

www.ti.com

TPS65640

SLVSCE2-NOVEMBER 2013

LCD Bias With Digital VCOM Buffer for Notebook PCs and Tablet PCs

Check for Samples: TPS65640

FEATURES

- 2.5-V to 5.5-V Input Voltage Range
- 3.6 to 12.7 V Boost Converter (AV_{DD})
- 15 to 37 V Boost Converter with Temperature Compensation (V_{GH})
- -8 V to -3.8 V Linear Negative Voltage Regulator (V_{GL} or NAV_{DD})
- 1.5-V to 3-V Alternative Buck Converter or Low Dropout Regulator (V₂₅)
- 7 bits Programmable V_{COM} Calibrator With One Integrated Buffer Amplifiers
- 0.8 V to 5.1 V Programmable V_{COM} Voltage Output for Full AV_{DD} Application
- –4.1 V to 0.2 V Programmable V_{COM} Voltage Output for Positive and Negative AV_{DD} Application
- Two Operational Amplifiers
- Gate Voltage Shaping
- Programmable V_{GH} and V_{COM} Temperature Compensation
- T_{CON} Reset Signal Generator With Programmable Delay
- I²C Interface for E²PROM Programming
- Thermal Shutdown
- Supports GIP and Non-GIP Displays
- 28 Pins, 5.5-mm × 3.5-mm 0.5-mm Pitch QFN

APPLICATIONS

- Notebook PCs
- Tablet PCs

DESCRIPTION

The TPS65640 is a compact LCD bias solution primarily intended for use in notebook and tablet PCs. The device comprises two boost converters to supply the LCD panel's source driver and gate driver or level shifter; one buck converters or a LDO regulator alternatively to supply the time controller logic voltages; a linear negative voltage regulator to supply gate off voltage or provide negative voltage for source driver; a programmable VCOM generator with one high-speed amplifier; a gate voltage shaping function and two high speed operational amplifiers.

All the regulators and V_{COM} voltage outputs are programmed through I²C interface and stored in the TPS65640 integrated E²PROM. The TPS65640 is available in 5.5-mm × 3.5-mm, 28-lead QFN package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TI INFORMATION – SELECTIVE DISCLOSURE

TPS65640

www.ti.com

SLVSCE2-NOVEMBER 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION⁽¹⁾

T _A	ORDERING	PACKAGE	PACKAGE MARKING
–40°C to 85°C	TPS65640	5.5-mm x 3.5-mm 28-pin QFN	PZXI

(1) The device is supplied taped and reeled, with 3000 devices per reel.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		VA	LUE	
		MIN	MAX	UNIT
	VIN, V25, V25_LX, RESET, COMP, SCL, SDA, VFLK, VT	-0.3	7	V
	VIN (100ms) Pulse	-0.3	12	V
Pin Voltage ⁽²⁾	AVDD, LX	-0.3	20	V
Pin voltage	VCOM_OUT, INA+, INA-, OUTA, INB+, INB-, OUTB	-5	5	V
	VGH_LX, VGH, VGHM, RE	-0.3	40	V
	DRVN, VGL, NAVDD	-12	0.3	V
	Human Body Model		2000	V
ESD Rating ⁽³⁾	Machine Model		200	V
	Charged Device Model		700	V
T _A	Ambient temperature	-40	85	°C
TJ	Junction temperature	-40	150	°C
T _{STG}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) ESD testing is performed according to the respective JESD22 JEDEC standard.

THERMAL INFORMATION

		TPS65640	
	THERMAL METRIC ⁽¹⁾	RHR	UNITS
		28 PINS	
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	37.4	
θ _{JCtop}	Junction-to-case (top) thermal resistance ⁽³⁾	26.3	
θ _{JB}	Junction-to-board thermal resistance ⁽⁴⁾	8.3	80 AA/
Ψυτ	Junction-to-top characterization parameter ⁽⁵⁾	0.2	°C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	8.1	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	1.2	

For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.
 The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

2 Submit Documentation Feedback

SLVSCE2-NOVEMBER 2013

www.ti.com

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	TYP	MAX	UNIT
V _{IN}	Input voltage range	2.5		5.5	V
BOOST	CONVERTER 1				
AV _{DD}	Boost converter 1 output voltage range	3.6		11	V
I _{AVDD}	Boost converter 1 output current when 5.5 V \ge VIN \ge 2.5 V			400	mA
L ₁	Boost converter #1 inductor range	4.7		10	μH
C _{OUT1}	Boost converter #1 output capacitance	10			μF
BOOST	CONVERTER 2				
AV _{DD}	Input voltage range	3.6		11 ⁽¹⁾	V
V _{GH}	Output voltage range	15		37	V
I _{GH}	Output current		15	40	mA
L ₄	Inductor	4.7	10	10	μH
C _{OUT4}	Output capacitance	1	2.2		μF
R _{NTC}	Thermistor resistance at 25 °C		10		kΩ
BUCK C	ONVERTER (V ₂₅)				
V ₂₅	Output voltage	1.5		3	V
I ₂₅	Output current			600	mA
L ₂	Inductor	2.2	4.7	10	μH
C _{OUT2}	Output capacitance	4.7	10	22	μF
LDO Reg	gulator (V ₂₅)				
V ₂₅	Output voltage	1.5		3	V
I ₂₅	Output current			350	mA
C _{OUT2}	Output capacitance	1	4.7		μF

(1) $V_{GH} - AV_{DD}$ must be greater than 6 volts.

ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = 3.3 \text{ V}; V_{25} = 2.5 \text{ V}, \text{ AV}_{\text{DD}} = 8.5 \text{ V}, V_{\text{GH}} = 23 \text{ V}, V_{\text{GL}} = -6 \text{ V}, \text{ } \text{R}_{\text{CAMP}} = 200 \text{k}\Omega, \text{ } \text{C}_{\text{CAMP}} = 1 \text{ } \text{nF}, \text{ } \text{NAV}_{\text{DD}} = \text{AGND} = \text{PGND} = 0 \text{V}, \text{ } \text{T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to } 85 \text{ }^{\circ}\text{C}. \text{ Typical values are at } 25^{\circ}\text{C} \text{ (unless otherwise noted)}.$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	SUPPLY					
I _{IN}	Supply current into VIN	Converters not switching		2	3	mA
	Supply current into AVDD	No load on op-amp outputs		5	8.5	mA
	Supply current into VGH	No load on V _{GHM}		0.1	1	mA
UNDER V	OLTAGE LOCKOUT					
		V _{IN} rising	2.3	2.35	2.4	
V _{UVLO}	Undervoltage lockout threshold	V_{IN} falling $T_A = 25^{\circ}C$	2.05	2.2	2.25	V
	Hysteresis	V _{IN} rising – V _{IN} falling		0.15		1
BOOST C	ONVERTER 1 (AV _{DD})					
	Output voltage range		3.6		11	
AV _{DD}	Tolerance		-2%		2%	V
V _{UVP1}	Undervoltage threshold	AV _{DD} falling	75	80	85	% of AV _{DD}
T _{DLY_UVP1}				160		ms
V _{SCP1}	Short circuit threshold	AV _{DD} falling	25	30	35	%
V _{OVP1}	Over Voltage threshold	AV _{DD} rising	14.5	15	16	V
I _{LK1}	Switch leakage current	AV _{DD} = 13.5 V		10	20	μΑ
r _{DS(ON)1}	Switch ON resistance	I _{LX} = 1 A		0.2	0.3	Ω
	AVDD switch current limit	AVDD ILIM = 0, $T_A = 25 \text{ °C}$	0.8	1	1.2	^
I _{LIM1}	AVDD Switch current limit	AVDD ILIM = 1, T _A = 25 °C	1.6	2	2.4	A

Copyright © 2013, Texas Instruments Incorporated

SLVSCE2-NOVEMBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

 $V_{\text{IN}} = 3.3 \text{ V}; V_{25} = 2.5 \text{ V}, \text{ AV}_{\text{DD}} = 8.5 \text{ V}, V_{\text{GH}} = 23 \text{ V}, V_{\text{GL}} = -6 \text{ V}, \text{ R}_{\text{CAMP}} = 200 \text{k}\Omega, \text{ C}_{\text{CAMP}} = 1 \text{ nF}, \text{ NAV}_{\text{DD}} = \text{AGND} = \text{PGND} = 0 \text{V}, \text{ T}_{\text{A}} = -40 \text{ °C} \text{ to } 85 \text{ °C}. \text{ Typical values are at } 25 \text{ °C} \text{ (unless otherwise noted)}.$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
D _{MAX1}	Maximum Duty Cycle	FREQ1 = 01	80%			
		FREQ1 = 00, T _A = 25°C	480	600	720	
		FREQ1 = 01, T _A = 25°C	600	750	900	
SW1	Oscillator frequency	FREQ1 = 10, T _A = 25°C	720	900	1080	kHz
		FREQ1 = 11, T _A = 25°C	800	1000	1200	-
V _{LIR1}	Line regulation, $V_{LIR}=\Delta A V_{DD}/(A V_{DD} \times \Delta V_{IN})$	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V}, \text{ A}_{VDD} = 8.5 \text{ V}, \text{ T}_{A} = 25 \text{ °C}$		±0.1	±0.15	%/V
V _{LOR1}	Load regulation, V _{LOR} =(AV _{DD_20mA} -AV _{DD_200mA})/AV _{DD_} 20mA	$V_{IN} = 3.3 \text{ V}, \text{ AV}_{DD} = 8.5 \text{ V}, \text{ I}_{AVDD} = 20 \text{ mA to } 200 \text{ mA}$		1		%/A
		SS1 = 00		20		
		SS1 = 01		40		
V _{SS1}	AV _{DD} soft stat duration	SS1 = 10		60		ms
		SS1 = 11		80		
		LX1TS = 00		0.5		
		LX1TS = 01		0.7		1
T _{f1}	AV_{DD} switch ON voltage slew rate	LX1TS = 10		0.9		V/ns
		LX1TS = 11		1.1		-
	NVERTER (V _{25Buck})	EXTIC - TI		1.1		
		1	1.5		3	
V _{25Buck}	Output voltage Tolerance					V
		(V ₂₅ -V ₂₅ _setting)/V ₂₅ _setting	-2%	4	2%	
VUVP2	Undervoltage threshold	V ₂₅ falling	0.8	1	1.2	v
	Hysteresis	V ₂₅ rising		0.1		
T _{DLY_UVP2}				160		ms
LIM2	Switch current limit	I _{SW2A} ramps from 0 A to 2 A	1	1.2	1.4	A
T _{SS2}	Soft start duration			4		ms
r _{DS(ON)2A}	Switch ON resistance	High-side, I _{SW2A} = I _{LIM2}		250	450	mΩ
DS(ON)2B		Low-side, I _{SW2B} = 1 A		100	200	
f _{SW2}	Switching frequency	$V_{IN} = 3.3 \text{ V}; V_{25} = 2.5 \text{ V}, I_{25} = 200 \text{ mA}$	1000	1250	1500	kHz
V _{LIR2}	Line regulation, $V_{LIR} = \Delta V_{25} / (AV_{25} \times \Delta V_{IN})$	V_{IN} = 2.5 V to 5.5 V		±0.1	±0.15	%/V
V _{LOR2}	Load regulation	$V_{IN} = 3.3 \text{ V}, I_{25} = 1 \text{ mA to } 400 \text{ mA}$		1%		
LINEAR RI	EGULATOR (V _{25LDO})					
	Output voltage		1.5		3.0	N
V _{25LDO}	Tolerance		-2.5%		2.5%	V
	Undervoltage threshold	V25 falling	0.8	1	1.2	
V _{UVP3}	Hysteresis	V25 rising		0.1		V
T _{DLY_UVP3}				160		ms
V _{DO3}	Dropout voltage	I ₂₅ = 350 mA, V ₂₅ = -3%		300	500	mV
V _{LIR3}	Line regulation, $V_{LIR} = \Delta V_{25} / (V_{25} \times \Delta V_{IN})$	$V_{IN} = 2.8 \text{ V to } 5.5 \text{ V}, I_{25} = 100 \text{ mA}$		0.1	±0.15	%/V
V _{LOR3}	Load regulation	V _{IN} = 3.3 V, I ₂₅ = 1 mA to 300 mA		1		%/A
	DNVERTER 2 (V _{GH})		+			+
	Output voltage range		15		37	
V _{GH}	Tolerance		-3%		3%	V
V _{OVP4}	Overvoltage threshold	T _A = 25 °C	38	39	40	V
V _{UVP4}	Undervoltage threshold	V _{GH} falling	75	80	85	% of V _{GH}
▼ UVP4	-		15		00	70 OI VGH
T _{DLY_UVP4}	Undervoltage protection shutdown delay			160		ms

