as controlled by the SIUL module. Information for these can be found under "Misc Pins" of "S32R274_IO_Signal_Description_and_Input_multiplexing_tables_Revn.xlsx".

S32R372141EVB: Programing Interface

JTAG	
DESCRIPTION	PIN
Support for JTAG-capable	
debugger such as USB	J28
Multilink	

S32R372141EVB: Power Supply

P1

The S32R372141EVB supports two power options. You can generate 12V from a DC generator and connect that to P2; or you can plug in a 12V power supply through the barrel connector P1. NXP does not directly sell 12V power supplies. You can obtain a power supply through a third-party vendor.

Power supply specifications: Fully regulated Switching Power Supply Input Voltage 100-240V AC 50/60Hz Output 12V 1A/2A DC Plug size: 5.5mm x 2.1 mm, Center Positive

Package Level Pinout Diagram – S32R372 (141 BGA)

Software Development Tools

- S32 Design Studio IDE for Power Architecture
- IDE & Compilers
 - Free S32 Design Studio IDE with GCC compiler
 - GHS MULTI Integrated Development Environment
 - Cosmic IDE
 - iSystems winIDEA IDE
 - SourceryTM CodeBench Development Tools
- Debuggers
 - Free OpenSDA debugger on board and supported by S32DS IDE
 - P&E USB Multilink
 - iSystems iC6000
 - Lauterbach TRACE32 JTAG Debugger

Pre-Compiled Code Examples

- Quick start examples for S32R372141EVB are available in the Quick Start Package to help familiarize you to the board
- The QSP also includes application examples that demonstrate the S32R37's radar capabilities. These include tutorial videos and a radar transceiver (COMING SOON)

List of code examples:

- 1. Hello World
- Hello World + PLL
- Hello World + PLL + Interrupts
- 4. FlexCAN (coming soon)

NOTE: Run these examples with S32DS for Power Architecture v2017.R1 or later

Documentation and Reference Material

Documentation Links

- -S32R372 Datasheet
- -S32R372 Factsheet

Application Notes

- S32R Radar Signal Compression
- S32R27/37 Hardware Design Guide
- Clock Monitor Unit Guide
- e200 Core Memory Protection Unit Guide

Reference Manuals

- S32R372 Family Reference Manual
- -S32R372 Family Safety Manual

Radar Family – Product Feature Differences

- S32R372 is the low-cost counterpart to the S32R274 radar processor
- Selected features below

MCU	FEATURES				
	Flash*	RAM	EE PROM	Security	Transceiver Interface
S32R274	2.0MB	1.5MB	Emulate	Yes	1 x 4-lane MIPI-CSI2
S32R372					

^{*}Differences in memory are all in the Large Flash Block

Recommendations

- For faster debugging, debug from RAM, because this cuts down the lengthy Flash erase operation cycles. Follow the Software Integration Guide (SWIG) for details.
- By default "New Project" in S32 Design Studio IDE makes application to run at 16 MHz Internal RC (IRC) oscillator. For faster performance, configure PLL to desired frequency and switch clock source to PLL before executing application code.
- Keep S32 Design Studio IDE and OpenSDA firmware Up-to-date for best results
- Post Technical Questions on NXP community for MPC5xxx.
- Useful Links:
 - S32R372 Webpage
 - S32R372141EVB Webpage
 - nxp.com/s32ds
 - nxp.com/community

SECURE CONNECTIONS FOR A SMARTER WORLD