

STA518

40 V, 3.5 A quad power half-bridge

Datasheet - production data

Features

- Multipower BCD technology
- Minimum input output pulse width distortion
- 200 m Ω R_{dsON} complementary DMOS output stage
- CMOS-compatible logic inputs
- Thermal protection
- Thermal warning output
- Undervoltage protection
- Short-circuit protection

Description

The STA518 is a monolithic quad half-bridge stage in multipower BCD technology. The device can be used also as dual bridge or reconfigured, by connecting the CONFIG pin to the V_{dd} pin, as a single bridge with double current capacity.

The device is particularly designed to make the output stage of a stereo all-digital high-efficiency (DDXTM) amplifier capable of delivering an output power of 24 W x 4 channels @ THD = 10% at V_{CC} 30 V into a 4 Ω load in single-ended configuration.

It can also deliver 50 + 50 W @ THD = 10% at V_{CC} 29 V as output power into an 8 Ω load in BTL configuration and 70 W @ THD = 10% at V_{CC} 34 V into 8 Ω in a single paralleled BTL configuration.

The input pins have a threshold proportional to the V_L pin voltage.

Table 1. Device summary

Order code	Temperature range °C	Package	Packaging
STA51813TR	-40 to 90	PowerSSO36 (slug up)	Tape & reel

This is information on a product in full production.

Contents

1	Aud	io application circuit5
2	Pin	description
3	Elec	trical specifications
	3.1	Absolute maximum ratings 8
	3.2	Recommended operating conditions
	3.3	Thermal data
	3.4	Thermal information
	3.5	Electrical characteristics
4	Tech	nnical information
	4.1	Logic interface and decode 12
	4.2	Power outputs
	4.3	Parallel output / high current operation
	4.4	Additional information
5	Cha	racterization curves
6	Pacl	kage information
7	Revi	sion history

List of tables

Device summary	1
Pin function	6
Functional pin status.	7
Absolute maximum ratings	8
Recommended operating conditions	8
Thermal data	8
Electrical characteristics	9
V _{LOW} , V _{HIGH} variation with I _{bias}	0
Logic truth table (see <i>Figure 4</i>)	0
PowerSO36 exposed pad up dimensions	19
Document revision history	20
	Device summary Pin function Pin function Functional pin status Absolute maximum ratings Recommended operating conditions Thermal data Electrical characteristics V_{LOW} , V_{HIGH} variation with I_{bias} 1 Logic truth table (see <i>Figure 4</i>) 1 PowerSO36 exposed pad up dimensions 1 Document revision history 2

List of figures

Figure 1.	Audio application circuit (quad single-ended)5
Figure 2.	Pin connections (top view)
Figure 3.	Low-current dead time for single-ended application: test circuit
Figure 4.	High-current dead time for bridge application: block diagram
Figure 5.	High-current dead time for bridge application: test circuit
Figure 6.	STA518 block diagralm full-bridge DDX [®] or binary modes
Figure 7.	STA518 bock diagram binary half-bridge mode
Figure 8.	Typical stereo full-bridge configuration to obtain 50 + 50 W @ THD = 10%, R_L = 8 Ω ,
	V _{CC} = 29 V
Figure 9.	Typical single BTL configuration to obtain 70 W @ THD 10%, $R_L = 8 \Omega$, $V_{CC} = 34 V \dots 14$
Figure 10.	Power dissipation vs. output power 15
Figure 11.	Power derating curve
Figure 12.	THD+N vs. output power
Figure 13.	Output power vs. supply voltage
Figure 14.	THD vs. frequency
Figure 15.	Output power vs. supply voltage
Figure 16.	THD+N vs. output power
Figure 17.	Power dissipation vs. output power
Figure 18.	THD+N vs. output power
Figure 19.	PSSO36 (slug up) mechanical outline

1 Audio application circuit

2 Pin description

Pin n°	Name	Description
1	GND-SUB	Substrate ground
2, 3	OUT2B	Output half-bridge 2B
4	Vcc2B	Positive supply
5	GND2B	Negative supply
6	GND2A	Negative supply
7	Vcc2A	Positive supply
8, 9	OUT2A	Output half-bridge 2A
10, 11	OUT1B	Output half-bridge 1B
12	Vcc1B	Positive supply
13	GND1B	Negative supply
14	GND1A	Negative supply
15	Vcc1A	Positive supply
16, 17	OUT1A	Output half-bridge 1A
18	NC	Not connected