SLVSCE2-NOVEMBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

 $V_{IN} = 3.3 \text{ V}; V_{25} = 2.5 \text{ V}, \text{AV}_{DD} = 8.5 \text{ V}, V_{GH} = 23 \text{ V}, V_{GL} = -6 \text{ V}, R_{CAMP} = 200 \text{k}\Omega, C_{CAMP} = 1 \text{ nF}, \text{NAV}_{DD} = \text{AGND} = \text{PGND} = 0 \text{V}, T_A = -40 \text{ °C} \text{ to } 85 \text{ °C}.$ Typical values are at 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
4		FREQ4 = 0	300	400	500	
SW4	VGH swithching frequency	FREQ4 = 1	600	800	1000	kHz
DS(ON)4	VGH switch ON resistance	I _{VGH_LX} = 1 A		0.5	1	Ω
I _{LIM4}	VGH switch current limit		0.9	1.2	1.5	А
		SS4 = 00		4		
_		SS4 = 01		8		-
T _{SS4}	VGH soft start duration	SS4 = 10		12		ms
		SS4 = 11		16		-
D _{MAX4}			88%	90%		
I _{VT}	Thermistor reference current	V _{VT} = 1 V		40		μA
V _{LIR4}	Line regulation	AV _{DD} = 3.6 V to 11 V		±0.1	±0.15	%/V
V _{LOR4}	Load regulation	I _{GH} = 5 mA to 40 mA		1		%/A
	IMABLE V _{COM} CALIBRATOR					
$V_{S+} - V_{S-}$	VCOM buffer supply voltage				15	V
	V _{COM} voltage accuracy,					
V _{COM}	V _{COM} -V _{COM_setting}	I _{OUT} = 0 mA	-6		6	LSB
		$\label{eq:VDD} \begin{array}{l} AV_{DD} = 8.5 \text{ V}, \ NAV_{DD} = 0 \ V, \ V_{COM_OUT} = AV_{DD} \ / \ 2, \\ I_{SOURCE} = 1mA \ to \ 20mA \end{array}$		1	2	
L		$AV_{DD} = 5 \text{ V}, \text{ NAV}_{DD} = -5 \text{ V}, V_{COM_OUT} = 0 \text{ V},$ $I_{SOURCE} = 1 \text{ mA to } 20 \text{ mA}$		1	2	_
	Load regulation	$AV_{DD} = 8.5 \text{ V}, \text{ NAV}_{DD} = 0 \text{ V}, \text{ V}_{COM_{OUT}} = AV_{DD} / 2,$ $I_{SINK} = -1 \text{ mA to } -20 \text{ mA}$		1	2	- V/A
		$AV_{DD} = 5 \text{ V}, \text{ NAV}_{DD} = -5 \text{ V}, \text{ V}_{COM_{OUT}} = 0 \text{ V},$ $I_{SINK} = -1 \text{ mA to } -20 \text{ mA}$		1	2	_
		$AV_{DD} = 5 \text{ V}, V_{COM_OUT} = AVDD,$ $NAV_{DD} = -5 \text{ V}$		-200		
I _{SC2}	Short circuit current	$AV_{DD} = 5 V,$ $V_{COM_OUT} = NAV_{DD} = -5 V$		200		- mA
SR ₂	Slew rate	$V_{COM,OUT} = AV_{DD} / 2 + 1 V$		12		V/µs
BW ₂	Small signal 3dB bandwidth	$V_{COM OUT} = AV_{DD} / 2$, $V_{SIGNAL} = 60 \text{ mV}_{PP}$, no load		12		MHz
		$NAV_{DD} = -5 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega, \text{ C}_{L} = 10 \text{ pF}, \text{ T}_{A} = 25^{\circ}\text{C}$				
V _{IO1}	Input offset voltage	$V_{CM} = (AV_{DD} + NAV_{DD}) / 2$	-15		15	mV
$\Delta V_{IO} / \Delta_T$	Average offset voltage drift	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$	10	5	10	μV/°C
R _{IN1}	Input impedance			1		GΩ
C _{IN1}	Input capacitance			1.35		pF
V _{CM1}	Input common mode voltage range	$AV_{DD} = 5 \text{ V}, \text{ NAV}_{DD} = -5 \text{ V}$	-4	1.00	3	V
VCM1 A _{VOL1}	Open loop gain	$V_{\text{CM}} = (\text{AV}_{\text{DD}} + \text{NAV}_{\text{DD}}) / 2$	75	95	5	dB
PSRR ₁	Power supply rejection ratio		60	70		dB
	Common mode rejection ration	$V_{CM} = (AV_{DD} + NAV_{DD}) / 2$	50	80		dB
	•	$V_{CM} = (AV_{DD} + NAV_{DD}) / 2$	50	4.85	4.92	UB V
V _{OL1}	Output swing low	$I_L = 5 \text{ mA}$	4.00		4.92	V
V _{OH1}	Output swing High	$I_L = -5 \text{ mA}$	-4.92	-485		
OC1	Continuous output current			±35		mA
PK1	Peak output current	$\label{eq:VIN} \begin{array}{l} V_{IN+} = (AV_{DD} + NAV_{DD}) \ / \ 2, \ V_{IN-} = (AV_{DD} + NAV_{DD}) \ / \ 2 \ \pm 1 \ V, \\ open-loop \end{array}$	±120			mA
tS	Setting to ±0.1%	$A_V = -1, V_{IN-} = (AV_{DD} + NAV_{DD}) / 2 \pm 1 V$		500		ns
SR ₁	Slew rate	$A_V = -1, V_{IN-} = (AV_{DD} + NAV_{DD}) / 2 \pm 1 V$		12		V/µs
BW ₁	Small signal 3 dB bandwidth	$A_V = -1, V_{CM} = (AV_{DD} + NAV_{DD}) / 2, V_{SIGNAL} = 60 \text{ mV}_{PP}$		5		MHz
PM	Phase margin			50		Degree
CS	Channel Separation	$A_V = -1$, $V_{CM} = (AV_{DD} + NAV_{DD}) / 2$, $V_{SIGNAL} = 60 \text{ mV}_{PP}$, f = 5 MHz		75		dB

Copyright © 2013, Texas Instruments Incorporated

SLVSCE2-NOVEMBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 3.3 V; V_{25} = 2.5 V, AV_{DD} = 8.5 V, V_{GH} = 23 V, V_{GL} = -6 V, R_{CAMP} =200k Ω , C_{CAMP} =1 nF, NAV_{DD} = AGND = PGND = 0V, T_A = -40 °C to 85 °C. Typical values are at 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V		Output voltage	-3.8		-8	V	
V _{GL}	V _{GL} voltage regulate accuracy	Tolerance	-3%		3%	V	
I _{DRVN}	DRVN source current		1	4	6	mA	
V _{LIR5}	Line regulation	I _{DRVN} = 1 mA, V _{IN} = 2.5 V to 5.5 V		1	6	mV	
	LTAGE SHAPING		1		1		
DS(ON)H	VGH to VGHM ON resistance	V_{GH} = 24 V, I_{GHM} = 10 mA, V_{FLK} = 2.5 V		13	25	Ω	
r _{DS(ON)L}	VGHM to RE ON resistance	V _{GHM} = 24 V, I _{GHM} = 10 mA, V _{FLK} = 0 V		13	25	Ω	
VIH	High-level input voltage	V _{FLK} rising	1.5			V	
V _{IL}	Low-level input voltage	V _{FLK} falling			0.6	V	
t _{PLH}		V_{GHM} rising, 2.5 V, 50% thresholds, C_{OUT} = 150 pF, R_{E} = 0 $m\Omega$		100	200		
t _{PHL}	Propagation delay	V_{GHM} falling, 2.5 V, 50% thresholds, C_{OUT} = 150 pF, R_{E} = 0 $m\Omega$		100	200	ns	
		DLY = 00		0			
	Gate voltage shaping / LCD bias	DLY = 01	1	20			
t _{DLY}	ready delay range	DLY = 10	1	40		ms	
		DLY = 11	1	60			
T _{CON} RESE	ET GENERATOR	l.	+	-			
501 -		VDIV = 000	1.08	1.2	1.32		
		VDIV = 001	1.26	1.4	1.54		
		VDIV = 010	1.44	1.6	1.76		
V _{DIV}		VDIV = 011	1.62	1.8	1.98	v	
	Detecting voltage falling threshold	VDIV = 100	1.8	2	2.2		
		VDIV = 101	1.98	2.2	2.42		
		VDIV = 110	2.16	2.4	2.64		
		VDIV = 111	2.34	2.4	2.86		
	Hysteresis		2.34	150	2.00	mV	
V	Output voltage	$I_{\overline{a}} = -1 \text{ mA} (\text{cipking})$		150	0.5	V	
		$I_{RST} = 1 \text{ mA (sinking)}$ $V_{\overline{RST}} = 2.5 \text{ V}$			1		
LK(RST)	Leakage current			0	1	μA	
★ (1)	Report dolou timo	RESET = 0000				-	
t _{RESET} ⁽¹⁾	Reset delay time	 DECET 4444				ms	
	SHUTDOWN	RESET = 1111		30			
	. SHUTDOWN	T state a		450		•••	
T _{SD}	Thermal shutdown temperature	T _J rising		150		°C	
I ² C INTER							
ADDR	Configuration parameters slave address			E8			
ADDK	Programmable V _{COM} slave address			9E			
V _{IL}	Low level input voltage	Supply = 2.5 V, V_{IN} falling, standard and fast modes			0.3 × V ₂₅	V	
VIH	High level input voltage	Supply = 2.5 V, V_{IN} rising, standard and fast ⁴ modes	0.7 × V ₂₅			v	
V _{HYS}	Hysteresis	Supply = 2.5 V, v_{IN} rising, standard and last modes Supply = 2.5 V, applicable to fast mode only	125			mV	
V _{HYS}	Low level output voltage	Sinking 3 mA	120		500	mV	
					10		
CI	Input capacitance	Standard mode			10	pF	
f _{SCL}	Clock frequency	Standard mode				kHz	
		Fast mode	47		400		
LOW	Clock low period	Standard mode	4.7			μs	
		Fast mode	1.3			r -	
t _{HIGH}	Clock high period	Standard mode	4			μs	
		Fast mode	0.6				

(1) Refer to Table 12 for RESET time delay break down.

6 Submit Documentation Feedback

SLVSCE2-NOVEMBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

 $V_{\text{IN}} = 3.3 \text{ V}; V_{25} = 2.5 \text{ V}, \text{ AV}_{\text{DD}} = 8.5 \text{ V}, V_{\text{GH}} = 23 \text{ V}, V_{\text{GL}} = -6 \text{ V}, \text{ R}_{\text{CAMP}} = 200 \text{k}\Omega, \text{ C}_{\text{CAMP}} = 1 \text{ nF}, \text{ NAV}_{\text{DD}} = \text{AGND} = \text{PGND} = 0 \text{V}, \text{ T}_{\text{A}} = -40 \text{ °C} \text{ to } 85 \text{ °C}. \text{ Typical values are at } 25 \text{ °C} \text{ (unless otherwise noted)}.$

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
	Bus free time between a STOP and a	Standard mode	4.7		
BUF	START condition	Fast mode	1.3		μs
	Hold time for a repeated START	Standard mode	4		
hd:STA	condition	Fast mode	0.6		μs
	Set-up time for a repeated START	Standard mode	4		
su:STA	condition	Fast mode	0.6		μs
su:DAT	Data set-up time	Standard mode	250		ns
		Fast mode	100		
	Data hold time	Standard mode	0.05	3.45	
hd:DAT		Fast mode	0.05	0.9	μs
	Rise time of SCL after a repeated START condition and after an ACK	Standard mode	20 + 0.1C _B	1000	
RCL1	bit	Fast mode	20 + 0.1C _B	1000	ns
		Standard mode	20 + 0.1C _B	1000	
RCL	Rise time of SCL	Fast mode	20 + 0.1C _B	300	ns
	5 11/2 (20)	Standard mode	20 + 0.1C _B	300	
^I FCL	Fall time of SCL	Fast mode	20 + 0.1C _B	300	ns
		Standard mode	20 + 0.1C _B	1000	
I _{RDA}	Rise time of SDA	Fast mode	20 + 0.1C _B	300	ns
	5 11 (00)	Standard mode	20 + 0.1C _B	300	
FDA	Fall time of SDA	Fast mode	20 + 0.1C _B	300	ns
		Standard mode	4		μs
su:STO	Set-up time for STOP condition	Fast mode	0.6		
<u>_</u>	Capacitive lead an SDA and SCI	Standard mode		400	~ Г
CB	Capacitive load on SDA and SCL	Fast mode		400	pF
² PROM					
WRITE	Number of write cycles		1000		
WRITE	Write time			100	ms
	Data retention	Storage temperature = 150°C	100000		hrs

www.ti.com

SLVSCE2-NOVEMBER 2013

DEVICE INFORMATION

PIN FUNCTIONS

PIN		TYPE	DECODIDITION			
NAME	NO.	TYPE	DESCRIPTION			
AGND	22	Р	Ground			
AVDD	23	I	AVDD sense pin			
COMP	21	0	Boost converter 1 compensation. Connect a suitable compensation network (typically a series R-C combination) between this pin and ground			
DRVN	6	0	Drive output for negative linear regulator			
FLK	2	I	Gate voltage shaping flicker clock input			
LX	24	Р	Boost convert 1 switch node			
NAVDD	8	I	Negative AVDD voltage input			
OUTA	13	0	Operational amplifier A output			
OUTB	12	0	Operational amplifier B output			
PGND1	25	Р	Power Ground 1 for boost converter 2			
PGND2	16	Р	Power Ground 2 for buck converter			
PGND3	29	Р	Power Ground 3 for boost converter 1			
RE	1	0	Gate voltage shaping discharge resistor connection			
RESET	5	0	T-CON reset output			
SCL	4	I	I ² C Interface serial clock			
SDA	3	I/O	I ² C Interface serial data			
VCOM_OUT	9	0	VCOM amplifier output			
VGH	27	Р	Gate voltage shaping input and boost converter 2 output sense			
VGH_LX	26	Р	Boost converter 2 switch node			
VGHM	28	0	Gate voltage shaping output			
VGL	7	I	Negative linear regulator sense pin			
VIN	18	Р	Supply voltage			

