

PD-90549F

Repetitive Avalanche and dv/dt Rated Power MOSFET Thru-Hole (TO-204AA)
-100V, -11A, P-channel

Features

- · Repetitive avalanche ratings
- Dynamic dv/dt rating
- Hermetically sealed
- Simple drive requirements
- ESD rating: Class 1C per MIL-STD-750, Method 1020

Potential Applications

- DC-DC converter
- Motor drives

Product Summary

BV_{DSS}: -100V

• Ip:-11A

• $\mathbf{R}_{DS(on),max}$: 0.30Ω

Q_{G, max}: 29nC

• **REF:** MIL-PRF-19500/562

Product Validation

Qualified to JANTX screening flow according to MIL-PRF-19500 for high-reliability applications

Description

HEXFET POWER MOSFET technology is the key to IR Hirel advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability. The HEXFET transistors also feature all of the well-established advantages of MOSFETs such as voltage control, very fast switching and temperature stability of the electrical parameters. They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

Ordering Information

Table 1 Ordering options

Part number	Package	Screening Level		
IRF9130	TO-3 (TO-204AA)	COTS		
JANTX2N6804	TO-3 (TO-204AA)	JANTX		
JANTXV2N6804	TO-3 (TO-204AA)	JANTXV		

Power MOSFET Thru-Hole (TO-204AA)

Table of contents

Table of contents

Feat	tures	1
Pote	ential Applications	1
	duct Validation	
	scription	
	ole of contents	
1	Absolute Maximum Ratings	
2	· · · · · · · · · · · · · · · · · · ·	
2.1	Electrical Characteristics	
2.2	Source-Drain Diode Ratings and Characteristics	5
2.3	Thermal Characteristics	
3	Electrical Characteristics Curves	6
4	Test Circuits	9
5	Package Outline	10
Revi	rision history	11

Absolute Maximum Ratings

Absolute Maximum Ratings 1

Table 2 **Absolute Maximum Ratings**

Symbol Parameter		Value	Unit
I_{D1} @ $V_{GS} = -10V$, $T_C = 25$ °C	Continuous Drain Current	-11	Α
I_{D2} @ $V_{GS} = -10V$, $T_C = 100$ °C	Continuous Drain Current	-7.0	Α
I_{DM} @ $T_{C} = 25^{\circ}C$	Pulsed Drain Current ¹	-44	Α
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	75	W
	Linear Derating Factor	0.60	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ²	207	mJ
I _{AR}	Avalanche Current ¹	-11	Α
E _{AR}	Repetitive Avalanche Energy ¹	7.5	mJ
dv/dt	Peak Diode Reverse Recovery ³	-5.5	V/ns
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to +150	°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	11.5 (Typical)	g

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ V_{DD} = -25V, starting T_J = 25°C, L = 3.4mH, Peak I_L = -11A, V_{GS} = -10V

 $^{^3}$ $I_{SD} \leq$ -11A, $di/dt \leq$ -140A/ $\mu s, V_{DD} \leq$ -100V, $T_J \leq$ 150°C

Device Characteristics

2 Device Characteristics

2.1 Electrical Characteristics

Table 3 Static and Dynamic Electrical Characteristics @ T_j = 25°C (Unless Otherwise Specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions			
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100	_	_	V	V _{GS} = 0V, I _D =-1.0mA			
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	_	-0.087	_	V/°C	Reference to 25°C, I _D = -1.0mA			
D	Static Drain-to-Source On-State	_	_	0.30		$V_{GS} = -10V$, $I_{D2} = -7.0A^{1}$			
$R_{DS(on)}$	Resistance	_	_	0.36	Ω	$V_{GS} = -10V$, $I_{D2} = -11A^{1}$			
$V_{GS(th)}$	Gate Threshold Voltage	-2.0	_	-4.0	V	$V_{DS} = V_{GS}$, $I_{D} = -250 \mu A$			
1	Zava Cata Valtaga Brain Current	_	_	-25		$V_{DS} = -80V, V_{GS} = 0V$			
I _{DSS}	Zero Gate Voltage Drain Current	_	_	-250	μΑ	$V_{DS} = -80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$			
	Gate-to-Source Leakage Forward	_	_	-100	^	V _{GS} = -20V			
I_{GSS}	Gate-to-Source Leakage Reverse	_	_	100	nA	V _{GS} = 20V			
$\overline{Q_G}$	Total Gate Charge	_	_	29		I _{D1} = -11A			
$\overline{Q_GS}$	Gate-to-Source Charge	_	_	7.1	nC	$V_{DS} = -50V$			
$\overline{Q_{GD}}$	Gate-to-Drain ('Miller') Charge	_	_	21		$V_{GS} = -10V$			
$\overline{t_{d(on)}}$	Turn-On Delay Time	_	_	60		I _{D1} = -11A **			
$\overline{t_r}$	Rise Time	_	_	140		$V_{DD} = -50V$			
$t_{d(off)}$	Turn-Off Delay Time	_	_	140	ns	$R_G = 7.5\Omega$			
t _f	Fall Time	_	_	140		$V_{GS} = -10V$			
L _s +L _D	Total Inductance	_	6.1	_	nH	Measured from Drain lead (6mm /0.25 in from package) to Source lead (6mm/ 0.25 in from package			
C _{iss}	Input Capacitance	_	860			$V_{GS} = 0V$			
C _{oss}	Output Capacitance	_	350	_	рF	$V_{DS} = -25V$			
C _{rss}	Reverse Transfer Capacitance	_	125	_		f = 1.0 MHz			

^{**} Switching speed maximum limits are based on manufacturing test equipment and capability.

 $^{^{1}}$ Pulse width \leq 300 $\mu s;$ Duty Cycle \leq 2%

Power MOSFET Thru-Hole (TO-204AA)

Device Characteristics

2.2 Source-Drain Diode Ratings and Characteristics

Table 4 Source-Drain Diode Characteristics

Symbol	Parameter	Min.	Тур.	Мах.	Unit	Test Conditions	
Is	Continuous Source Current (Body Diode)	_	_	-11	Α		
I _{SM}	Pulsed Source Current (Body Diode) ¹	_	_	-44	Α		
V _{SD}	Diode Forward Voltage	_	_	-4.7	V	$T_J = 25$ °C, $I_S = -11A$, $V_{GS} = 0V^2$	
t _{rr}	Reverse Recovery Time	_		250	ns	$T_J = 25$ °C, $I_F = -11A$, $V_{DD} \le -50V$	
Qrr	Reverse Recovery Charge		2.0	_	μC	di/dt = -100A/μs ²	
t _{on}	Forward Turn-On Time	Intrins	ic turn-	on time	is negligi	ble (turn-on is dominated by L _s +L _D)	

2.3 Thermal Characteristics

Table 5 Thermal Resistance

Symbol	Parameter	Min.	Тур.	Max.	Unit
$R_{\theta JC}$	Junction-to-Case	-	_	1.67	°C /\\
$R_{\theta JA}$	Junction-to-Ambient (Typical socket mount)	_	_	30	°C/W

 $^{^{\}rm 1}$ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ Pulse width \leq 300 μ s; Duty Cycle \leq 2%