Pin n°	Name	Description
19	GND-clean	Logical ground
20	GND-Reg	Ground for regulator V _{dd}
21, 22	V _{dd}	5 V regulator referred to ground
23	VL	Logic reference voltage
24	CONFIG	Configuration pin
25	PWRDN	Short-circuit pin
26	TRI-STATE	Hi-Z pin
27	FAULT	Fault pin advisor
28	TH_WAR	Thermal warning advisor
29	IN1A	Input of half-bridge 1A
30	IN1B	Input of half-bridge 1B
31	IN2A	Input of half-bridge 2A
32	IN2B	Input of half-bridge 2B
33, 34	V _{ss}	5 V regulator referred to +V _{CC}
35, 36	V _{CC} Sign	Signal positive supply

Table 2. Pin function (continued)

Table 3. Functional pin status

Pin name	Pin n°	Logical value	IC - status
FAULT	27	0	Fault detected (short-circuit, or thermal)
FAULT *	27	1	Normal operation
TRI-STATE	26	0	All powers in Hi-Z state
TRI-STATE	26	1	Normal operation
PWRDN	25	0	Low consumption
PWRDN	25	1	Normal operation
TH_WAR	28	0	Temperature of the IC = 130 °C
TH_WAR ⁽¹⁾	28	1	Normal operation

1. The pin is an open collector. To have a high logic value, it needs to be pulled up by a resistor.

3 Electrical specifications

3.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage (pin 4, 7, 12, 15)	40	V
V _{max}	Maximum voltage on pins 23 to 32	5.5	V
T _{op}	Operating temperature range	-40 to 90	°C
P _{tot}	Power dissipation (T _{case} = 70 °C)	21	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

Table 4. Absolute maximum ratings

3.2 Recommended operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{CC}	DC supply voltage	10		36.0	V
VL	Input logic reference	2.7	3.3	5.0	V
T _{amb}	Ambient temperature	0		70	°C

Table 5. Recommended operating conditions ⁽¹⁾

1. Performance not guaranteed beyond recommended operating conditions

3.3 Thermal data

Table 6. Thermal data ⁽¹⁾

Symbol	Parameter		Тур.	Max.	Unit
T _{j-case}	Thermal resistance junction to case (thermal pad)			1.5	°C/W
T _{jSD}	Thermal shut-down junction temperature		150		°C
T _{warn}	Thermal warning temperature		130		°C
t _{hSD}	Thermal shut-down hysteresis		25		°C

1. See thermal information

3.4 Thermal information

The power dissipated within the device depends primarily on the supply voltage, load impedance and output modulation level. The PSSO36 package of the STA518 includes an exposed thermal slug on the top of the device to provide a direct thermal path from the IC to the heatsink. For the quad single-ended application the dissipated power vs. output power is shown in *Figure 10*.

Considering that for the STA518 the thermal resistance junction to slug is 1.5 °C/W and the estimated thermal resistance due to the grease placed between slug and heat sink is 2.3 °C/W (the use of thermal pads for this package is not recommended), the suitable heat sink R_{th} to be used can be drawn from the following graph *Figure 11*, where is shown the derating power vs. t_{amb} for different heat sinks.

3.5 **Electrical characteristics**

STA518

Refer to the circuit in *Figure 3* (V_L = 3.3 V; V_{CC} = 30 V; R_L = 8 Ω ; f_{sw} = 384 kHz; T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
R _{dsON}	Power P-channel / N-channel MOSFET R _{dsON}	I _d = 1 A		200	270	mΩ
I _{dss}	Power P-channel / N-channel leakage l _{dss}	V _{CC} = 35 V			50	μA
g _N	Power P-channel R _{dsON} matching	I _d = 1 A	95			%
gР	Power N-channel R _{dsON} matching	I _d = 1 A	95			%
Dt_s	Low current dead time (static)	see test circuit Figure 3		10	20	ns
Dt_d	High current dead time (dynamic)	L = 22 μ H; C = 470 nF; R _L = 8 Ω I _d = 3 A; see <i>Figure 5</i>			50	ns
t _{d ON}	Turn-on delay time	Resistive load; V _{CC} = 30 V			100	ns
t _{d OFF}	Turn-off delay time	Resistive load; V _{CC} = 30 V			100	ns
t _r	Rise time	Resistive load; as <i>Figure 3</i>			25	ns
t _f	Fall time	Resistive load, as righte 5			25	ns
V _{CC}	Supply voltage operating voltage		10		36	V
V _{IN-H}	High-level input voltage				V _L /2 +300mV	V
V _{IN-L}	Low-level input voltage		V _L /2 - 300mV			V
I _{IN-H}	High-level input current	Pin voltage = V _L		1		μA
I _{IN-L}	Low-level input current	Pin voltage = 0.3 V		1		μA
I _{PWRDN-H}	High-level PWRDN pin input current	V _L = 3.3 V		35		μA
V _{LOW}	Low logical state voltage V _{LOW} (pin PWRDN, TRISTATE) ⁽¹⁾	V _L = 3.3 V	0.8			V
V _{HIGH}	High logical state voltage V _{HIGH} (pin PWRDN, TRISTATE) ⁽¹⁾	V _L = 3.3 V			1.7	V
I _{VCC-} PWRDN	Supply current from V_{CC} in power down	PWRDN = 0			3	mA