8 Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

SLVSCE2-NOVEMBER 2013

PIN FUNCTIONS (continued)

PIN	1	TVDE	DECODIDION	
NAME	NO.	TYPE	DESCRIPTION	
VINA+	15	I	Operational amplifier B non-inverting input	
VINA-	14	I	Operational amplifier A inverting input	
VINB+	10	I	Operational amplifier B non-inverting input	
VINB-	11	I	Operational amplifier B inverting input	
VT	20	I	Boost converter 2 and V_{COM} reference external thermistor network connection	
V25	19	0	Buck converter or LDO regulator output sense	
V25_LX	17	Р	Buck converter switch node or LDO regulator output	

SLVSCE2-NOVEMBER 2013

www.ti.com

TYPICAL CHARACTERISTICS

PARAMETER	CONDITIONS	FIGURE
BOOSTER CONVERTER 1		
Efficiency vs. Load Current	V_{IN} = 3.3 V, AV_{DD} = 5.5 V and 8.5V, L = 10 $\mu\text{H},f_{\text{SW}}$ = 1 MHz	Figure 1
Output Voltage Ripple	V_{IN} = 3.3 V, AV _{DD} = 5.5 V, I _{AVDD} = 200 mA, f _{SW} = 1 MHz	Figure 2
Load Transient Response	$V_{IN} = 3.3 \text{ V}, \text{AV}_{DD} = 5.5 \text{ V}, \text{I}_{AVDD} = 20 \text{ mA to } 200 \text{ mA}$	Figure 3
Startup	V_{IN} = 3.3 V, AV _{DD} = 5.5 V, f _{SW} = 1 MHz, I _{LOAD} = 55 Ω	Figure 4
Over Voltage Protection	$V_{IN} = 3.3 \text{ V}, \text{AV}_{DD} = 5.5 \text{ V}, \text{f}_{SW} = 1 \text{ MHz}$	Figure 5
Under Voltage Protection	$V_{IN} = 3.3 \text{ V}, \text{AV}_{DD} = 5.5 \text{ V}, \text{f}_{SW} = 1 \text{ MHz}$	Figure 6
BUCK CONVERTER		
Efficiency vs. Load Current	$V_{IN} = 3.3 \text{ V}, V_{25} = 1.8 \text{ V} \text{ and } 2.5 \text{ V}$	Figure 7
Output Voltage Ripple	$V_{IN} = 3.3 \text{ V}, V_{25} = 2.5 \text{ V}, I_{V25} = 600 \text{ mA}$	Figure 8
Load Transient Response	$V_{IN} = 3.3 \text{ V}, V_{25} = 2.5 \text{ V}, I_{V25} = 20 \text{ to } 200 \text{ mA}$	Figure 9
Startup	$V_{IN} = 3.3 \text{ V}, V_{25} = 2.5 \text{ V}, I_{LOAD} = 12.5 \Omega$	Figure 10
Undervoltage Protection	$V_{IN} = 3.3 \text{ V}, V_{25} = 2.5 \text{ V}$	Figure 11
LDO VOLTAGE REGULATOR		
Load Transient Response	$V_{IN} = 3.3 \text{ V}, V_{25} = 2.5 \text{ V}, I_{V25} = 20 \text{ to } 200 \text{ mA}$	Figure 12
Startup	$V_{IN} = 3.3 \text{ V}, V_{25} = 2.5 \text{ V}, I_{LOAD} = 12.5 \Omega$	Figure 13
Undervoltage Protection	V _{IN} = 3.3 V, V ₂₅ = 2.5 V	Figure 14
BOOST CONVERTER 2		
Efficiency vs. Load Current	V_{IN} = 3.3 V, AV_{DD} = 5.5 V, V_{GH} = 16 V, L = 10 $\mu\text{H},f_{\text{SW}}$ = 800 kHz	Figure 15
Efficiency vs. Load Current	$V_{IN} = 3.3 \text{ V}, \text{AV}_{DD} = 8.5 \text{ V}, \text{V}_{GH} = 25 \text{ V}, \text{L} = 10 \mu\text{H}, \text{f}_{SW} = 800 \text{ kHz}$	Figure 16
Output Voltage Ripple	V_{IN} = 3.3 V, AV_{DD} = 5.5 V, V_{GH} = 16 V, L = 10 $\mu\text{H},I_{\text{VGH}}$ = 50 mA, f_{SW} = 800 kHz	Figure 17
Load Transient Response	V_{IN} = 3.3 V, AV_{DD} = 5.5 V, V_{GH} = 16 V, L = 10 $\mu\text{H},I_{\text{VGH}}$ = 10 to 50 mA	Figure 18
Startup	V_{IN} = 3.3 V, AV_{DD} = 5.5 V, V_{GH} = 16 V, L = 10 $\mu\text{H},\text{f}_{\text{SW}}$ = 800 kHz	Figure 19
Under Voltage Protection	V_{IN} = 3.3 V, AV_{DD} = 5.5 V, V_{GH} = 16 V, L = 10 $\mu\text{H},f_{\text{SW}}$ = 800 kHz	Figure 20
NEGATIVE CHARGE PUMP RE	EGULATOR CONTROL	
Output Voltage Ripple	$V_{IN} = 3.3 \text{ V}, \text{AV}_{DD} = 5.5 \text{ V}, \text{V}_{GL} = -4.5 \text{ V}, \text{I}_{GL} = 50 \text{ mA}$	Figure 21
Load Transient Response	V_{IN} = 3.3 V, AV_{DD} = 5.5 V, V_{GL} = –4.5 V, I_{GL} = 10 to 50 mA	Figure 22
GATE VOLTAGE SHAPING	$V_{IN} = 3.3 \text{ V}, \text{AV}_{DD} = 5 \text{ V}, \text{AV}_{DD} = 5 \text{ V},$	Figure 23
OPERATIONAL AMPLIFIER SLEW RATE	V_{IN} = 3.3 V, V_{GH} = 16 V, NAV_{DD} = -5 V, INA + = -1 V to 1 V	Figure 24
POWER ON SEQUENCY	$V_{IN} = 3.3 \text{ V}, \text{AV}_{DD} = 5.5 \text{ V}, \text{V}_{GH} = 16 \text{ V}, \text{V}_{GL} = -4.5 \text{ V}$	Figure 25
POWER OFF SEQUENCY	V _{IN} = 3.3 V, AV _{DD} = 5.5 V, V _{GH} = 16 V, V _{GL} = -4.5 V	Figure 26

www.ti.com

Figure 1. Boost Converter 1 Efficiency

Figure 3. Boost Converter 1 Load Transient Response

OVERVOLTAGE PROTECTION

Figure 5. Boost Converter 1 Overvoltage Protection

Figure 2. Boost Converter 1 Output Ripple

Figure 4. Boost Converter 1 Startup

UNDERVOLTAGE PROTECTION

Figure 6. Boost Converter 1 Undervoltage Protection

www.ti.com

Figure 9. Buck Converter Load Transient Response

Figure 11. Buck Converter Undervoltage Protection

Figure 8. Buck Converter Output Ripple

Figure 10. Buck Converter Startup

Figure 12. LDO Load Transient Response

SLVSCE2-NOVEMBER 2013

Figure 17. Boost Converter 2 Output Ripple

Figure 18. Boost Converter 2 Load Transient Response

TI INFORMATION - SELECTIVE DISCLOSURE

TPS65640

www.ti.com

SLVSCE2-NOVEMBER 2013

Figure 19. Boost Converter 2 Startup

Figure 21. Negative Charge Pump Output Ripple

Figure 23. Gate Voltage Shaping

Time (50 ms/div)

Figure 20. Boost Converter 2 Undervoltage Protection

TI INFORMATION – SELECTIVE DISCLOSURE

TEXAS INSTRUMENTS

TPS65640

www.ti.com

SLVSCE2-NOVEMBER 2013

V₂₅

V_{GH}

RESET

POWER OFF SEQUENCY

Figure 26. Power Off Sequency

www.ti.com

SLVSCE2-NOVEMBER 2013

DETAILED DESCRIPTION

An internal block diagram of the TPS65640 is shown in Figure 27.

www.ti.com

SLVSCE2-NOVEMBER 2013

BOOST CONVERTER 1 (AV_{DD})

Figure 28. Boost Converter 1 Internal Block Diagram

Switching Frequency (Boost Converter 1)

Boost Converter 1 can be configured to operate at 600 kHz, 800 kHz, 1000 kHz, or 1200 kHz. In general, the higher switching frequency offers better transient performance at the expense of slightly reduced efficiency. In some applications, it may be necessary to select a particular switching frequency to minimize EMI problems. The switching frequency is determined by the state of the **FREQ1** configuration bit in the **AVDDCONFIG** register.

Compensation (Boost Converter 1)

Boost Converter 1 uses an external compensation network connected to its COMP pin to stabilize its feedback loop. A simple series R-C network connected between this pin and ground is sufficient to achieve good performance (that is, stable and with good transient response) in most applications. Good starting values, which will work for many applications, are 200 k Ω and 1 nF.

In some applications (for example, those using electrolytic output capacitors), it may be necessary to include a second compensation capacitor between the COMP pin and ground. This has the effect of adding an additional pole in the feedback loop's frequency response, which can be used to cancel the zero introduced by the electrolytic output capacitor's ESR.

Output Voltage (Boost Converter 1)

Boost converter 1's output voltage can be programmed from 3.6 V to 11 V with 100-mV increment using the **AVDD** register. Because changing the output voltage in big steps can temporarily demand switch currents greater than the switch's current limit, it is recommended that AV_{DD} be changed in 100-mV steps, for example, first change AV_{DD} from 7 V to 7.1 V, then to 7.2 V, then to 7.3 V, and so on until the desired output voltage has been achieved.

Start-Up (Boost Converter 1)

Boost converter 1 starts immediately after the V₂₅ voltage raming to its programmed voltage.

TI INFORMATION - SELECTIVE DISCLOSURE

TPS65640

www.ti.com

To minimize inrush current during start-up, boost converter 1 ramps its output voltage in t_{SS1} milliseconds. The value of t_{SS1} can be programmed from 20ms to 80ms using the **SS1** bits in **AVDDCONFIG** register.

Boost converter 1's internal power good signal is asserted when two conditions are met:

- the converter's soft-start ramp has reached its final value
- the converter's output voltage is greater than its UVP threshold.

The power good signal is latched and will only be reset when the supply voltage is cycled.

Current limit (Boost Converter 1)

The boost converter 1 has built-in cycle-by-cycle current limit for the power MOSFET. When the inducotr current or the power MOSFET current reaches I_{LIM} , the power MOSFET will be tuned off immediately until the next switching cycle. The I_{LIM} can be programmed from 1 A to 2 A using the **AVDD ILIM** bit in **AVDDCONFIG** register.

Design Procedure (Boost Converter 1)

The first step in the design procedure is to verify whether the maximum possible output current of the boost converter 1 supports the specific application requirements.

1. Converter Duty Cycle:

$$D = 1 - \frac{V_{IN} \times \eta}{V_{AVDD}}$$
(1)

2. Inductor Ripple Current:

$$\Delta I_{L} = \frac{V_{IN} \times D}{f_{s} \times L}$$
⁽²⁾

3. Maximum Output Current:

$$I_{OUT_max} = \left(I_{LIM_min} - \frac{\Delta I_{L}}{2}\right) \times (1 - D)$$
(3)

4. Peak Switching Current:

$$I_{\text{SWPEAK}} = \frac{I_{\text{OUT}}}{1 - D} + \frac{\Delta I_{\text{L}}}{2}$$
(4)

 η = Estimated boost converter efficiency (use the number from the efficiency plots or 0.9 as an estimation)

 $f_{\rm S}$ = Switching frequency

L = Selected inductor value (typ. 10 μ H)

ILIM min: Minimum current limit

 I_{SWPEAK} = Peak switch current for the used output current

 ΔI_L = Inductor peak-to-peak ripple current

The peak switch current I_{SWPEAK} is the current that the integrated switch, the inductor and the external Schottky diode have to be able to handle. The calculation must be done for the minimum input voltage where the peak switch current is the highest.

Inducotr Selection (Boost Converter 1)

Inductor Value:	4.7 μH ≤ L ≤ 10 μH	Higher the inductor value the lower the inductor current ripple and the output voltage ripple but the slower the transient response.
Saturation Current:	$I_{SAT} \ge I_{SWPEAK}$ or $I_{SAT} \ge I_{LIM_max}$	The inductor saturation current must be higher than the switch peak current for the max. peak output current or as a more conservative approach higher than the max. switch current limit.
DC Resistance:	The lower the inductors resistance	the lower the losses and the higher the efficiency.