Electrical Characteristics Curves

3 Electrical Characteristics Curves

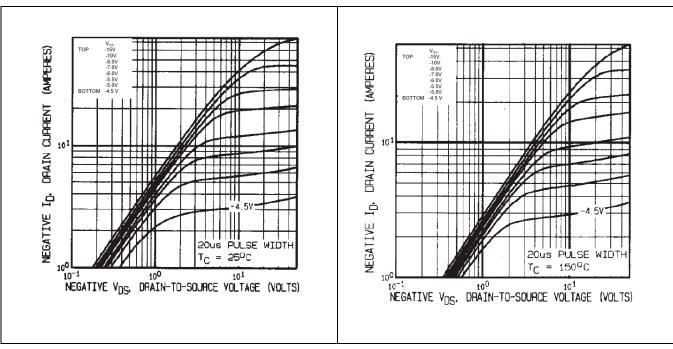


Figure 1 Typical Output Characteristics

Figure 2 Typical Output Characteristics

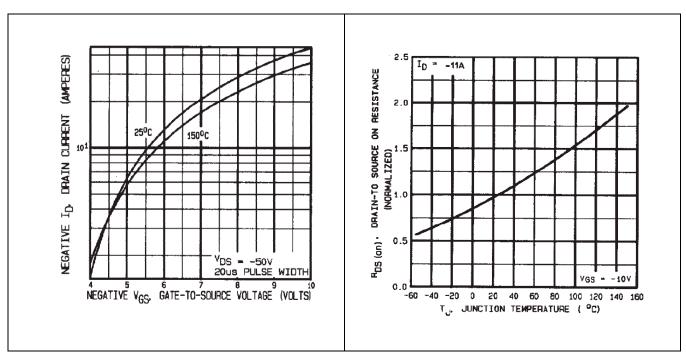


Figure 3 Typical Transfer Characteristics

Figure 4 Normalized On-Resistance Vs.
Temperature

An Infineon Technologies Company

Electrical Characteristics Curves

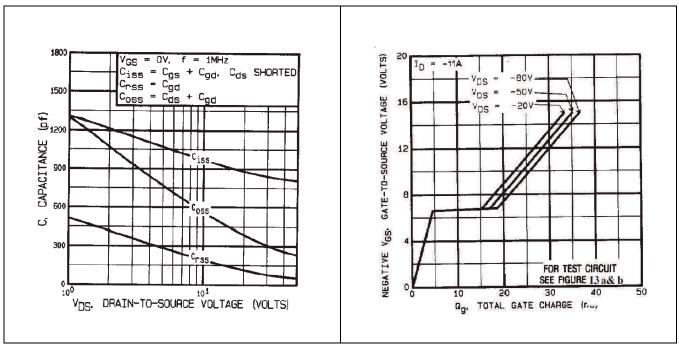


Figure 5 Typical Capacitance Vs.

Drain-to-Source Voltage

Figure 6 Typical Gate Charge Vs.
Gate-to-Source Voltage

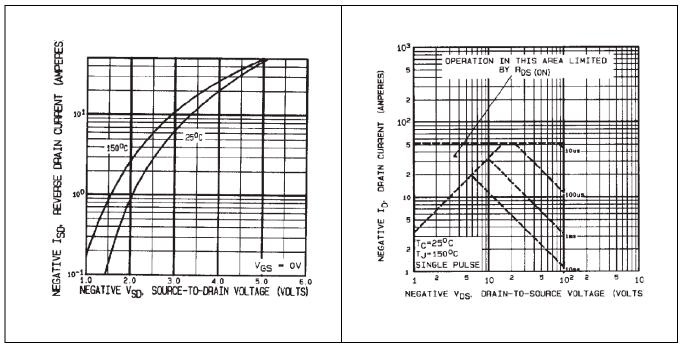


Figure 7 Typical Source-Drain Diode Forward Voltage

Figure 8 Maximum Safe Operating Area

An Infineon Technologies Company

Electrical Characteristics Curves

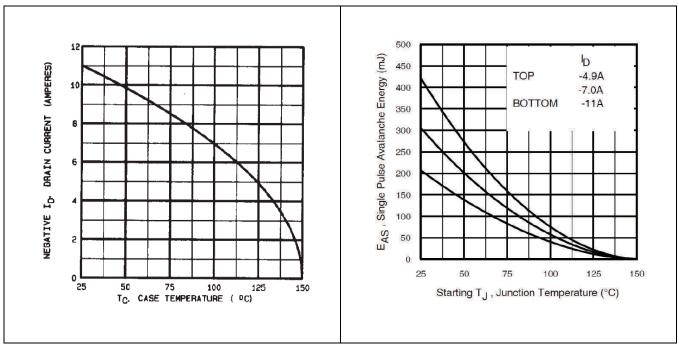


Figure 9 Maximum Drain Current Vs.