Table 7. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
oymoor	i ulunotoi			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	max.	0
I _{FAULT}	Output current pins FAULT, TH_WAR when fault conditions	V _{pin} = 3.3 V		1		mA
I _{VCC-hiz}	Supply current from V_{CC} in Tristate	V _{CC} = 30 V; Tri-state = 0		22		mA
I _{VCC}	Supply current from V _{CC} in operation (both channels switching)	V _{CC} = 30V; Input pulse width = 50% Duty; Switching frequency = 384 kHz; No LC filters;		50		mA
I _{VCC-q}	I _{sc} (short-circuit current limit) ⁽²⁾	V _{CC} = 30 V	3.5	6		Α
V _{UV}	Undervoltage protection threshold			7		V
t _{pw_min}	Output minimum pulse width	No load	70		150	ns

Table 7. Electrical characteristics (continued)

1. Table 8 explains the $V_{LOW},\,V_{HIGH}$ variation with $I_{bias}.$

2. See relevant Application Note AN1994

Table 8. V_{LOW}, V_{HIGH} variation with I_{bias}

VL	V _{Low min}	V _{High max}	Unit	
2.7	0.7	1.5	V	
3.3	0.8	1.7	V	
5	0.85	1.85	V	

Table 9. L	ogic truth.	table (see	Figure 4)
------------	-------------	------------	-----------

TRI-STATE	INxA	INxB	Q1	Q2	Q3	Q4	Output mode
0	х	х	OFF	OFF	OFF	OFF	Hi-Z
1	0	0	OFF	OFF	ON	ON	DUMP
1	0	1	OFF	ON	ON	OFF	NEGATIVE
1	1	0	ON	OFF	OFF	ON	POSITIVE
1	1	1	ON	ON	OFF	OFF	Not used

Figure 3. Low-current dead time for single-ended application: test circuit

Figure 4. High-current dead time for bridge application: block diagram

Figure 5. High-current dead time for bridge application: test circuit

4 Technical information

The STA518 is a high-efficiency dual-channel H-Bridge that is able to deliver 50 W per channel (@ THD = 10% R_L = 8 Ω , V_{CC} = 29 V) of audio output power.

The STA518 converts both DDX and binary-controlled PWM signals into audio power at the load. It includes a logic interface, integrated bridge drivers, high-efficiency MOSFET outputs and thermal and short-circuit protection circuitry.

In DDX mode, two logic level signals per channel are used to control high-speed MOSFET switches to connect the speaker load to the input supply or to ground in a bridge configuration, according to the damped ternary modulation operation.

In binary mode operation, both full-bridge and half-bridge modes are supported. The STA518 includes overcurrent and thermal protection as well as an undervoltage lockout with automatic recovery. A thermal warning status is also provided.

Figure 6. STA518 block diagram full-bridge DDX[®] or binary modes

Figure 7. STA518 block diagram binary half-bridge mode

4.1 Logic interface and decode

The STA518 power outputs are controlled using one or two logic level timing signals. In order to provide a proper logic interface, the V_{bias} input must operate at the same voltage as the DDX control logic supply.

Protection circuitry:

The STA518 includes protection circuitry for overcurrent and thermal overload conditions. A thermal warning pin (pin 28) is activated low (open-drain MOSFET) when the IC

temperature exceeds 130 °C, in advance of the thermal shutdown protection. When a fault condition is detected, an internal fault signal acts to immediately disable the output power MOSFETs, placing both H-Bridges in high impedance state. At the same time an open-drain MOSFET connected to the FAULT pin (pin 27) is switched on.