TEXAS INSTRUMENTS

SLVSCE2-NOVEMBER 2013

www.ti.com

Rectifier Diode Selection (Boost Converter 1)

Diode type: Schottky or super barrier rectifier (SBR) for better efficiency.

Forward voltage: The lower the forward voltage VF the higher the efficiency and the lower the diode temperature.

Reverse voltage: V_R must be higher than the output voltage and should be higher than the OVP voltage typically 15 V.

Thermal characteristics: The diode must be able to handle the dissipated power of $P_D = V_F \times I_{OUT}$.

Output Capacitor Selection (Boost Converter 1)

For best output voltage filtering, TI recommends low-ESR ceramic capacitors. Two 4.7 μ F (or four 2.2- μ F) ceramic capacitors work for most applications. To improve the load transient response more capacitance can be added between the rectifier diode.

To calculate the output voltage ripple the following equations can be used:

$$\Delta V_{C_RIPPLE} = \frac{V_{AVDD} - V_{IN}}{V_{AVDD} \times f_{s}} x \frac{I_{OUT}}{C_{OUT}} + \Delta V_{C_ESR}$$

$$\Delta V_{C_ESR} = I_{SWPEAK} \times R_{C_ESR}$$
(5)
(6)

BUCK CONVERTER (V₂₅)

The buck converter uses a current mode, quasi-constant off-time topology that offers high efficiency, fast transient response, and constant ripple current amplitude under all operating conditions (see Figure 29). The converter's off time is inversely proportional V_{25} and therefore constant when the converter is in regulation. Thus for a given V_{IN} the converter operates at a constant frequency that changes temporarily when the converter reacts to load changes.

When the latch is set, transistor Q_1 is turned on and transistor Q_2 is turned off. As inductor L_2 charges, the current flowing through Q_1 ramps up at a rate determined by the difference between V_{IN} and V_{CORE} and the value of L_2 . The ramping current is sensed across Q_1 , and when it reaches the level demanded by error amplifier A_1 the output of comparator A_2 goes high, resetting the latch. The reset latch turns off Q_1 and turns on Q_2 . Inductor L_2 now discharges through Q_2 for a fixed off time. At the end of the off time, the latch is set, turning on Q_1 and turning off Q_2 , and the cycle repeats.

The sensed output voltage is divided down by a multiplying DAC and used as negative feedback to amplifier A_1 . The output of A_1 is the error signal required to regulate V_{25} at the desired voltage.

Figure 29. Buck Converter 1 Block Diagram

Output Voltage (Buck Converter)

Buck converter's output voltage can be programmed from 1.5 V to 3.0 V using the **V25** register.

Copyright © 2013, Texas Instruments Incorporated

TI INFORMATION – SELECTIVE DISCLOSURE

TPS65640

www.ti.com

SLVSCE2-NOVEMBER 2013

Start-Up (Buck Converter)

Buck converter starts as soon as the supply voltage exceeds the under-voltage lockout threshold (the same time as the linear regulator starts).

To minimize inrush current during start-up, buck converter ramps V_{25} from 0 V to programmed voltage in t_{SS2} milliseconds. The value of t_{SS2} is around 0.5 ms to 4.0 ms.

The same ramp rate is used for both buck converter and the linear regulator (LDO).

Current limit (Buck Converter)

The buck converter has built-in cycle-by-cycle current limit for the high side power MOSFET, Q1 in Figure 29. When the inductor current or the MOSFET Q1 current reaches I_{LIM} , the Q1 is tuned off immediately until the next switching cycle. The I_{LIM} is typically 1.2 A.

Design Procedure (Buck Converter)

The first step in the design procedure is to verify whether the maximum possible output current of the buck converter supports the specific application requirements.

1. Switching Frequency:

$$f_{s} = \frac{V_{IN} \times \eta - V_{25}}{V_{IN} \times \eta \times T_{off}}$$
⁽⁷⁾

2. Converter Duty Cycle

$$\mathsf{D} = \frac{\mathsf{V}_{25}}{\mathsf{V}_{\mathsf{IN}} \times \eta} \tag{8}$$

3. Inductor Ripple Current:

$$\Delta I_{L} = \frac{\left(V_{IN} - V_{25}\right) \times D}{f_{s} \times L}$$
⁽⁹⁾

4. Maximum Output Current:

$$I_{OUT_max} = I_{LIM_min} - \frac{\Delta I_{L}}{2}$$
(10)

5. Peak Switching Current:

$$I_{\text{SWPEAK}} = I_{\text{OUT}} + \frac{\Delta I_{\text{L}}}{2}$$
(11)

 T_{off} = Buck boost switch duty off time (typ. 200 ns)

 η = Estimated boost converter efficiency (use the number from the efficiency plots or 0.8 as an estimation)

f_S = Switching frequency

L = Selected inductor value (typ. 10 μ H)

I_{LIM min}: Minimum current limit

 I_{SWPEAK} = Peak switch current for the used output current

 ΔI_{L} = Inductor peak-to-peak ripple current

The peak switch current I_{SWPEAK} is the current that the integrated switch, the inductor and the external Schottky diode have to be able to handle. The calculation must be done for the minimum input voltage where the peak switch current is the highest.

Inducotr Selection (Buck Converter)

Inductor Value:		Higher the inductor value the lower the inductor current ripple and the output voltage ripple but the slower the transient response.
-----------------	--	--

20 Submit Documentation Feedback

TI INFORMATION - SELECTIVE DISCLOSURE

www.ti.com

TPS65640

SLVSCE2-NOVEMBER 2013

Saturation Current:	$I_{SAT} \ge I_{SWPEAK}$ or $I_{SAT} \ge I_{LIM_max}$	The inductor saturation current must be higher than the switch peak current for the max. peak output current or as a more conservative approach higher than the max. switch current limit.
DC Resistance:	The lower the inductors resistance	the lower the losses and the higher the efficiency.

Output Capacitor Selection (Buck Converter)

For best output voltage filtering, TI recommends low-ESR ceramic capacitors. Two $4.7-\mu F$ (or four $2.2-\mu F$) ceramic capacitors work for most applications. To improve the load transient response more capacitance can be added between the rectifier diode.

To calculate the output voltage ripple the following equations can be used:

$$\Delta V_{C_RIPPLE} = \frac{V_{25}}{V_{IN} \times f_{s}} \times \frac{I_{OUT}}{C_{OUT}} + \Delta V_{C_ESR}$$
(12)
$$\Delta V_{C_ESR} = I_{SWPEAK} \times R_{C_ESR}$$
(13)

LDO REGULATOR (V₂₅)

A low-dropout (LDO) linear regulator generates V_{25} (see Figure 30). The linear regulator is supplied from V_{IN} and it's an alternative option to buck converter. The V_{25} voltage could be supplied either by Buck converter or LDO determined by the state of the **BUCK/LDO** configuration bit in the **CONFIG** register.

Figure 30. Linear Regulator Block Diagram

Amplifier A_1 regulates the current through Q_3 by comparing a reduced version of the output voltage with a bandgap voltage reference V_{REF} . The output of Q_3 is mirrored by Q_1 and Q_2 to generate the desired output voltage. In practice, Q_2 is made much bigger than Q_1 . This means that the current flowing through Q_1 and Q_3 is smaller than the output current by the same ratio as the transistor areas.

The maximum output current is inherently limited by the maximum output voltage of A_1 , the value of resistor R_1 , and the characteristics of transistor Q_3 .

Output Voltage (LDO Regulator)

LDO's output voltage can be programmed from 1.5 V to 3.0 V using the **V25** register. Because the V25_LX pin alternates for LDO regulator's output voltage and buck converter's switch node, select buck converter with LDO circuit configuration can make the permanent damage. The LDO regulator mode is factory default setup.

Start-Up (Low Dropout Regulator)

LDO starts as soon as the supply voltage exceeds the under-voltage lockout threshold (the same time as the buck converter starts).

To minimize inrush current during start-up, LDO regulator ramps V_{25} from 0V to programmed voltage in t_{SS2} milliseconds. The value of t_{SS2} is around 0.5 ms to 4.0 ms.

Copyright © 2013, Texas Instruments Incorporated

SLVSCE2-NOVEMBER 2013

The same ramp rate is used for both buck converter and the linear regulator.

BOOST CONVERTER 2 (V_{GH})

Boost converter 2 is a low-power boost converter that can be used to generate the LCD panel's gate ON voltage V_{GH} . Operating the converter in DCM removes the right-half-plane zero from its transfer function, simplifying its stabilization and allowing the use of small chip inductors. To simplify its application and to minimize the external parts required, boost converter 2 features internal compensation and soft-start circuitry.

A simplified block diagram of boost converter 2 is shown in Figure 31.

Figure 31. Boost Converter 2 Block Diagram

Switching Frequency (Boost Converter 2)

Boost Converter 2 can be configured to operate at 400 kHz or 800 kHz. The switching frequency is determined by the state of the **FREQ4** configuration bit in the **VGHCONFIG** register.

Output Voltage Temperature Compensation (Boost Converter 2)

Boost converter 2 can be temperature compensated, allowing its output voltage to transition from a higher voltage at low temperatures $V_{GH(COLD)}$ to a lower voltage at high temperatures $V_{GH(HOT)}$ (see Figure 32 and Figure 33).

Figure 32. Boost Converter 2 Temperature Compensation Characteristic

www.ti.com

Figure 33. Boost Converter 2 Temperature Compensation Block Diagram

Referring to Figure 33, The thermistor network formed by R1, R2, and R_T ⁽¹⁾ generates a voltage at the VT pin whose value decreases with increasing temperature. With proper selection ⁽²⁾ of the external components R_T , R1 and R2, temperatures T_{HOT} and T_{COLD} can be configured to suit each display's characteristics. A spreadsheet allowing easy calculation of component values is available from Texas Instruments free of charge.

Output Voltage (Boost Converter 2)

The output voltage of boost converter 2 at cold temperatures can be programmed from 15 V to 37 V using the **VGHCOLD** register.

The output voltage of boost converter 2 at hot temperatures can be programmed from 15 V to 37 V using the **VGHHOT** register.

In applications that do not require temperature compensation, the **VGHT** bit in **CONFIG** register should be set to 1 and the **VGHHOT** register used to set the voltage of V_{GH} .

Because changing the output voltage in big steps can temporarily demand switch currents greater than the switch's current limit, it is recommended that V_{GH} be changed in 1 V steps, i.e. first change V_{GH} from 15 V to 16 V, then to 16 V, then to 17 V, and so on until the desired output voltage has been achieved.

Start-Up (Boost Converter 2)

Boost converter 2 is enabled when AVDD has finished ramping to its programmed voltage.

To minimize inrush current during start-up, boost converter 2 ramps V_{GH} to its programmed value in t_{SS4} seconds. The value of t_{SS4} can be programmed from 4 ms to 16 ms using the **SS4** bits in **VGHCONFIG** register. The same ramp rate is used for both boost converter 2 and the negative charge pump regulator.

Boost converter 2's internal power good signal is asserted when two conditions are met:

- the converter's soft-start ramp has reached its final value
- the converter's output voltage is greater than its UVP threshold.

The power good signal is latched and will only be reset when the supply voltage is cycled.

Current limit (Boost Converter 2)

The boost converter 2 has built-in cycle-by-cycle current limit for the power MOSFET. When the inducotr current or the power MOSFET current reaches I_{LIM} , the power MOSFET will be tuned off immediately until the next switching cycle. The I_{LIM} is typically 1.2 A for boost converter 2.

Design Procedure (Boost Converter 2)

The first step in the design procedure is to verify whether the maximum possible output current of the boost converter supports the specific application requirements.

1. Converter Duty Cycle:

Copyright © 2013, Texas Instruments Incorporated

⁽¹⁾ R_T should be a negative temperature coefficient (NTC) type whose resistance at 25°C is 10k Ω .

⁽²⁾ Texas Instruments can provide a spreadsheet that calculates suitable component values automatically.

SLVSCE2-NOVEMBER 2013

$$D = 1 - \frac{V_{AVDD} \times \eta}{V_{GH}}$$
(14)

2. Inductor Ripple Current:

$$\Delta I_{L} = \frac{V_{AVDD} \times D}{f_{s} \times L}$$
(15)

3. Maximum Output Current:

$$I_{OUT_max} = \left(I_{LIM_min} - \frac{\Delta I_{L}}{2}\right) \times (1 - D)$$

4. Peak Switching Current:

$$I_{SWPEAK} = \frac{I_{OUT}}{1 - D} + \frac{\Delta I_{L}}{2}$$
(17)

 η = Estimated boost converter efficiency (use the number from the efficiency plots or 0.9 as an estimation)

f_S = Switching frequency

L = Selected inductor value (typ. 10 μ H)

I_{LIM min}: Minimum current limit

 I_{SWPEAK} = Peak switch current for the used output current

 ΔI_L = Inductor peak-to-peak ripple current

The peak switch current I_{SWPEAK} is the current that the integrated switch, the inductor and the external Schottky diode have to be able to handle. The calculation must be done for the minimum input voltage where the peak switch current is the highest.

