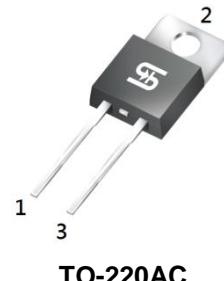


8A, 50V - 1000V High Efficient Rectifier


FEATURES

- AEC-Q101 qualified available
- Glass passivated chip junction
- High efficiency, Low V_F
- High current capability
- High reliability
- High surge current capability
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

KEY PARAMETERS		
PARAMETER	VALUE	UNIT
I_F	8	A
V_{RRM}	50 - 1000	V
I_{FSM}	150	A
$T_{J MAX}$	150	°C
Package	TO-220AC	
Configuration	Single die	

APPLICATIONS

- DC to DC converter
- Switching mode converters and inverters
- Freewheeling application

MECHANICAL DATA

- Case: TO-220AC
- Molding compound meets UL 94V-0 flammability rating
- Terminal: Matte tin plated leads, solderable per J-STD-002
- Mounting torque: 0.56 N·m maximum
- Meet JESD 201 class 2 whisker test
- Polarity: As marked
- Weight: 1.80g (approximately)

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$ unless otherwise noted)											
PARAMETER	SYMBOL	HERA 801G	HERA 802G	HERA 803G	HERA 804G	HERA 805G	HERA 806G	HERA 807G	HERA 808G	UNIT	
Marking code on the device		HERA 801G	HERA 802G	HERA 803G	HERA 804G	HERA 805G	HERA 806G	HERA 807G	HERA 808G		
Repetitive peak reverse voltage	V_{RRM}	50	100	200	300	400	600	800	1000	V	
Reverse voltage, total rms value	$V_{R(RMS)}$	35	70	140	210	280	420	560	700	V	
Forward current	I_F	8								A	
Surge peak forward current 8.3ms single half sine wave superimposed on rated load	I_{FSM}	150								A	
Junction temperature	T_J	-55 to +150								°C	
Storage temperature	T_{STG}	-55 to +150								°C	

THERMAL PERFORMANCE

PARAMETER	SYMBOL	TYP	UNIT
Junction-to-case resistance	R_{EJC}	2	°C/W

ELECTRICAL SPECIFICATIONS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

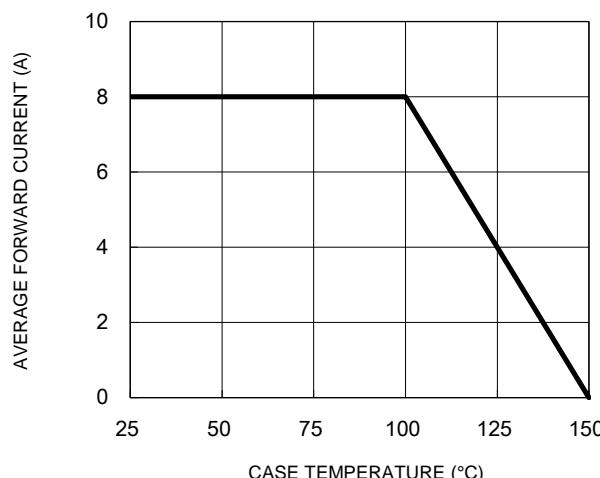
PARAMETER	CONDITIONS	SYMBOL	TYP	MAX	UNIT
Forward voltage ⁽¹⁾	$I_F = 8\text{A}, T_J = 25^\circ\text{C}$	V_F	-	1.0	V
			-	1.3	V
			-	1.7	V
Reverse current @ rated V_R ⁽²⁾	$T_J = 25^\circ\text{C}$	I_R	-	10	μA
	$T_J = 125^\circ\text{C}$		-	400	μA
Junction capacitance	HERA801G HERA802G HERA803G HERA804G HERA805G	C_J	65	-	pF
			55	-	pF
	HERA806G HERA807G HERA808G	t_{rr}	-	50	ns
			-	80	ns

Notes:

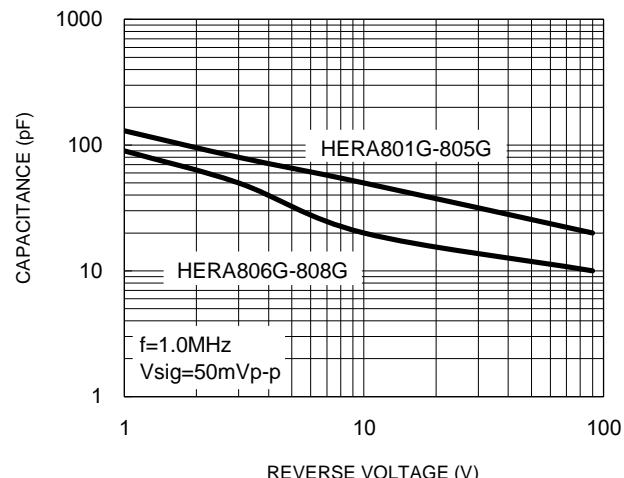
1. Pulse test with PW = 0.3ms
2. Pulse test with PW = 30ms

ORDERING INFORMATION

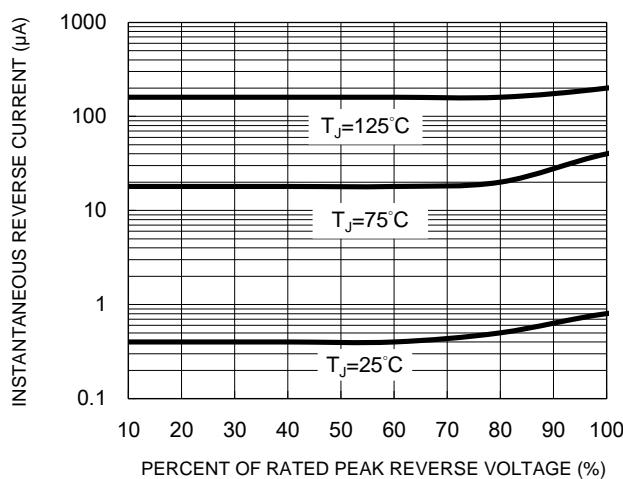
ORDERING CODE ⁽¹⁾⁽²⁾	PACKAGE	PACKING
HERA8xG	TO-220AC	50 / Tube
HERA8xGH	TO-220AC	50 / Tube


Notes:

1. "x" defines voltage from 50V(HERA801G) to 1000V(HERA808G)
2. "H" means AEC-Q101 qualified


CHARACTERISTICS CURVES

($T_A = 25^\circ\text{C}$ unless otherwise noted)


Fig.1 Forward Current Derating Curve

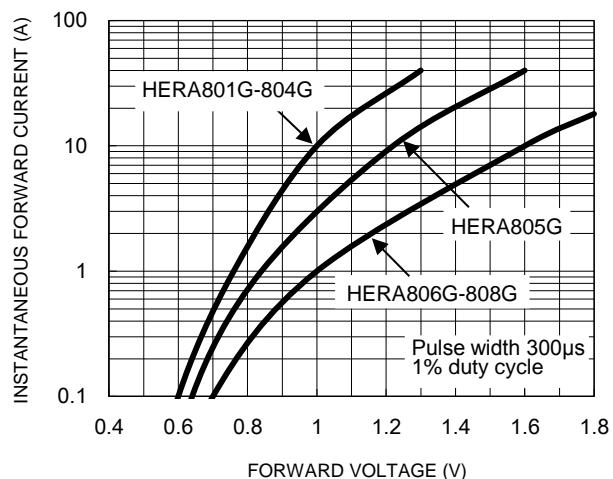
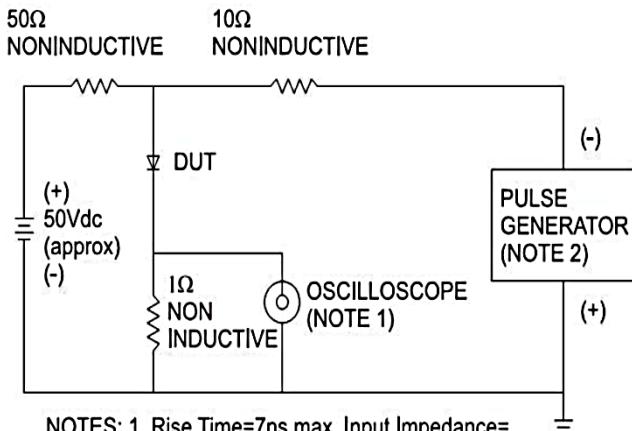
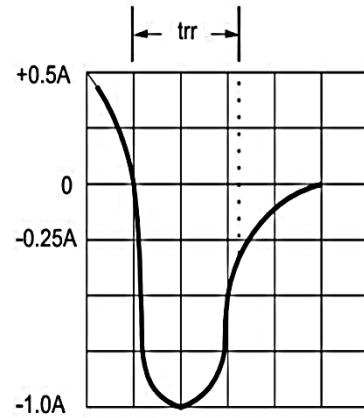
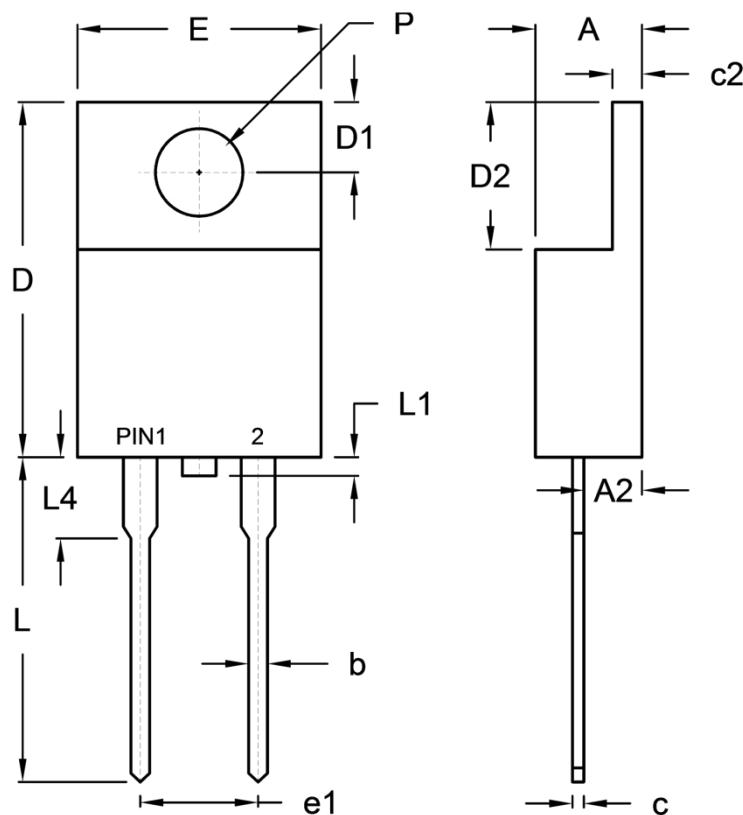

Fig.2 Typical Junction Capacitance


Fig.3 Typical Reverse Characteristics


Fig.4 Typical Forward Characteristics


Fig.5 Maximum Non-Repetitive Forward Surge Current



CHARACTERISTICS CURVES
 $(T_A = 25^\circ\text{C}$ unless otherwise noted)

Fig.6 Reverse Recovery Time Characteristic and Test Circuit Diagram

NOTES: 1. Rise Time=7ns max. Input Impedance= 1 megohm 22pf
 2. Rise Time=10ns max. Source Impedance= 50 ohms

PACKAGE OUTLINE DIMENSIONS
TO-220AC

DIM.	Unit (mm)		Unit (inch)	
	Min.	Max.	Min.	Max.
A	4.42	4.76	0.174	0.187
A2	2.20	2.80	0.087	0.110
b	0.68	0.94	0.027	0.037
c	0.35	0.64	0.014	0.025
c2	1.14	1.40	0.045	0.055
D	14.60	16.00	0.575	0.630
D1	2.62	3.44	0.103	0.135
D2	5.84	6.86	0.230	0.270
E	-	10.50	-	0.413
e1	4.95	5.20	0.195	0.205
L	13.19	14.79	0.519	0.582
L1	0.00	1.60	0.000	0.063
L4	2.80	4.20	0.110	0.165
P	3.54	4.00	0.139	0.157

MARKING DIAGRAM

P/N = Marking Code
 G = Green Compound
 YWW = Date Code
 F = Factory Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.