There are two possible modes subsequent to activating a fault:

- 1. **SHUTDOWN mode**: with FAULT (pull-up resistor) and TRI-STATE pins independent, an activated fault will disable the device, signaling low at the FAULT output. The device may subsequently be reset to normal operation by toggling the TRI-STATE pin from high to low to high using an external logic signal.
- 2. **AUTOMATIC recovery mode:** This is shown in the audio application circuit of quad single-ended. The FAULT and TRI-STATE pins are shorted together and connected to a time constant circuit comprising R59 and C58.

An activated FAULT will force a reset on the TRI-STATE pin causing normal operation to resume following a delay determined by the time constant of the circuit.

If the fault condition is still present, the circuit operation will continue repeating until the fault condition is removed.

An increase in the time constant of the circuit will produce a longer recovery interval. Care must be taken in the overall system design as not to exceed the protection thresholds under normal operation.

4.2 **Power outputs**

The STA518 power and output pins are duplicated to provide a low impedance path for the device's bridged outputs. All duplicate power, ground and output pins must be connected for proper operation.

The PWRDN or TRI-STATE pins should be used to set all MOSFETS to the Hi-Z state during power-up until the logic power supply, V_L , is settled.

4.3 Parallel output / high current operation

When using DDX mode output, the STA518 outputs can be connected in parallel in order to increase the output current capability to a load. In this configuration the STA518 can provide 70 W into 8 ohm.

This mode of operation is enabled with the CONFIG pin (pin 24) connected to VREG1 and the inputs combined INLA=INLB, INRA=INRB and the outputs combined OUTLA=OTLB, OUTRA=OUTRB.

4.4 Additional information

Output Filter: A passive 2^{nd} order passive filter is used on the STA518 power outputs to reconstruct an analog audio signal. System performance can be significantly affected by the output filter design and choice of passive components. A filter design for 6 ohm / 8 ohm loads is shown in the typical application circuit of *Figure 9*.

Quad single-ended circuit (*Figure 1*) shows a filter for half-bridge mode, 4 ohm loads.

Figure 8. Typical stereo full-bridge configuration to obtain 50 + 50 W @ THD = 10%, R_L = 8 Ω , V_{CC} = 29 V

Figure 9. Typical single BTL configuration to obtain 70 W @ THD 10%, R_L = 8 Ω , V_{CC} = 34 V^{(a)}

 A PWM modulator as driver is needed. In particular, this result is achieved using the STA308 + STA518 + STA50X demo board. Peak Power for t ≤ 1sec.

STA518

5 Characterization curves

The following characterization curves are obtained using the quad single-ended configuration (*Figure 1*) with an STA308A controller.

The following characterizations are obtained using the stereo full-bridge configuration (*Figure 8*) with STA308A controller.

The following characterization is obtained using a single BTL configuration (*Figure 9*) with the STA308A controller.

Figure 18. THD+N vs. output power

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

DocID010708 Rev 6

18/21

STA518

Package information

	Dimensions in mm.			Dimensions in inch.		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.15	-	2.45	0.085	-	0.096
A2	2.15	-	2.35	0.085	-	0.092
a1	0	-	0.1	0.00	-	0.004
b	0.18	-	0.36	0.007	-	0.014
с	0.23	-	0.32	0.009	-	0.013
D	10.10	-	10.50	0.398	-	0.413
E	7.4	-	7.6	0.291	-	0.299
е	-	0.5	-	-	0.020	-
e3	-	8.5	-	-	0.335	-
F	-	2.3	-	-	0.091	-
G	-	-	0.1	-	-	0.004
Н	10.1	-	10.5	-	-	0.413
h	-	-	0.4	-	-	0.016
k	0 deg	-	8 deg	0 deg	-	8 deg
L	0.55	-	0.85	0.022		0.033
М	-	4.3	-	-	0.169	-
N	-	-	10 deg	-	-	10 deg
0	-	1.2	-	-	0.047	-
Q	-	0.8	-	-	0.031	-
S	-	2.9	-	-	0.114	-
Т	-	3.65	-	-	0.114	-
U	-	1.0	-	-	0.039	-

Table 10. PowerSO36 exposed pad up dimensions

7 Revision history

Date	Revision	Changes		
19-Aug-2004	1	Initial release.		
11-Nov-2004	2	Changed symbol in "Electrical Characteristics".		
18-May-2006	3	Changed operating temperature range value to -40 to 90°C (see <i>Table 4</i>).		
26-Feb-2014	4	Updated order code Table 1 on page 1.		
11-Jul-2014	5	Updated figure in cover page.		
16-Sep-2014 6		Updated package information (<i>Figure 19</i> , <i>Table 10</i> , and cover page) Minor textual updates		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