Inducotr Selection (Boost Converter 2)

Inductor Value:	4.7 μH ≤ L ≤ 10 μH	Higher the inductor value the lower the inductor current ripple and the output voltage ripple but the slower the transient response.
Saturation Current:	$I_{SAT} \ge I_{SWPEAK}$ or $I_{SAT} \ge I_{LIM_max}$	The inductor saturation current must be higher than the switch peak current for the max. peak output current or as a more conservative approach higher than the max. switch current limit.
DC Resistance:	The lower the inductors resistance	the lower the losses and the higher the efficiency.

Rectifier Diode Selection (Boost Converter 2)

Diode type: Schottky or super barrier rectifier (SBR) for better efficiency.

Forward voltage: The lower the forward voltage VF the higher the efficiency and the lower the diode temperature.

Reverse voltage: V_R must be higher than the output voltage and should be higher than the OVP voltage 39 V.

Thermal characteristics: The diode must be able to handle the dissipated power of $P_D = V_F \times I_{OUT}$.

Output Capacitor Selection

For best output voltage filtering, TI recommends low-ESR ceramic capacitors. Two 4.7- μ F (or four 2.2- μ F) ceramic capacitors work for most applications. To improve the load transient response more capacitance can be added between the rectifier diode.

To calculate the output voltage ripple the following equations can be used:

$$\Delta V_{C_{RIPPLE}} = \frac{V_{GH} - V_{AVDD}}{V_{GH} \times f_{s}} \times \frac{I_{OUT}}{C_{OUT}} + \Delta V_{C_{ESR}}$$

$$\Delta V_{C_{ESR}} = I_{SWPEAK} \times R_{C_{ESR}}$$
(18)
(19)

TEXAS INSTRUMENTS

www.ti.com

(16)

www.ti.com

SLVSCE2-NOVEMBER 2013

NEGATIVE CHARGE PUMP VOLTAGE REGULATOR CONTROL (V_{GL})

The negative charge pump voltage regulator control an external NPN transistor to regulate the V_{GL} output. As typical application circuit Figure 34 illustrated, a one time negative voltage charge pump based on the AV_{DD} boost switching provides the source voltage to the emitter of NPN transistor. Depending on the feedback voltage applied on the VGL pin, A₁ error amplifier regulates the current through Q3. The proportional current mirrored by Q1 to Q2 sends to the base of NPN transistor from DRVN pin. Therefore, the regulation is achieved by controlled voltage drop between collector and emitter of NPN transition.

Normally the negative charge pump regulator is to provide gate OFF voltage to the gate driver or level shift. In additional, for positive and negative AV_{DD} application, it can also be used for negative AV_{DD} regulating. Because of charge bump voltage loss, it is recommended to leave enough voltage guard band (for example, 1 V for 50-mA load) between positive AV_{DD} to negative AV_{DD} .

Figure 34. Negative Charge Pump Block Diagram

Output Voltage (Negative Charge Pump)

Negative charge pump's output voltage can be programmed from -8 V to -3.8 V using the VGL register.

Start-Up (Negative Charge Pump)

Negative charge pump is enabled together with booster converter 2 when AVDD has finished ramping to its programmed voltage.

The same ramp rate is shared for both boost converter 2 and negative charge pump regulator. The negative charge pump regulator ramps V_{GL} to its programmed value from 0V in t_{SS4} seconds. The value of t_{SS4} can be programmed from 4 ms to 16 ms using the **SS4** bits in **VGHCONFIG** register.

NPN Transistor Selection (Negative Charge Pump)

The NPN transistor used to regulator V_{GL} or Negtive AV_{DD} should have a DC gain (h_{FE}) of at least 100 when its collector current is equal to the charge pump's output current. The transistor should also be able withstand voltages up to V_{IN} across its collector-emitter (V_{CE}).

The power dissipated in the transistor is given by Equation 20. The transistor must be able to dissipate this power without its junction becoming too hot. Note that the ability to dissipate power depends on adequate PCB thermal design.

$$P_{Q} = [V_{IN} - (2 \times V_{F}) - |V_{GL}|] \times I_{GL}$$

(20)

25

Submit Documentation Feedback

SLVSCE2-NOVEMBER 2013

www.ti.com

Where I_{GL} is the mean (not RMS) output current drawn from the charge pump.

Diode Selection (Negative Charge Pump)

Small-signal diodes can be used for most low current applications (<50 mA) and higher rated diodes for higher power applications. The average current through the diode is equal to the output current, so that the power dissipated in the diode is given by Equation 21

$$P_D = I_{GL} \times V_F$$

(21)

The peak current through the diode occurs during start-up and for a few cycles may be as high as a few amps. However, this condition typically lasts for <1 ms and can be tolerated by many diodes whose repetitive current rating is much lower. The diodes' reverse voltage rating should be equal to at least $2 \times V_{IN}$.

Capacitor Selecion (Negative Charge Pump)

For the lowest output voltage ripple, low-ESR ceramic capacitors are recommended. The actual value is not critical and 1 μ F to 10 μ F is suitable for most applications. Large capacitors provide better performance in applications where large load transient currents are present.

A flying capacitor in the range of 100 nF to 1 μ F is suitable for most applications. Larger values experience a smaller voltage drop by the end of each switching cycle, and allow higher output voltages or currents, or both, to be achieved. Smaller values tend to be physically smaller and cheaper.

OVER-VOLTAGE AND UNDER-VOLTAGE PROTECTION (AV_{DD}, V₂₅, V_{GH})

Each voltage regulator output is protected against under-voltages and over-voltages.

Over-voltage conditions are detected if AV_{DD} output rises over typical 15 V or V_{GH} output rises over typical 39 V, in which cases the AV_{DD} boost switch or VGH boost switch will be turned off until the overvoltage conditions is removed.

Undervoltage conditions are detected if a regulator output falls below certain level of its programmed voltage for longer than a time period, in which case the relevant voltage regulator is disabled. To recover normal operation following an under-voltage condition, the cause of the error condition must be removed and the supply voltage V_{IN} cycled.

UVP	ON PERIOD		PROTECT BEHAVIOR	RECOVERY CONDITION
V ₂₅	< 1 V	> 160 ms	V_{25} buck converter or LDO, AV_{DD} boost converter, V_{GH} boost converter and V_{GL} regulator are disabled. RESET pin is pulled low.	Error condition is removed and V_{IN} is cycled (POR).
AV_{DD}	< 80%	> 160 ms	AV_{DD} boost converter, V_{GH} boost convert and V_{GL} voltage regulator are disabled.	Error condition is removed and V _{IN} is cycled (POR).
V_{GH}	< 80%	> 160 ms	V _{GH} boost converter is disabled.	Error condition is removed and $V_{\mbox{IN}}$ is cycled (POR).

Table 1. Under Voltage Protection

RESET GENERATOR

The RESET pin generates an active-low reset signal for the T-CON (see Figure 35). During power-up the reset timer (t_{RESET}) starts when V₂₅ has finished ramping. The reset pulse duration can be programmed from 0 ms to 30 ms using the **RESET** register.

The RESET output is an open-drain type that requires an external pull-up resistor. Pull-up resistor values in the range 10 k Ω to 100 k Ω are recommended for most applications.

www.ti.com

Figure 35. Reset Internal Block Diagram

GATE VOLTAGE SHAPING

The gate voltage shaping function can be used to reduce image sticking in LCD panels by modulating the LCD panel's gate ON voltage (VGH). Figure 36 shows a block diagram of the gate voltage shaping function and Figure 37 shows the typical waveforms during operation.

Figure 36. Gate Voltage Shaping Block Diagram

Figure 37. Gate Voltage Shaping Waveforms

SLVSCE2-NOVEMBER 2013

Gate voltage shaping is controlled by the FLK input. When FLK is high, Q_1 is on, Q_2 is off, and V_{GHM} is equal to V_{GH} . On the falling edge of FLK, Q_1 is turned off, Q_2 is turned on, and the LCD panel load connected to the VGHM pin discharges through the external resistor connected to the RE pin.

During power-up Q_2 is held permanently on and Q_1 permanently off, regardless of the state of the FLK signal, until t_{DLY} milliseconds after boost converter 2 (V_{GH}) has finished ramping. The value of t_{DLY} can be programmed from 0ms to 60ms using the **DLY** register.

During power-down Q₂ is held permanently on and Q1 permanently off, regardless of the state of the FLK signal.

PROGRAMMABLE V_{COM} CALIBRATOR (V_{COM})

The programmable VCOM calibrator uses a DAC to generate an offset Voltage for LCD panel common voltage reference.

Figure 38. Programmable V_{COM} Calibrator Block Diagram

The VCOM voltage calibration needs two steps for adjustment.

First step is to set the central value of V_{COM} voltage according to the AV_{DD}, V_{GH} and LCD panel characteristic. The VCOM voltage is programmable from 1.5 V to 5.0 V or -4 V to 0.8 V by **VCOMHOT** register. The first step is normally done by PCB assembly manufacturer.

Second step is to calibrate the V_{COM} voltage on the LCD panel assembly line by **VCOM** RAM register through I²C digital interface. The **VCOM** register value indicates the voltage increment or decrement of VCOM_OUT which is preset by **VCOMHOT**. Once the proper value is identified, the VCOM_OUT voltage value can be renewed with **VCOM** register value added. The default value for VCOM register is **1000000**. If 1000001 is written into **VCOM** register, the VCOM_OUT voltage will increase with one DAC step, 10mV. In the other hand if 0111111 is written to **VCOM** register, the VCOM_OUT voltage will decrease with one DAC step, 10 mV.

The VCOM voltage also supports temperature compensation and allows its output voltage to transition from a lower voltage at low temperatures $V_{COMCOLD}$ to a higher voltage at high temperatures V_{COMHOT} (see Figure 39). The temperature compensation for VCOM could be turn on/off by bit **VCOMT** in register **CONFIG**. If temperature compensation for VCOM is ON state, both **VCOMHOT** and **VCOMCOLD** need to be input. Otherwise only **VCOMHOT** is active for VCOM voltage setting without temperature compensation.

www.ti.com

Figure 39. V_{COM} Temperature Compensation Characteristic

OPERATIONAL AMPLIFIERS

Like most operational amplifiers, the V_{COM} amplifiers are not designed to drive purely capacitive loads, so it is not recommended to connect a capacitor directly to their outputs in an attempt to increase performance; however, the amplifiers are capable of delivering high peak currents that make such capacitors unnecessary.

To optimize performance, the V_{COM} amplifiers' positive supplies are connected internally to the AVDD pin and negative supplies are connected internally to NAVDD pin (See Figure 40 for operational amplifier internal block diagram).

Figure 40. Operational Amplifier Block Diagram

The two integrated operational amplifiers are able to be disabled for non-used application to minimize the power consumption. Setting the **OPA_A** bit or **OPA_B** bit in **CONFIG** register can turn on/off operational amplifier A or B individually.

To minimize the additional power dissipated when operational amplifier is turned off, it is recommanded to short the both inverter input and non-inverter input to same voltage bias or leave them floating.

CONFIGURATION PARAMETERS

The TPS65640 divides the configuration parameters into two categories:

- VCOM calibration
- All other configuration parameters

In typical applications, all configuration parameters except VCOM are programmed by the subcontractor during PCB assembly, and VCOM is programmed by the display manufacturer during display calibration.

RAM and E²PROM

Configuration parameters can be changed by writing the desired values to the appropriate RAM register or registers. The RAM registers are volatile and their contents are lost when power is removed from the device. By writing to the Control Register, it is possible to store the active configuration in non-volatile E²PROM so that it will subsequently be used as the default setting upon when the device is powered up.

Copyright © 2013, Texas Instruments Incorporated

www.ti.com

SLVSCE2-NOVEMBER 2013

Configuration Parameters (Excluding VCOM Calibration)

Table 2 shows the memory map of the configuration parameters.

Table 2. Configuration Memory Map

Register Address	Register Name	Factory Default	Description
00h	CONFIG	FAh	Sets function control bits
01h	AVDD	3Ah	Sets the output voltage of AVDD boost converter
02h	AVDDCONFIG	0Ah	Sets miscellaneous configuration bits for AVDD boost converter
03h	VGHHOT	09h	Sets the output voltage of VGH boost converter at high temperatures (VGHT = 0) or VGH boost converter (VGHT=1)
04h	VGHCOLD	09h	Sets the output voltage of VGH boost converter at low temperatures (VGHT=0)
05h	VGHCONFIG	02h	Sets miscellaneous configuration bits for VGH boost converter
06h	VGL	1Fh	Sets the output voltage of VGL linear regulator
07h	V25	0Ah	Sets the output voltage of buck converter.
08h	VDIV	01h	Sets the threshold of the /RST signals
09h	RESET	06h	Sets the reset pulse duration
0Ah	DLY	01h	Sets the gate voltage shaping delay
0Bh	VCOMHOT	5Fh	Presets the output voltage of VCOM reference at high temperatures (VCOMT = 0) or VCOM reference (VCOMT=1)
0Ch	VCOMCOLD	5Fh	Presets the output voltage of VCOM reference at low temperatures (VCOMT=0)
FFh	Control	00h	Controls whether read and write operations access RAM or E ² PROM registers

CONFIG (00h)

The **CONFIG** register can be written to and read from.