Case Temperature

Figure 10 Maximum Avalanche Energy Vs.
Junction Temperature

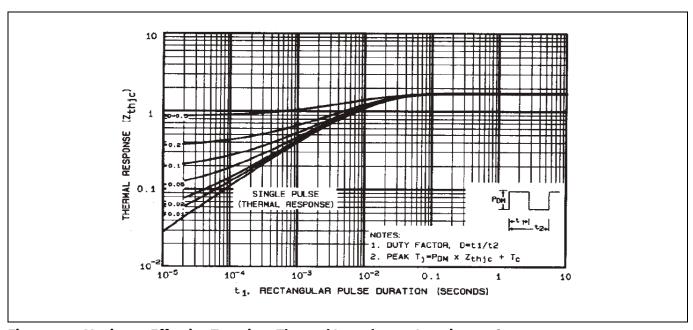


Figure 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case

Test Circuits

4 Test Circuits

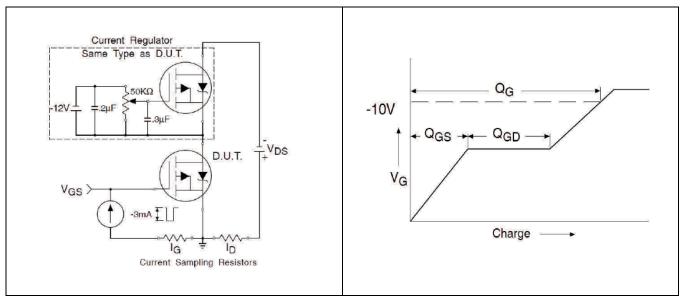


Figure 12 Gate Charge Test Circuit

Figure 13 Gate Charge Waveform

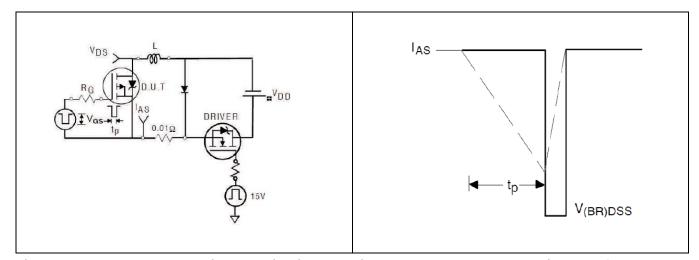


Figure 14 Unclamped Inductive Test Circuit

Figure 15 Unclamped Inductive Waveform

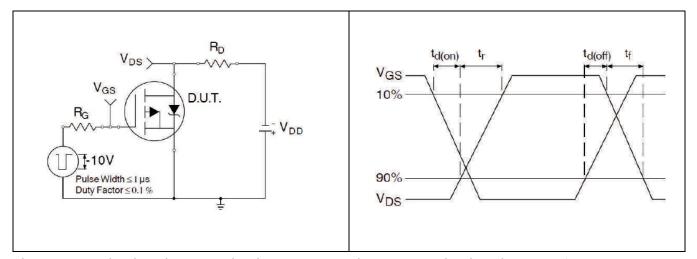
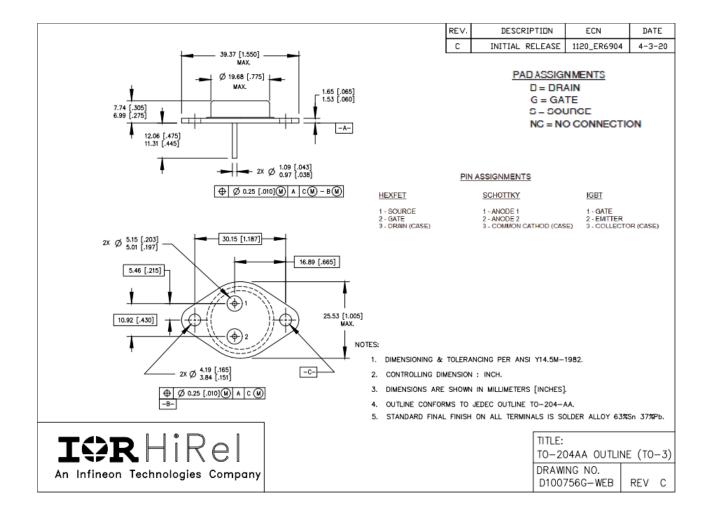


Figure 16 Switching Time Test Circuit


Figure 17 Switching Time Waveforms

Package Outline

5 Package Outline

Note: For the most updated package outline, please see the website: TO-3 (TO-204AA)

Power MOSFET Thru-Hole (TO-204AA)

Revision history

Revision history

Document version	Date of release	Description of changes	
	01/26/2001	Datasheet (PD-90549C)	
Rev D	09/28/2015	Updated based on ECN-1120_03206	
Rev E	07/29/2019	Updated based on ECN-1120_06844	
Rev F	12/06/2024	Updated based on ECN-1120_10116	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-12-06

Published by

International Rectifier HiRel Products, Inc.

An Infineon Technologies company El Segundo, California 90245 USA

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest International Rectifier HiRel Products, Inc., an Infineon Technologies company, office.

International Rectifier HiRel Components may only be used in life-support devices or systems with the expressed written approval of International Rectifier HiRel Products, Inc., an Infineon Technologies company, if failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety and effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.