			Table	5. COM 10 K	egister bit Allo	cation					
Bit 7	I	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
VCOMR	V	COMT	OPA_B	OPA_A	BUCK/LDO	VGL	VGHT	VGH			
VGH	Bit	This bit	enables/disable	es the boost conv	erter for VGH voltage	e regulator.					
	0	0	Enable	es the VGH boot	converter	U					
		1	Disabl	es the VGH boos	st converter						
VGHT	Bit	This bit	enables/disable	es the temperatur	e compensation for	VGH regulator.					
	1	0	Enable	es the temperatur	re compensation for	VGH voltage reg	gulator				
		1	Disabl	es the temperatu	re compensation for	VGH voltage re	gulator				
VGL	Bit	This bit	enables/disable	s the VGL linear	voltage regulator.						
	2	5 5									
		1	Disabl	es the VGL linea	r voltage regulator						
BUCK/LDO	Bit	This bit selects the operation mode for V25 voltage regulator.									
	3	0	Select	s the Buck conve	erter for V25 voltage	regulator					
		1	Select	s the LDO for V2	5 voltage regulator						
OPA_A	Bit	This bit	This bit enables/disables the OPA_A operational amplifier.								
	4	0	Enable	es the OPA_A op	erational amplifier						
		1	Disabl	es the OPA_A or	perational amplifier						
OPA_B	Bit	This bit	enables/disable	s the OPA_B op	erational amplifier.						
	5	0	Enable	es the OPA_B op	erational amplifier						
		1	Disabl	es the OPA_B op	perational amplifier						
VCOMT	Bit	This bit	enables/disable	s the temperatur	e compensation for	VCOM voltage					
	6	0	Enable	es the temperatur	re compensation for	VCOM voltage					
		1	Disabl	es the temperatu	re compensation for	VCOM voltage					
VCOMR	Bit	This bit	sets the V _{COM} v	oltage output rar	nge						
	7	0	V _{COM}	= 0.8 V ~ 5 V for	full AV _{DD} Application	า					
		1	V _{COM}	= -4.1 V ~ 0.2 V	for PN AV _{DD} Applica	ation					

Table 3. CONFIG Register Bit Allocation

TEXAS INSTRUMENTS

www.ti.com

SLVSCE2-NOVEMBER 2013

AVDD (01h)

The **AVDD** register can be written to and read from.

				D Register B								
Bit 7	Bit 6		Bit 5 Bit	4 Bi	t 3 Bit 2	Bit 1	Bit 0					
Reserved	AVDD											
	Bits These bits select boost converter 1's output voltage (AVDD)											
AVDD	Bits	These bits s		1's output voltage	e (AVDD)							
	6-0	0000000	N.A.	1000010	$AV_{DD} = 6.6 V$	1100010	$AV_{DD} = 9.8 V$					
			N.A.	1000011	$AV_{DD} = 6.7 V$	1100011	$AV_{DD} = 9.9 V$					
		0100100	$AV_{DD} = 3.6 V$	1000100	$AV_{DD} = 6.8 V$	1100100	$AV_{DD} = 10.0 V$					
		0100101	$AV_{DD} = 3.7 V$	1000101	$AV_{DD} = 6.9 V$	1100101	$AV_{DD} = 10.1 V$					
		0100110	$AV_{DD} = 3.8 V$	1000110	$AV_{DD} = 7.0 V$	1100110	$AV_{DD} = 10.2 V$					
		0100111	$AV_{DD} = 3.9 V$	1000111	$AV_{DD} = 7.1 V$	1100111	$AV_{DD} = 10.3 V$					
		0101000	$AV_{DD} = 4.0 V$	1001000	$AV_{DD} = 7.2 V$	1101000	$AV_{DD} = 10.4 V$					
		0101001	$AV_{DD} = 4.1 V$	1001001	$AV_{DD} = 7.3 V$	1101001	$AV_{DD} = 10.5 V$					
		0101010	$AV_{DD} = 4.2 V$	1001010	$AV_{DD} = 7.4 V$	1101010	$AV_{DD} = 10.6 V$					
		0101011	$AV_{DD} = 4.3 V$	1001011	$AV_{DD} = 7.5 V$	1101011	$AV_{DD} = 10.7 V$					
		0101100	$AV_{DD} = 4.4 V$	1001100	$AV_{DD} = 7.6 V$	1101100	$AV_{DD} = 10.8 V$					
		0101101	AV _{DD} = 4.5 V	1001101	$AV_{DD} = 7.7 V$	1101101	$AV_{DD} = 10.9 V$					
		0101110	$AV_{DD} = 4.6 V$	1001110	AV _{DD} = 7.8 V	1101110	AV _{DD} = 11.0 V					
		0101111	$AV_{DD} = 4.7 V$	1001111	AV _{DD} = 7.9 V	1101111	AV _{DD} = 11.1 V					
		0110000	$AV_{DD} = 4.8 V$	1010000	$AV_{DD} = 8.0 V$	1110000	AV _{DD} = 11.2 V					
		0110001	$AV_{DD} = 4.9 V$	1010001	AV _{DD} = 8.1 V	1110001	AV _{DD} = 11.3 V					
		0110010	$AV_{DD} = 5.0 V$	1010010	AV _{DD} = 8.2 V	1110010	AV _{DD} = 11.4 V					
		0110011	AV _{DD} = 5.1 V	1010011	AV _{DD} = 8.3 V	1110011	AV _{DD} = 11.5 V					
		0110100	AV _{DD} = 5.2 V	1010100	$AV_{DD} = 8.4 V$	1110100	AV _{DD} = 11.6 V					
		0110101	AV _{DD} = 5.3 V	1010101	AV _{DD} = 8.5 V	1110101	AV _{DD} = 11.7 V					
		0110110	AV _{DD} = 5.4 V	1010110	AV _{DD} = 8.6 V	1110110	AV _{DD} = 11.8 V					
		0110111	AV _{DD} = 5.5 V	1010111	AV _{DD} = 8.7 V	1110111	AV _{DD} = 11.9 V					
		0111000	AV _{DD} = 5.6 V	1011000	AV _{DD} = 8.8 V	1111000	AV _{DD} = 12.0 V					
		0111001	AV _{DD} = 5.7 V	1011001	AV _{DD} = 8.9 V	1111001	AV _{DD} = 12.1 V					
		0111010	AV _{DD} = 5.8 V	1011010	AV _{DD} = 9.0 V	1111010	AV _{DD} = 12.2 V					
		0111011	AV _{DD} = 5.9 V	1011011	AV _{DD} = 9.1 V	1111011	AV _{DD} = 12.3 V					
		0111100	AV _{DD} = 6.0 V	1011100	AV _{DD} = 9.2 V	1111100	AV _{DD} = 12.4 V					
		0111101	AV _{DD} = 6.1 V	1011101	AV _{DD} = 9.3 V	1111101	AV _{DD} = 12.5 V					
		0111110	AV _{DD} = 6.2 V	1011110	AV _{DD} = 9.4 V	1111110	AV _{DD} = 12.6 V					
		0111111	AV _{DD} = 6.3 V	1011111	AV _{DD} = 9.5 V	1111111	AV _{DD} = 12.7 V					
		1000000	AV _{DD} = 6.4 V	1100000	AV _{DD} = 9.6 V							
		1000001	AV _{DD} = 6.5 V	1100001	AV _{DD} = 9.7 V							

Table 4. AVDD Register Bit Allocation

SLVSCE2-NOVEMBER 2013

www.ti.com

AVDDCONFIG (02h)

The **AVDDCONFIG** register can be written to and read from.

			Table 5. P		Register Dit /	Anocation		
Bit 7	В	it 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	AVD	D ILIM	S	SI	FRE	ITS		
LX1TS	Bit	These bi	ts configure the	e falling speed of	AVDD boost switch	۱.		
	1-0	00	Tf = 0.	5 V/ns				
		01	Tf = 0.	7 V/ns				
		10	Tf = 0.	9 V/ns				
		11	Tf = 1.	1 V/ns				
FREQ1	Bit	These bi	ts configure the	switching freque	ncy of AVDD boos	it.		
	3-2	00	-	00 kHz				
		01	$f_{LX} = 8$	00 kHz				
		10	$f_{LX} = 1$	000 kHz				
		11	fL _X = 1	200 kHz				
SSI	Bit	These bi	ts configure the	e soft start duratio	n for AVDD boost	regulator		
	5-4	00	t _{SS1} = 2	20 ms				
		01	t _{SS1} = ·	40 ms				
		10	t _{SS1} =	60 ms				
		11	t _{SS1} =	80 ms				
AVDD ILIM	Bit	This bit s	elect the AVD	D boost current lin	nite value			
	6	0	$I_{\text{LIM}} = 1$	IA				
		1	$I_{LIM} = 2$	2 A				
Reserved	Bits 7		s reserved for f rations 0 is retu		write operations d	ata intended for th	nese bits is ignore	d, and during

Table 5. AVDDCONFIG Register Bit Allocation

SLVSCE2-NOVEMBER 2013

VGHHOT (03h)

The VGHHOT register can be written to and read from.

Table 6. VGHHOT Register Bit Allocation									
Bit 7		Bit 6	Bit 5 Bit 4	4	Bit 3	Bit 2	Bit 1	Bit 0	
	Res	served				VGHHOT			
VGHHOT	Bits	These bits	These bits select VGH output voltage at hot temperatures (VGHT=0) or all temperature range						
	4-0	00000	N.A.	10000	V _{GHF}	_{IOT} = 22 V			
		00001	N.A.	10001	V _{GHF}	_{IOT} = 23 V			
		00010	N.A.	10010	V _{GHF}	_{IOT} = 24 V			
		00011	N.A.	10011	V _{GHF}	_{IOT} = 25 V			
		00100	N.A.	10100	V _{GHF}	_{IOT} = 26 V			
		00101	N.A.	10101	V _{GHF}	_{IOT} = 27 V			
		00110	N.A.	10110	V _{GHF}	_{IOT} = 28 V			
		00111	N.A.	10111	V _{GHF}	_{IOT} = 29 V			
		01000	N.A.	11000	V _{GHF}	_{IOT} = 30 V			
		01001	V _{GHHOT} = 15 V	11001	V _{GHF}	_{IOT} = 31 V			
		01010	V _{GHHOT} = 16 V	11010	V _{GHF}	_{IOT} = 32 V			
		01011	V _{GHHOT} = 17 V	11011	V _{GHF}	_{IOT} = 33 V			
		01100	V _{GHHOT} = 18 V	11100	V _{GHF}	_{IOT} = 34 V			
		01101	V _{GHHOT} = 19 V	11101	V _{GHF}	_{IOT} = 35 V			
		01110	V _{GHHOT} = 20 V	11110	V _{GHF}	_{IOT} = 36 V			
		01111	$V_{GHHOT} = 21 V$	11111	V _{GHF}	_{IOT} = 37 V			
Reserved	Bits	These bits	are reserved for future	use. During v	vrite operatio	ons data intended	for these bits is ig	nored, and	

դ ıg ı, during read operations 0 is returned.

VGHCOLD (04h)

7-5

The VGHCOLD register can be written to and read from.

Table 7. VGHCOLD Register Bit Allocation

Bit 7	E	Bit 6	Bit 5 Bit	4	Bit 3	Bit 2	Bit 1	Bit 0		
	Res	served		VGHCOLD						
VGHCOLD	Bits	These bits	select VGH output volta	age at cold tem	peratures	(VGHT=0)				
	4-0	00000	N.A.	10000	V _{GHC}	_{COLD} = 22 V				
		00001	N.A.	10001	V _{GHC}	_{COLD} = 23 V				
		00010	N.A.	10010	V _{GHC}	_{COLD} = 24 V				
		00011	N.A.	10011	V _{GHC}	_{COLD} = 25 V				
		00100	N.A.	10100	V _{GHC}	_{COLD} = 26 V				
		00101	N.A.	10101	V _{GHC}	_{COLD} = 27 V				
		00110	N.A.	10110	V _{GHC}	_{COLD} = 28 V				
		00111	N.A.	10111	V _{GHC}	_{COLD} = 29 V				
		01000	N.A.	11000	V _{GHC}	_{COLD} = 30 V				
		01001	V _{GHCOLD} = 15 V	11001	V _{GHC}	_{COLD} = 31 V				
		01010	V _{GHCOLD} = 16 V	11010	V _{GHC}	_{COLD} = 32 V				
		01011	V _{GHCOLD} = 17 V	11011	V _{GHC}	_{COLD} = 33 V				
		01100	V _{GHCOLD} = 18 V	11100	V _{GHC}	_{COLD} = 34 V				
		01101	V _{GHCOLD} = 19 V	11101	V _{GHC}	_{COLD} = 35 V				
		01110	$V_{GHCOLD} = 20 V$	11110	V _{GHC}	_{COLD} = 36 V				
		01111	$V_{GHCOLD} = 21 V$	11111	V _{GHC}	_{COLD} = 37 V				
Reserved	Bits 7-5		are reserved for future d operations 0 is returne	0	te operatio	ons data intended	for these bits is ig	nored, and		

www.ti.com

SLVSCE2-NOVEMBER 2013

www.ti.com

VGHCONFIG (05h)

The VGHMISC register can be written to and read from.

 Table 8. VGHCONFIG Register Bit Allocation

D:+ 7	-):+ C			D:+ 2	Dit 0	Bit 1	Dit O
		Bit 6 Bit 5		Bit 4	Bit 3			Bit 0
	Res	served		FREQ4	S	S 4	LX4	ITS
LX4TS	Bit	Those bit	e configuro th	e falling speed of V	CH boost switch			
LA413			0	0 1	GIT DOOST SWITCH.			
	1-0	00		2 V/ns				
		01	Tf = 3	.5 V/ns				
		10	Tf = 4	.8 V/ns				
		11	Tf = 6	V/ns				
SS4	Bit	These bit	ts configure the	e soft start duratior	for VGH boost re	egulator		
	3-2	00	$t_{SS4} =$	4 ms				
		01	t _{SS4} =	8 ms				
		10	t _{SS4} =	12 ms				
		11	t _{SS4} =	16 ms				
FREQ4	Bit	This bit c	onfigures the	switching frequency	, of VGH boost re	gulator		
	4	0	F _{VGH}	_{_X} = 400 kHz				
		1	_	_{_X} = 800 kHz				
Reserved	Bits 7-5		ts are reserved ad operations	l for future use. Du 0 is returned.	ring write operatio	ons data intended	for these bits is ig	nored, and

SLVSCE2-NOVEMBER 2013

www.ti.com

VGL (06h)

The VGL register can be written to and read from.

Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reserved			VGL						
'GL	Bits	These bits	select VGL output	t voltage					
	5-0	000000	N.A.	010110	$V_{GL} = -$	-3.9 V	101100	$V_{GL} = -6.1 V$	
		000001	N.A.	010111	$V_{GL} = -$	-4.0 V	101101	$V_{GL} = -6.2 V$	
		000010	N.A.	011000	$V_{GL} = -$	-4.1 V	101110	$V_{GL} = -6.3 V$	
		000011	N.A.	011001	$V_{GL} = -$	-4.2 V	101111	$V_{GL} = -6.4 V$	
		000100	N.A.	011010	V _{GL} = -	-4.3 V	110000	$V_{GL} = -6.5 V$	
		000101	N.A.	011011	V _{GL} = -	-4.4 V	110001	$V_{GL} = -6.6 V$	
		000110	N.A.	011100	V _{GL} = -	-4.5 V	110010	$V_{GL} = -6.7 V$	
		000111	N.A.	011101	V _{GL} = -	-4.6 V	110011	$V_{GL} = -6.8 V$	
		001000	N.A.	011110	V _{GL} = -	-4.7 V	110100	$V_{GL} = -6.9 V$	
		001001	N.A.	011111	V _{GL} = -	-4.8 V	110101	$V_{GL} = -7.0 V$	
		001010	N.A.	100000	V _{GL} = -	-4.9 V	110110	$V_{GL} = -7.1 V$	
		001011	N.A.	100001	V _{GL} = -	-5.0 V	110111	$V_{GL} = -7.2 V$	
		001100	N.A.	100010	V _{GL} = -	-5.1 V	111000	$V_{GL} = -7.3 V$	
		001101	N.A.	100011	V _{GL} = -	-5.2 V	111001	$V_{GL} = -7.4 V$	
		001110	N.A.	100100	V _{GL} = -	-5.3 V	111010	$V_{GL} = -7.5 V$	
		001111	N.A.	100101	V _{GL} = -	-5.4 V	111011	$V_{GL} = -7.6 V$	
		010000	N.A.	100110	V _{GL} = -	-5.5 V	111100	$V_{GL} = -7.7 V$	
		010001	N.A.	100111	V _{GL} = -	-5.6 V	111101	$V_{GL} = -7.8 V$	
		010010	N.A.	101000	V _{GL} = -	-5.7 V	111110	$V_{GL} = -7.9 V$	
		010011	N.A.	101001	V _{GL} = -	-5.8 V	111111	$V_{GL} = -8.0 V$	
		010100	N.A.	101010	V _{GL} = -	-5.9 V			
		010101	$V_{GL} = -3.8$ V	V 101011	$V_{GI} = -$	-6.0 V			

Reserved

during

Bits

7-6

These bits are reserved for future use. During write operations data intended for these bits is ignored, and during read operations 0 is returned.

SLVSCE2-NOVEMBER 2013

www.ti.com

V25 (07h)

The V25 register can be written to and read from.

Table 10. V25 Register Bit Allocation										
Bit 7	E	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		Reserv	ed			V	25			
V25	Bits	These bi	ts select V25 buck o	converter's outpu	t voltage					
	3-0	0000	V ₂₅ = 1.5 V	1000	V ₂₅ =	= 2.3 V				
		0001	V ₂₅ = 1.6 V	1001	V ₂₅ =	= 2.4 V				
		0010	V ₂₅ = 1.7 V	1010	V ₂₅ =	= 2.5 V				
		0011	V ₂₅ = 1.8 V	1011	V ₂₅ =	= 2.6 V				
		0100	V ₂₅ = 1.9 V	1100	V ₂₅ =	= 2.7 V				
		0101	V ₂₅ = 2.0 V	1101	V ₂₅ =	= 2.8 V				
		0110	V ₂₅ = 2.1 V	1110	V ₂₅ =	= 2.9 V				
		0111	V ₂₅ = 2.2 V	1111	V ₂₅ =	= 3.0 V				
Reserved	Bits 7-4		ts are reserved for f ad operations 0 is re		g write operatic	ons data intended	for these bits is ig	nored, and		

VDIV (08h)

The **VDIV** register can be written to and read from.

Bit 7		Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Reser	ved			VD	IV	
VDIV	Bits	These b	its select the thre	shold voltage of	the RESET signal			
	3-0	000	$V_{DIV} = 1$.2 V				
		001	$V_{DIV} = 1$.4 V				
		010	$V_{DIV} = 1$.6 V				
		011	$V_{DIV} = 1$.8 V				
		100	$V_{DIV} = 2$.0 V				
		101	$V_{DIV} = 2$	2 V				
		110	$V_{DIV} = 2$.4 V				
		111	$V_{DIV} = 2$	6 V				
Reserved	Bits 7-4		its are reserved f ead operations 0		iring write operatio	ons data intended	for these bits is ig	nored, and

SLVSCE2-NOVEMBER 2013

NSTRUMENTS

EXAS

www.ti.com

RESET (09h)

The **RESET** register can be written to and read from.

Table 12.	RESET	Register	Bit	Allocation
-----------	-------	----------	-----	------------

Bit 7		Bit 6	Bit 5 Bit 4	ļ.	Bit 3	Bit 2	Bit 1	Bit 0
		Reserve	d			RE	SET	
ESET	Bits	These bits	s select the RESET gene	rate delay tim	e period			
	3-0	0000	T _{RESET} = 0 ms	1000	T _{RES}	_{SET} = 16 ms		
		0001	T _{RESET} = 2 ms	1001	T _{RES}	_{SET} = 18 ms		
		0010	T _{RESET} = 4 ms	1010	T _{RES}	_{SET} = 20 ms		
		0011	T _{RESET} = 6 ms	1011	T _{RES}	_{SET} = 22 ms		
		0100	T _{RESET} = 8 ms	1100	T _{RES}	_{SET} = 24 ms		
		0101	T _{RESET} = 10 ms	1101	T _{RES}	_{SET} = 26 ms		
		0110	T _{RESET} = 12 ms	1110	T _{RES}	_{SET} = 28 ms		
		0111	T _{RESET} = 14 ms	1111	T _{RES}	_{SET} = 30 ms		
Reserved	Bits 7-4		s are reserved for future and operations 0 is returne		rite operatio	ons data intended	for these bits is ig	nored, and

DLY (0Ah)

The **DLY** register can be written to and read from.

Table 13	DLY Register	Bit Allocation
----------	--------------	----------------

Bit 7	E	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Rese	rved			DI	Y
DLY	Bits	These b	its configure the	gate voltage sha	ping delay time pe	riod		
	1-0	00	$V_{DLY} =$	0 ms				
		01	$V_{DLY} =$	20 ms				
		10	$V_{DLY} =$	40 ms				
		11	$V_{DLY} =$	60 ms				
Reserved	Bits 7-2		its are reserved ead operations (iring write operatic	ons data intended	for these bits is ig	nored, and

www.ti.com

VCOMHOT (0Bh)

The **VCOMHOT1** register can be written to and read from.

D'1 7	-		Table 14. VCOMH	-		D'1 4	D'1 C
Bit 7	В	it 6	Bit 5 Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				VCOMHOT			
сомнот	Bits	These bits s 1).	elect VCOM output volta	ge at hot temperatures	(VCOMT = 0) or	all temperature ra	inge (VCOMT
			VCOMR = 0	VCOMR = 1			
		00000000	$V_{COMHOT} = N.A$	$V_{COMHOT} = N.A$			
		00000001	$V_{COMHOT} = N.A$	$V_{COMHOT} = N.A$			
		00000010	$V_{COMHOT} = N.A$	$V_{COMHOT} = N.A$			
			$V_{COMHOT} = N.A$	$V_{COMHOT} = N.A$			
		00100111	$V_{COMHOT} = N.A$	$V_{COMHOT} = N.A$			
		00101000	$V_{COMHOT} = 0.80 V$	$V_{COMHOT} = 0.20 V$			
		00101001	$V_{COMHOT} = 0.82 V$	$V_{COMHOT} = 0.18 V$			
		00101010	$V_{COMHOT} = 0.84 V$	$V_{COMHOT} = 0.16 V$			
		00101011	$V_{COMHOT} = 0.86 V$	$V_{COMHOT} = 0.14 V$			
		10111100	$V_{COMHOT} = 0.86 V$	$V_{COMHOT} = 0.12 V$			
		11111101	$V_{COMHOT} = 5.06 V$	$V_{COMHOT} = -4.06 V$			
		11111110	$V_{COMHOT} = 5.08 V$	$V_{COMHOT} = -4.08 V$			
		11111111	V _{COMHOT} = 5.10 V	$V_{COMHOT} = -4.10 V$			

VCOMCOLD (0Ch)

The **VCOMCOLD** register can be written to and read from.

Bit 7	E	Bit 6	Bit 5 Bit 4	Bit 3	Bit 2	Bit 1	Bit C
			V	COMCOLD			
COMCOLD	Bits	These bits s	elect VCOM output voltage	ge at cold temperatures	(VCOMT=0)		
			VCOMR = 0	VCOMR = 1			
		00000000	$V_{COMCOLD} = N.A$	$V_{COMCOLD} = N.A$			
		0000001	$V_{COMCOLD} = N.A$	$V_{COMCOLD} = N.A$			
		00000010	$V_{COMCOLD} = N.A$	$V_{COMCOLD} = N.A$			
			$V_{COMCOLD} = N.A$	$V_{COMCOLD} = N.A$			
		00100111	$V_{COMCOLD} = N.A$	$V_{COMCOLD} = N.A$			
		00101000	$V_{COMCOLD} = 0.80 V$	$V_{COMCOLD} = 0.20 V$			
		00101001	$V_{COMCOLD} = 0.82 V$	$V_{COMCOLD} = 0.18 V$			
		00101010	$V_{COMCOLD} = 0.84 V$	$V_{COMCOLD} = 0.16 V$			
		00101011	$V_{COMCOLD} = 0.86 V$	$V_{COMCOLD} = 0.14 V$			
		10111100	$V_{COMCOLD} = 0.86 V$	$V_{COMCOLD} = 0.12 V$			
		11111101	$V_{COMCOLD} = 5.06 V$	$V_{COMCOLD} = -4.06 V$			
		11111110	$V_{COMCOLD} = 5.08 V$	$V_{COMCOLD} = -4.08 V$			
		11111111	$V_{COMCOLD} = 5.10 V$	$V_{COMCOLD} = -4.10 V$			

TI INFORMATION – SELECTIVE DISCLOSURE

SLVSCE2-NOVEMBER 2013

Control (FFh)

www.ti.com

Table 16. Control Register Bit Allocation

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
WED		Reserved							
RED	Bit	The state of this bit dete contents of the E ² PROM		ead operations ret	urn the contents o	of the DAC registe	rs or the		
	0	0 Read of	operations return t	he contents of the	DAC registers				
		1 Read operations return the contents of the E ² PROM							
Reserved	Bits 6-1	These bits are reserved during read operations (uring write operatio	ons data intended	for these bits is ic	nored, and		
WED	Bit 7	Setting this bit forces the contents of all DAC registers to be copied into E ² PROM, thereby making the default values during power-up.							
		When the contents of al resets this bit.	I the DAC register	rs have been writte	en to the E ² PROM	l, the TPS65640 a	automatically		

TEXAS INSTRUMENTS

SLVSCE2-NOVEMBER 2013

www.ti.com

Example – Writing to a Single RAM Register

- 1. Bus master sends START condition.
- 2. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 3. TPS65640 acknowledges.
- 4. Bus master sends address of RAM register (00h).
- 5. TPS65640 acknowledges.
- 6. Bus master sends data to be written.
- 7. TPS65640 acknowledges.
- 8. Bus master sends STOP condition.

	E8h			00h	DATA			
S	7-Bit Slave Address	0	А	RAM Register Address	А	RAM Register Data	А	Ρ

Figure 41. Writing to a Single RAM Register

Example – Writing to Multiple RAM Registers

- 1. Bus master sends START condition.
- 2. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 3. TPS65640 acknowledges.
- 4. Bus master sends address of first RAM register to be written to (00h).
- 5. TPS65640 acknowledges.
- 6. Bus master sends data to be written to first RAM register.
- 7. TPS65640 acknowledges.
- 8. Bus master sends data to be written to RAM register at next higher address (auto-increment).
- 9. TPS65640 acknowledges.
- 10. Steps (8) and (9) repeated until data for final RAM register has been sent.
- 11. TPS65640 acknowledges.
- 12. Bus master sends STOP condition.

Figure 42. Writing to Multiple RAM Registers

TI INFORMATION - SELECTIVE DISCLOSURE

TPS65640

SLVSCE2-NOVEMBER 2013

www.ti.com

Example – Saving Contents of all RAM Registers to E²PROM

- 1. Bus master sends START condition.
- 2. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 3. TPS65640 acknowledges.
- 4. Bus master sends address of Control Register (FFh).
- 5. TPS65640 acknowledges.
- 6. Bus master sends data to be written to the Control Register (80h).
- 7. TPS65640 acknowledges.
- 8. Bus master sends STOP condition.

	E8h			FFh		80h		
S	7-Bit Slave Address	0	А	Control Register Address	А	Control Register Data	Α	Ρ

Figure 43. Saving Contents of all RAM Registers to E²PROM

The TPS65640 needs 50ms time period after TPS65640 receiving STOP condition for saving all RAM registers data to E^2 PROM. If bus master send 7-bit slave address to call TPS65640 again within 50ms period, the TPS65640 will pull down the SCL line to LOW until the all RAM registers data saving to E^2 PROM is completed.

Texas Instruments

SLVSCE2-NOVEMBER 2013

www.ti.com

Example – Reading from a Single RAM Register

- 1. Bus master sends START condition.
- 2. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 3. TPS65640 acknowledges.
- 4. Bus master sends address of Control Register (FFh).
- 5. TPS65640 acknowledges.
- 6. Bus master sends data for Control Register (00h).
- 7. TPS65640 acknowledges.
- 8. Bus master sends STOP condition.
- 9. Bus master sends START condition.
- 10. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 11. TPS65640 acknowledges.
- 12. Bus master sends address of RAM register (00h).
- 13. TPS65640 acknowledges.
- 14. Bus master sends REPEATED START condition.
- 15. Bus master sends 7-bit slave address plus high R/W bit (E9h).
- 16. TPS65640 acknowledges.
- 17. TPS65640 sends RAM register data.
- 18. Bus master does not acknowledge.
- 19. Bus master sends STOP condition.

		E8h			FFh			00h			_		
	S	7-Bit Slave Address	0	А	Control Register Address	Α		Control Register Data	А	Ρ			
 !													
ł		E8h			00h			E9h	_	_	DATA		
L	S	7-Bit Slave Address	0	А	RAM Register Address	A	Sr	7-Bit Slave Address	1	А	RAM Register Data	Ā	Ρ

Figure 44. Reading from a Single RAM Register

www.ti.com

Ρ

SLVSCE2-NOVEMBER 2013

Example – Reading from a Single E²PROM Register

- 1. Bus master sends START condition.
- 2. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 3. TPS65640 acknowledges.
- 4. Bus master sends address of Control Register (FFh).
- 5. TPS65640 acknowledges.
- 6. Bus master sends data for Control Register (01h).
- 7. TPS65640 acknowledges.
- 8. Bus master sends STOP condition.
- 9. Bus master sends START condition.
- 10. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 11. TPS65640 acknowledges.
- 12. Bus master sends address of E²PROM register (00h).
- 13. TPS65640 acknowledges.
- 14. Bus master sends REPEATED START condition.
- 15. Bus master sends 7-bit slave address plus high R/W bit (E9h).
- 16. TPS65640 acknowledges.
- 17. TPS65640 sends E²PROM register data.
- 18. Bus master does not acknowledge.
- 19. Bus master sends STOP condition.

Figure 45. Reading from a Single E²PROM Register

IEXAS INSTRUMENTS

SLVSCE2-NOVEMBER 2013

www.ti.com

Example - Reading from Multiple RAM Registers

- 1. Bus master sends START condition.
- 2. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 3. TPS65640 acknowledges.
- 4. Bus master sends address of Control Register (FFh).
- 5. TPS65640 acknowledges.
- 6. Bus master sends data for Control Register (00h).
- 7. TPS65640 acknowledges.
- 8. Bus master sends STOP condition.
- 9. Bus master sends START condition.
- 10. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 11. TPS65640 acknowledges.
- 12. Bus master sends address of first register to be read (00h).
- 13. TPS65640 acknowledges.
- 14. Bus master sends REPEATED START condition.
- 15. Bus master sends 7-bit slave address plus high R/W bit (E9h).
- 16. TPS65640 acknowledges.
- 17. TPS65640 sends contents of first RAM register to be read.
- 18. Bus master acknowledges.
- 19. Bus master sends contents of second RAM register to be read.
- 20. Bus master acknowledges.
- 21. TPS65640 sends contents of third (last) RAM register to be read.
- 22. Bus master does not acknowledge.
- 23. Bus master sends STOP condition.

Figure 46. Reading from Multiple RAM Registers

www.ti.com

SLVSCE2-NOVEMBER 2013

Example – Reading from Multiple E²PROM Registers

- 1. Bus master sends START condition.
- 2. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 3. TPS65640 acknowledges.
- 4. Bus master sends address of Control Register (FFh).
- 5. TPS65640 acknowledges.
- 6. Bus master sends data for Control Register (01h).
- 7. TPS65640 acknowledges.
- 8. Bus master sends STOP condition.
- 9. Bus master sends START condition.
- 10. Bus master sends 7-bit slave address plus low R/W bit (E8h).
- 11. TPS65640 acknowledges.
- 12. Bus master sends address of first E²PROM register to be read (00h).
- 13. TPS65640 acknowledges.
- 14. Bus master sends REPEATED START condition.
- 15. Bus master sends 7-bit slave address plus high R/W bit (E9h).
- 16. TPS65640 acknowledges.
- 17. TPS65640 sends contents of first E²PROM register to be read.
- 18. Bus master acknowledges.
- 19. Bus master sends contents of second E²PROM register to be read.
- 20. Bus master acknowledges.
- 21. TPS65640 sends contents of third (last) E²PROM register to be read.
- 22. Bus master does not acknowledge.
- 23. Bus master sends STOP condition.

Figure 47. Reading from Multiple E²PROM Registers

Configuration Parameter VCOM

The **VCOM** register can be written to and read from.

Table 17. VCOM Register Bit Allocation

Bit 7		Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
				VCOM				Р						
Р	Bit	During write	operations, this b	oit determines the	target for the data	1:								
	0													
	During read operations this bit indicates whether the contents of the E2PROM and RAM register are the same 0 = E2PROM and RAM register contents are the same 1 = E2PROM and RAM register contents are different													
VCOM	Bits 7-1	During read The factory	operations, these default setting is	bits return the co	data to be written. ontents of the RAN 127 decimal.	1.								

TI INFORMATION – SELECTIVE DISCLOSURE

TPS65640

SLVSCE2-NOVEMBER 2013

www.ti.com

Example – Writing a VCOM Value of 77h to VCOM Register Only

- 1. The bus master sends a START condition.
- 2. The bus Master sends (9E hexadecimal (7-bit slave address plus low R/W bit).
- 3. TPS65640 slave acknowledges.
- 4. The bus master sends EF hexadecimal (data to be written plus LSB = '1').
- 5. The TPS65640 slave acknowledges.
- 6. The bus master sends a STOP condition.

	9Eh			EFh			
S	7-Bit Slave Address	0	А	Data to be Written	1	А	Ρ

Figure 48. Writing a VCOM Value of 77h to RAM Only

Example – Writing a VCOM Value of 77h to E²PROM and RAM

- 1. The bus master sends a START condition.
- 2. The bus Master sends 9E hexadecimal (7-bit slave address plus low R/W bit).
- 3. TPS65640 slave acknowledges.
- 4. The bus master sends EE hexadecimal (data to be written plus LSB = '0').
- 5. The TPS65640 slave acknowledges.
- 6. The bus master sends a STOP condition.

	9Eh			EEh			
S	7-Bit Slave Address	0	А	Data to be Written	0	А	Ρ

Figure 49. Writing a VCOM Value of 77h to E²PROM and RAM

TEXAS INSTRUMENTS

TPS65640

www.ti.com

SLVSCE2-NOVEMBER 2013

Example – Reading a VCOM Value of 77h from RAM when E²PROM Contents are Identical

- 1. The bus master sends a START condition.
- 2. The bus Master sends 9F hexadecimal (7-bit slave address plus low R/W bit).
- 3. TPS65640 slave acknowledges.
- 4. The bus master sends EE hexadecimal from E^2 PROM (data to be read plus LSB = '0').
- 5. The bus master does not acknowledge.
- 6. The bus master sends a STOP condition.

	9Fh						
S	7-Bit Slave Address	1	А	Data to be Read	0	А	Ρ

Figure 50. Reading 77h from RAM when E²PROM Contents are Identical

Example – Reading a VCOM Value of 77h from RAM when E²PROM Contents are Different

- 1. The bus master sends a START condition.
- 2. The bus Master sends 9F hexadecimal (7-bit slave address plus low R/W bit).
- 3. TPS65640 slave acknowledges.
- 4. The bus master sends EF hexadecimal from RAM (data to be read plus LSB = '1').
- 5. The bus master does not acknowledge.
- 6. The bus master sends a STOP condition.

	9Fh			EFh				
S	7-Bit Slave Address	1	А	Data to be Read	1	А	Ρ	

Figure 51. Reading 77h from E²PROM when RAM Contents are Different

I²C INTERFACE

Configuration parameters and the V_{COM} voltage setting are programmed via an industry standard I²C serial interface. The TPS65640 always works as a slave device and supports standard (100kbps) and fast (400kbps) modes of operation.

During write operations, all further attempts to access its slave addresses are ignored until the current write operation has completed.

www.ti.com

SLVSCE2-NOVEMBER 2013

POWER SEQUENCY

Buck converter (V_{25Buck}) or the linear regulator (V_{25LDO}) start as soon as $V_{IN} > V_{UVLO}$.

The reset generator holds $\overline{\text{RST}}$ low until t_{RESET} seconds after V_{25} has reached power good status.

Boost converter 1 starts after V_{25} reached power good status.

Boost converter 2 starts as soon as AV_DD has reached power good status.

Figure 52 show the typical power-up/down characteristic of the TPS65640.

Figure 52. Power-Up and Power-Down Sequencing

Downloaded from Arrow.com.

SLVSCE2-NOVEMBER 2013

www.ti.com

UNDERVOLTAGE LOCKOUT

An undervoltage lockout function disables the IC when the supply voltage is too low for proper operation. A low-pass filter at the input of the UVLO comparator ensures that short transients on V_{IN} do not cause premature shutdown of the IC.

Figure 53. Undervoltage Lockout Comparator with Low-Pass Filter

THERMAL SHUTDOWN

A thermal shutdown function automatically disables all functions if the device's junction temperature exceeds the safe maximum. The device automatically starts operating again once it has cooled down and operation may safely continue. A restart after a thermal shutdown event follows the same sequence as following a normal power-up condition (see Figure 52).

SLVSCE2-NOVEMBER 2013

www.ti.com

Figure 54. Typical Application Circuit

SLVSCE2-NOVEMBER 2013

www.ti.com

LAYOUT RECOMMENDATION

As for all switching power supplies, especially those providing high current and using high switching frequencies, layout is an important design step. If layout is not carefully done, the regulator could show instability as well as EMI problems. Therefore, use wide and short traces for high current paths. The input capacitor in the typical application circuit, should also be placed close to the VIN pin, but also to the GND in order to reduce the input ripple seen by the IC. The LX pin carries high current with fast rising and falling edges. Therefore, the connection between the pin to the inductor and schottky diode should be kept as short and wide as possible. It is also beneficial to have the ground of the output capacitor for both Boost converter 1, Boost converter 2 and Buck converter close to the PGND pin since there is a large ground return current flowing between them. When laying out signal grounds, it is recommended to use short traces separated from power ground traces, and connect them together at a single point, for example on the thermal pad. The thermal pad needs to be soldered on to the PCB and connected to the GND pin of the IC. An additional thermal via can significantly improve power dissipation of the IC.

6-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TPS65640RHRR	PREVIEW	WQFN	RHR	28	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PZXI	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

- C. QFN (Quad Flatpack No-Lead) package configuration.

⚠ The package thermal pad must be soldered to the board for thermal and mechanical performance.

Reference JEDEC MO-220. Ε.

RHR (R-PWQFN-N28)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS65640RHRR	ACTIVE	WQFN	RHR	28	3000	RoHS & Green	(6) NIPDAU	Level-1-260C-UNLIM	-40 to 85	PZXI	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

RHR 28

3.5 x 5.5, 0.5 mm pitch

GENERIC PACKAGE VIEW

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RHR0028A

PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RHR0028A

EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

RHR0028A

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated