IS42S32800J IS45S32800J

8M x 32 256Mb SYNCHRONOUS DRAM

FEATURES

- Clock frequency:166, 143, 133 MHz
- Fully synchronous; all signals referenced to a positive clock edge
- · Internal bank for hiding row access/precharge
- Single Power supply: 3.3V ± 0.3V
- LVTTL interface
- Programmable burst length
 - (1, 2, 4, 8, full page)
- Programmable burst sequence: Sequential/Interleave
- Auto Refresh (CBR)
- Self Refresh
- 4096 refresh cycles every 16ms (A2 grade) or 64 ms (Commercial, Industrial, A1 grade)
- Random column address every clock cycle
- Programmable CAS latency (2, 3 clocks)
- Burst read/write and burst read/single write operations capability
- Burst termination by burst stop and precharge command

OPTIONS

- Package: 90-ball TF-BGA, 86-pin TSOP2
- Operating Temperature Range: Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Automotive Grade, A1 (-40°C to +85°C) Automotive Grade, A2 (-40°C to +105°C)

JANUARY 2021

OVERVIEW

ISSI's 256Mb Synchronous DRAM achieves high-speed data transfer using pipeline architecture. All inputs and outputs signals refer to the rising edge of the clock input. The 256Mb SDRAM is organized in 2Meg x 32 bit x 4 Banks.

KEY TIMING PARAMETERS

Parameter	-6	-7	-75E	Unit
Clk Cycle Time				
CAS Latency = 3	6	7	—	ns
CAS Latency = 2	10	10	7.5	ns
Clk Frequency				
CAS Latency = 3	166	143	_	Mhz
CAS Latency = 2	100	100	133	Mhz
Access Time from Clock				
CAS Latency = 3	5.4	5.4	_	ns
CAS Latency = 2	6.5	6.5	6	ns

ADDRESS TABLE

Parameter		8M x 32
Configuration		2M x 32 x 4 banks
Refresh Count	Com./Ind.	4K / 64ms
	A1	4K / 64ms
	A2	4K / 16ms
Row Addresses		A0 – A11
Column Addresses		A0 – A8
Bank Address Pins		BA0, BA1
Autoprecharge Pins		A10/AP

Copyright © 2021 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

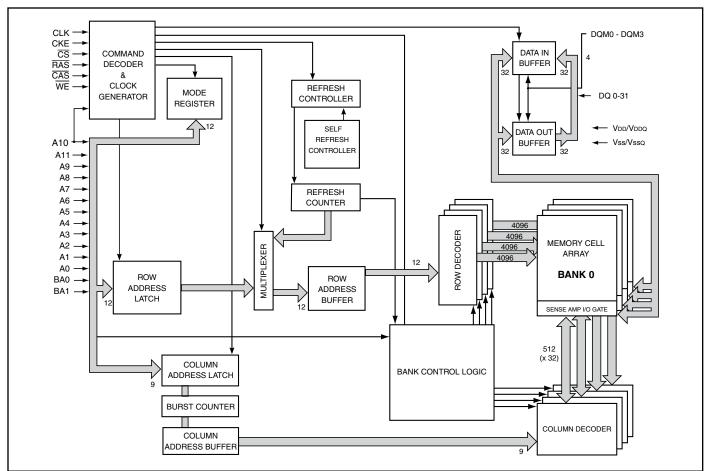
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

DEVICE OVERVIEW


The 256Mb SDRAM is a high speed CMOS, dynamic random-access memory designed to operate in 3.3V VDD and 3.3V VDDQ memory systems containing 268,435,456 bits. Internally configured as a quad-bank DRAM with a synchronous interface. Each 67,108,864-bit bank is organized as 4,096 rows by 512 columns by 32 bits.

The 256Mb SDRAM includes an AUTO REFRESH MODE, and a power-saving, power-down mode. All signals are registered on the positive edge of the clock signal, CLK. All inputs and outputs are LVTTL compatible.

The 256Mb SDRAM has the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time and the capability to randomly change column addresses on each clock cycle during burst access. A self-timed row precharge initiated at the end of the burst sequence is available with the AUTO PRECHARGE function enabled. Precharge one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

SDRAM read and write accesses are burst oriented starting at a selected location and continuing for a programmed number of locations in a programmed sequence. The registration of an ACTIVE command begins accesses, followed by a READ or WRITE command. The ACTIVE command in conjunction with address bits registered are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A11 select the row). The READ or WRITE commands in conjunction with address bits registered are used to select the starting column location for the burst access.

Programmable READ or WRITE burst lengths consist of 1, 2, 4 and 8 locations or full page, with a burst terminate option.

FUNCTIONAL BLOCK DIAGRAM (FOR 2Mx32x4 BANKS)

PIN CONFIGURATIONS 86 pin TSOP - Type II for x32

Vool 1 ● 86 1 Vsis DO0 12 85 1 D01 2 86 1 VsisO DO1 1 4 83 1 D01 DO2 15 22 10 D013 VisO 16 81 1 VisO DO3 17 80 1 D012 DO4 18 79 1 VisO DO4 10 77 10 D012 DO5 10 77 10 D00 DO6 11 76 10 D06 VisO 12 75 10 VisO DO6 111 71 10 NC VisO 14 73 1 NC VisO 16 71 10 NC VisO 16 71 10 NC RAS 11 22 65 10 AS A10 12 16 14 AS 10<			
DOO 2 86 11 DO15 Vonco 3 36 11 Vesco DO1 4 88 11 DO14 DO2 5 88 11 DO13 Vesco 6 81 11 Vesco DO3 11 7 11 DO14 Vesco 12 7 11 Vesco DO4 8 7 11 DO11 DO5 11 7 11 DO14 DO5 11 7 11 DO26 DO5 11 7 11 DO26 Vesco 14 7 11 Nc Vesco 15 72 11 DO44 NC 14 7 11 Nc Vesco 15 72 11 Nc NC 14 7 11 Nc NC 14 75 11 Nc NC 14 75 11 Nc NC <			
Voco III 3 84 Vsso DO1 4 88 Do14 DO2 5 82 Do13 J DO3 7 80 Do14 DO3 7 80 Do12 DO4 8 7 Do14 DO4 8 7 Do14 DO4 9 78 Do14 Vsso 10 77 Do41 Vsso 11 76 Do39 Vsso 12 75 Vsso Vsso 12 75 Vsso Vsso 13 74 Do39 Vsso 14 73 Do41 Vsso 14 74 Do44 Vsso			
001 4 88 0014 002 5 82 0013 $Ves0$ 6 81 $Vop0$ 003 7 80 0012 004 8 0013 $Vop0$ 9 78 $Vvs0$ 006 10 77 009 006 11 76 009 $Ves0$ 12 76 $0vs0$ 007 13 74 008 007 14 73 $0vs0$ 007 15 72 vss 0001 16 71 008 0001 16 71 008 0001 16 71 008 0001 16 71 0001 0001 16 71 0001 0001 16 77 0001 0001 16 77 0001 0001 16 0001 0001 0001 22 65 001		2 85 🛄 DQ15	
D02 5 82 D013 VSS0 6 81 Vis0 USS0 7 80 D012 D03 7 80 D012 D04 8 73 D011 US0 9 78 US0 D05 10 77 D010 D06 11 76 D099 VS0 12 75 Vis0 D00 11 76 D008 VS0 12 73 D009 VS0 14 73 D004 VS0 15 72 NC D000 16 71 D001 VS0 13 71 D004 VS0 16 71 NC D000 16 71 NC VS0 13 68 NC VS0 16 71 NC VS0 16 71 NC VS0 12 20 61 A VS0 12 20 </th <th>VDDQ [</th> <th>3 84 🛄 VssQ</th> <th></th>	VDDQ [3 84 🛄 VssQ	
VSSC III 6 81 IV DOOQ DQ3 I7 80 ID DQ12 DQ4 II 8 79 ID DQ111 DQ6 II 10 77 ID Q10 DQ6 II 11 76 ID DQ9 VSSC II 12 75 ID VOQ DQ7 II 13 74 ID DQ8 VSSC II 12 75 ID VSS DQ7 II 13 71 ID DQM1 VSSC II 15 72 ID VSS DQM0 II 15 72 ID VSS DQM0 II 15 72 ID VSS II 17 70 ID CM1 IS GSS II 19 68 ID AS II 12 65 ID AS IS II 12 65 ID AS II 12 65 ID AS II 11 12 10 IS II 12 10 10 IS	DQ1 [4 83 🗖 DQ14	
DO3 I P 80 ID 012 DQ4 II 70 ID 011 DQ5 II 10 77 ID 0210 DQ6 II 10 77 ID 0210 DQ6 II 10 77 ID 0210 DQ6 II 10 76 ID V000 DQ7 II 12 76 ID V000 DQ7 II 13 74 ID 028 VSSO II 12 76 ID V000 DQM0 II 16 71 ID DQ8 V00 II 16 71 ID DQ1 V00 II 66 ID NC ID Q01 CAS II 18 69 ID NC CK II 70 ID NC ID Q01 CK II 70 ID NC ID Q01 CK II 10 ID Q01 ID Q01 CK II 10 ID Q01 ID Q01 II II ID Q01 ID Q01 <	DQ2	5 82 D DQ13	
DO4 8 78 DO11 VD00 9 78 DVs00 D05 10 77 D010 D06 11 76 D09 VD00 12 75 D09 V000 13 74 D08 D07 13 74 D08 V00 15 72 Vs00 V00 15 72 Vs1 DAMO 16 71 D041 V00 15 72 Vs3 DAMO 16 71 D041 CXS 18 60 NC CXS 19 68 NC CXS 10 22 66 A8 A11 21 66 A8 A8 A2 22 66 A8 A8 A11 24 61 A8 A8 A10 26 27 60 A8 A10 26 51 A6 A8 A2 27 61	VssQ [
VDDQ 9 76 11 VSSQ DQS 10 77 11 DQ10 DQG 11 76 11 OQ9 VSSQ 12 75 11 VD04 VSSQ 12 75 11 VD04 VSSQ 14 76 11 DQ8 VD0 15 72 11 NC DQM0 16 71 11 DQM1 VSSQ 18 69 11 NC VB 17 71 11 DQM1 VSSQ 18 69 11 NC VSSQ 19 68 11 NC VSSQ 12 20 67 11 NC RAS 19 68 11 AS AS A11 21 66 11 AS A2 22 68 11 AS A2 27 60 11 AS DQM2 28 19 DQM3 VSQ	DQ3 [[7 80 DQ12	
DQ6 10 77 DQ10 DQ6 11 76 DQ9 VscQ 12 76 VocQ DQ7 13 74 DQ8 NC 14 71 DQ010 Vb0 15 72 Vss DQM0 16 71 DQM11 Vb0 17 70 NC JCK 18 69 NC FAS 19 66 A9 CAS 22 66 A9 A11 22 66 A8 A2 22 64 A7 A3 24 64 A7 A4 24 61 A7 A4 24 61 A7 A6 A8 A8 A8 A10 24 64 A7 A2 77 60 A8 DQM2 28 59 DQM3 Voc 28 59 DQ3 Voc 28 51 VocQ </th <th>DQ4</th> <th>8 79 🗖 DQ11</th> <th></th>	DQ4	8 79 🗖 DQ11	
DQ6 10 77 DQ10 DQ6 11 76 DQ9 VscQ 12 76 VocQ DQ7 13 74 DQ8 NC 14 71 DQ010 Vb0 15 72 Vss DQM0 16 71 DQM11 Vb0 17 70 NC JCK 18 69 NC FAS 19 66 A9 CAS 22 66 A9 A11 22 66 A8 A2 22 64 A7 A3 24 64 A7 A4 24 61 A7 A4 24 61 A7 A6 A8 A8 A8 A10 24 64 A7 A2 77 60 A8 DQM2 28 59 DQM3 Voc 28 59 DQ3 Voc 28 51 VocQ </th <th></th> <th>9 78 VssQ</th> <th></th>		9 78 V ssQ	
DQ6 11 76 DQ9 Vsc0 13 76 DQ8 NC 14 73 NC Vb0 15 72 DVsc1 DQM0 16 71 DQM1 Vc 17 70 NC QAS 12 68 CK QAS 12 68 CK QAS 12 68 CK QAS 12 66 A9 QAS 12 66 A9 QAS 12 65 A8 QAS 12 65 A8 QAS 12 65 A8 QAS 14 23 64 A9 QAS 14 24 63 A6 QAS 14 45 44 A1 QAS 14 25 62 A5 QAS 14 53 DQM3 45 QAS 12 77 60 A4 QAS 12 55 DQM			
VSGO 12 75 11 V00Q DQ7 13 74 11 DQ8 NC 14 73 11 NC VDD 15 72 11 VSS DQM0 16 71 11 DQM1 VE 17 70 11 NC CAS 118 69 11 NC CAS 119 68 12 KK CAS 121 66 13 A9 BAO 22 65 148 BAO 22 65 149 BAO 22 65 148 A11 12 14 75 BAO 22 65 148 A10 24 61 147 A11 26 12 A5 A2 17 60 143 A2 27 60 143 A3 10 25 10 V35 A2 27 60 143 A3 10 55 10 V35 A4 10			
DQ7 II IA 74 II DQ8 NC I4 73 INC Vbb II5 72 IVS5 DQM0 I6 71 IDQM1 WE I7 INC VKE I7 IDQM1 WE I7 INC CAS II 80 INC FAS I19 68 ICLK CAS I20 65 IA9 BA0 I22 65 IA8 BA1 I23 64 IA7 A10 I24 63 IA6 A2 I27 60 IA4 A3 IDQMA IDQA IDQA Vbb I29 IS IVSS			
NC 14 73 NC Vbo 15 72 Vss Vbo 16 71 DOM1 WE 17 70 Nc CAS 18 69 NC CAS 118 69 NC ACI 12 0 61 CLK CAS 118 69 AC AC ACI 22 65 AS AS ACI 22 65 AS AS ACI 23 64 A7 AS ACI 25 62 AS AS ACI 25 62 AS AS DOM2 28 59 DOM3 AS Vob 29 55 Vob NC DOM2 28 59 DOM3 AS Vob 29 55 Vob NC DOM2 31 56 DO31 AS Vob 28 59 DOM3 AS Vob <t< th=""><th></th><th></th><th></th></t<>			
Voo 15 72 Vss DQM0 16 71 DQM1 WE 17 70 NC CAS 18 68 NC RAS 19 68 CKE A11 21 66 A9 BA0 22 65 A8 A10 24 63 A6 A2 27 60 A3 DQM2 28 58 DQM3 Voo 30 57 NC Voo 31 56 DQM3 Voo 31 55 Voo Voo 31 56 DQM3 Voo 31 55 Voo Voo 31 55 Voo DQM2 32 55 Voo DQM3 57 NC DQ3 Voo 33 54 DQ23 Voo 52 VssQ DQ24 Voo 53 DQ24 54			
DQM0 16 71 DQM1 WE 17 70 NC CAS 18 68 CLK RAS 19 68 CLK CS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A11 21 61 A4 A11 22 65 A3 A11 24 63 A6 A2 27 60 A3 DQM2 28 58 DQM3 VD0 29 58 VssQ DQM2 28 55 DQM3 VD0 23 56 DQM3 VD0 31 56 DQ30 DQ16 31 56 DQ30 DQ17 33 54 DQ28 VD0Q 37 50 DQ28 VDQ2 37 50 DQ2			
WE 17 70 NC CAS 118 69 NC FAS 19 68 10 CLK CS 20 67 10 CKE A11 121 66 11 A8 BA0 22 65 11 A8 BA1 23 64 11 A7 A10 24 63 11 A6 A11 26 11 A4 A2 27 60 11 A4 DOM2 28 59 10 DOM3 Vob 29 58 10 Vss NC 30 57 11 NC DOM2 22 55 10 Vss NC 31 56 10 DQ30 Vso 22 55 10 Vso DO11 13 54 11 DQ28 DO204 37 10 DQ29 10 Q28 DQ201 37 10 DQ28 10 Q27 VsoQ 38 49 11 VsoQ DQ21 13 49 11 VsoQ QSQ			
CAS 118 60 NC RAS 19 60 CLK CS 20 61 CKE A11 21 66 A9 BA0 122 65 A8 BA1 23 61 A7 A10 24 63 A6 A11 26 21 A5 A11 26 31 A4 A2 27 60 A3 DQM2 28 59 DQM3 Voo 28 59 DQM3 Voo 31 56 DQ31 Voo 32 55 DQ30 Voo 33 54 DQ30 Vob 35 DQ29 Voo Vob 36 51 DQ28 Vob 37 50 DQ27 Vob 37 50 DQ26 Vob 39 48 DQ26 Vob 41 DQ26 Vob Vob 41 DQ26 <td< th=""><th></th><th></th><th></th></td<>			
RAS 19 68 CLK 20 67 CKE A11 21 66 A9 BA0 22 61 A8 BA1 23 64 A7 A11 21 61 A8 BA1 23 64 A7 A10 25 62 A5 A11 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vob 29 58 Vss NC 30 57 NC JOA016 31 56 DQ31 Vob 22 55 VobQ DO17 33 54 DQ30 DO18 35 DQ29 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ28 DQ21 39 48 DQ26 VsSQ 38 49 DQ26 USQ 40 47 DQ26 </th <th></th> <th></th> <th></th>			
GS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A1 26 11 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VopQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbQQ 35 52 VsQ DQ20 37 50 DQ27 VsSQ 38 49 VopQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VsQ 41 46 VsQ			
A11 21 66 A9 BA0 22 65 A8 A8 A1 23 65 A8 A7 A10 24 A5 A1 25 62 A5 A5 A1 A6 A5 A1 26 A5 A1 A6 A5 A1 A6 A5 A5 A1 A6 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5			
BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 AA0 25 62 A5 A1 26 61 A4 DQM2 27 60 A3 DQM2 28 59 DQM3 DQM2 29 68 Vss NC 30 57 NC DQ16 31 61 DQ31 VSQ 32 55 VpQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbQ 35 DQ30 DQ19 36 51 DQ30 DQ18 34 53 DQ29 VbQQ 35 52 VsQ DQ19 36 51 DQ27 VsQ 39 48 DQ26 DQ21 39 48 DQ26 DQ22 40 47 DQ26 VDQ 42 45 DQ24			
BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A11 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 VSQ 32 55 VoDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbDQ 35 52 VsSQ VbDQ 37 50 DQ27 VsSQ 38 49 VoDQ DQ21 39 48 DQ26 DQ21 39 48 DQ26 DQ21 39 48 DQ26 DQ22 41 46 VsQ VDQ2 41 46 VsQ			
A10 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 9 DQM3 Vob 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 VsQ 22 55 VobQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbQ 36 51 VobQ DQ19 36 52 VsQ JOQ28 Q29 41 40 VbQ 41 46 DQ26 VbQ 42 45 DQ24			
A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VbDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbDQ 35 1 DQ28 DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VvbQ DQ21 38 49 DQ26 VssQ 38 49 DQ27 VssQ 38 49 DQ26 DQ21 39 48 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24			
A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 VbDQ 32 55 VbQQ DQ18 34 53 DQ29 VbDQ 35 52 VsQ VbQQ 35 51 DQ29 VbQ 35 51 DQ29 VbQ 37 50 DQ28 DQ19 36 51 DQ28 DQ20 37 50 DQ27 VbQ 48 DQ26 DQ21 39 48 DQ25 VbQ 41 46 VsQ VbQQ 42 45 DQ24 </th <th></th> <th></th> <th></th>			
A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VopQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VpQ6 DQ21 39 48 DQ26 DQ22 40 48 DQ25 VpDQ 41 46 VssQ DQ23 42 45 DQ24			
DQM2 128 59 DQM3 VDD 129 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VSQ VDQ 35 52 VSQ DQ19 36 51 DQ29 VDQ 38 49 VDQQ UQ21 39 48 DQ25 VDQ 41 46 VSQ VDQ2 42 45 DQ24			
VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSQ DQ19 36 51 DQ29 VDQ 38 49 VDQ VSQ 38 49 VDQ26 DQ21 39 48 DQ26 VDQ 41 46 VSQ VDQ 42 45 DQ24			
NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VSQ DQ19 36 51 DQ28 VDQ 37 50 DQ27 VSQ 38 48 DQ26 QQ2 40 47 DQ25 VDQ 41 46 VSQ VDQ 42 45 DQ24			
DQ16 31 56 DQ31 VssQ 32 55 VoDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VoDQ 35 52 VssQ DQ19 36 51 DQ28 VSQ 38 49 VoDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VssQ DQ23 42 45 DQ24			
VSSQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSSQ DQ19 36 51 DQ28 VSQ 37 50 DQ27 VSQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VSQ DQ23 42 45 DQ24			
DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VoDQ DQ21 39 49 DQ26 DQ22 40 47 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ18 34 53 DQ29 VDDQ 35 52 VSsQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 49 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VSsQ DQ23 42 45 DQ24			
VDDQ 35 52 VSSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 49 VDQQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQQ 41 46 VSSQ DQ23 42 45 DQ24			
DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ20 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VssQ DQ23 42 45 DQ24			
VssQ 38 49 VDDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24			
VDDQ 41 46 VSSQ DQ23 42 45 DQ24			
	VDD 🔳	43 44 🎞 Vss	

PIN DESCRIPTIONS

A0-A11	Row Address Input
A0-A8	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
Vddq	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	No Connection

PIN CONFIGURATION

PACKAGE CODE: B 90 BALL TF-BGA (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch)

A B C D E F G H J K	1 2 3 4 5	$ \begin{array}{c c} & & & \\ $
J		$ \begin{array}{ccc} NC & BA1 & A11 \\ \bigcirc & \bigcirc & \bigcirc \\ BA0 & CS & RAS \\ \bigcirc & \bigcirc & \bigcirc \end{array} $

PIN DESCRIPTIONS

A0-A11	Row Address Input
A0-A8	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
VDDQ	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	No Connection

PIN FUNCTIONS

Symbol	Туре	Function (In Detail)
A0-A11	Input	Address Inputs: A0-A11 are sampled during the ACTIVE
		command (row-address A0-A11) and READ/WRITE command (column address A0-A8), with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command.
BA0, BA1	Input	Bank Select Address: BA0 and BA1 defines which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied.
CAS	Input	\overline{CAS} , in conjunction with the \overline{RAS} and \overline{WE} , forms the device command. See the "Command Truth Table" for details on device commands.
CKE	Input	The CKE input determines whether the CLK input is enabled. The next rising edge of the CLK signal will be valid when is CKE HIGH and invalid when LOW. When CKE is LOW, the device will be in either power-down mode, clock suspend mode, or self refresh mode. CKE is an asynchronous input.
CLK	Input	CLK is the master clock input for this device. Except for CKE, all inputs to this device are acquired in synchronization with the rising edge of this pin.
CS	Input	The $\overline{\text{CS}}$ input determines whether command input is enabled within the device. Command input is enabled when $\overline{\text{CS}}$ is LOW, and disabled with $\overline{\text{CS}}$ is HIGH. The device remains in the previous state when $\overline{\text{CS}}$ is HIGH.
DQM0-DQM3	Input	DQM0 - DQM3 control the four bytes of the I/O buffers (DQ0-DQ31). In read
		mode, DQMn control the output buffer. When DQMn is LOW, the corresponding buf- fer byte is enabled, and when HIGH, disabled. The outputs go to the HIGH imped- ance state whenDQMn is HIGH. This function corresponds to \overline{OE} in conventional DRAMs. In write mode, DQMn control the input buffer. When DQMn is LOW, the corresponding buffer byte is enabled, and data can be written to the device. When DQMn is HIGH, input data is masked and cannot be written to the device.
DQ0-DQ31	Input/Output	Data on the Data Bus is latched on these pins during Write commands, and buffered after Read commands.
RAS	Input	$\overline{\text{RAS}}$, in conjunction with $\overline{\text{CAS}}$ and $\overline{\text{WE}}$, forms the device command. See the "Command Truth Table" item for details on device commands.
WE	Input	$\overline{\text{WE}}$, in conjunction with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, forms the device command. See the "Command Truth Table" item for details on device commands.
Vddq	Power Supply	VDDQ is the output buffer power supply.
Vdd	Power Supply	VDD is the device internal power supply.
Vssq	Power Supply	Vssq is the output buffer ground.
Vss	Power Supply	Vss is the device internal ground.

GENERAL DESCRIPTION

READ

The READ command selects the bank from BA0, BA1 inputs and starts a burst read access to an active row. Inputs A0-A8 provides the starting column location. When A10 is HIGH, this command functions as an AUTO PRECHARGE command. When the auto precharge is selected, the row being accessed will be precharged at the end of the READ burst. The row will remain open for subsequent accesses when AUTO PRECHARGE is not selected. DQ's read data is subject to the logic level on the DQM inputs two clocks earlier. When a given DQM signal was registered HIGH, the corresponding DQ's will be High-Z two clocks later. DQ's will provide valid data when the DQM signal was registered LOW.

WRITE

A burst write access to an active row is initiated with the WRITE command. BA0, BA1 inputs selects the bank, and the starting column location is provided by inputs A0-A8. Whether or not AUTO-PRECHARGE is used is determined by A10.

The row being accessed will be precharged at the end of the WRITE burst, if AUTO PRECHARGE is selected. If AUTO PRECHARGE is not selected, the row will remain open for subsequent accesses.

A memory array is written with corresponding input data on DQ's and DQM input logic level appearing at the same time. Data will be written to memory when DQM signal is LOW. When DQM is HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location.

PRECHARGE

The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. BA0, BA1 can be used to select which bank is precharged or they are treated as "Don't Care". A10 determined whether one or all banks are precharged. After executing this command, the next command for the selected bank(s) is executed after passage of the period $t_{\rm RP}$, which is the period required for bank precharging. Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

AUTO PRECHARGE

The AUTO PRECHARGE function ensures that the precharge is initiated at the earliest valid stage within a burst. This function allows for individual-bank precharge without requiring an explicit command. A10 to enable the AUTO PRECHARGE function in conjunction with a specific READ or WRITE command. For each individual READ or WRITE command, auto precharge is either enabled or disabled. AUTO PRECHARGE does not apply except in full-page burst mode. Upon completion of the READ or WRITE burst, a precharge of the bank/row that is addressed is automatically performed.

AUTO REFRESH COMMAND

This command executes the AUTO REFRESH operation. The row address and bank to be refreshed are automatically generated during this operation. The stipulated period (tRc) is required for a single refresh operation, and no other commands can be executed during this period. This command is executed at least 4096 times for every TREF. During an AUTO REFRESH command, address bits are "Don't Care". This command corresponds to CBR Auto-refresh.

BURST TERMINATE

The BURST TERMINATE command forcibly terminates the burst read and write operations by truncating either fixed-length or full-page bursts and the most recently registered READ or WRITE command prior to the BURST TERMINATE.

COMMAND INHIBIT

COMMAND INHIBIT prevents new commands from being executed. Operations in progress are not affected, apart from whether the CLK signal is enabled

NO OPERATION

When $\overline{\text{CS}}$ is low, the NOP command prevents unwanted commands from being registered during idle or wait states.

LOAD MODE REGISTER

During the LOAD MODE REGISTER command the mode register is loaded from A0-A11. This command can only be issued when all banks are idle.

ACTIVE COMMAND

When the ACTIVE COMMAND is activated, BA0, BA1 inputs selects a bank to be accessed, and the address inputs on A0-A11 selects the row. Until a PRECHARGE command is issued to the bank, the row remains open for accesses.

COMMAND TRUTH TABLE

	СКЕ									A11
Function	n – 1	n	CS	RAS	CAS	WE	BA1	BA0	A10	A9 - A0
Device deselect (DESL)	Н	×	Н	×	×	×	×	×	×	×
No operation (NOP)	Н	×	L	Н	Н	Н	×	×	×	×
Burst stop (BST)	Н	×	L	Н	Н	L	×	×	×	×
Read	Н	×	L	Н	L	Н	V	V	L	V
Read with auto precharge	Н	×	L	Н	L	Н	V	V	Н	V
Write	Н	×	L	Н	L	L	V	V	L	V
Write with auto precharge	Н	×	L	Н	L	L	V	V	Н	V
Bank activate (ACT)	Н	×	L	L	Н	Н	V	V	V	V
Precharge select bank (PRE)) H	×	L	L	Н	L	V	V	L	×
Precharge all banks (PALL)	Н	×	L	L	Н	L	×	×	Н	×
CBR Auto-Refresh (REF)	Н	Н	L	L	L	Н	×	×	×	×
Self-Refresh (SELF)	Н	L	L	L	L	Н	×	×	×	×
Mode register set (MRS)	Н	×	L	L	L	L	L	L	L	V

Note: $H=V_{IH}$, $L=V_{IL} x=V_{IH}$ or V_{IL} , V = Valid Data.

DQM TRUTH TABLE

		DQM	
n-1	n	U	L
Н	Х	L	L
Н	×	Н	Н
Н	×	L	×
Н	×	×	L
Н	×	Н	x
Н	X	×	Н
	H	H ×	H x L

Note: $H=V_{IH}$, $L=V_{IL} x=V_{IH}$ or V_{IL} , V = Valid Data.

CKE TRUTH TABLE

	CKE						
Current State /Function	n – 1	n	CS	RAS	CAS	WE	Address
Activating Clock suspend mode entry	Н	L	×	×	×	×	×
Any Clock suspend mode	L	L	×	×	×	×	×
Clock suspend mode exit	L	Н	×	×	×	×	×
Auto refresh command Idle (REF)	Н	Н	L	L	L	Н	×
Self refresh entry Idle (SELF)	Н	L	L	L	L	Н	×
Power down entry Idle	Н	L	×	×	x	×	×
Self refresh exit	L	Н	L	Н	Н	Н	x
	L	Н	Н	×	×	×	×
Power down exit	L	Н	×	×	x	×	×

Note: $H=V_{IH}$, $L=V_{IL}$ $x=V_{IH}$ or V_{IL} , V = Valid Data.

FUNCTIONAL TRUTH TABLE

Current State	CS	RAS	CAS	WE	Address	Command	Action
dle	Н	Х	Х	Х	Х	DESL	Nop or Power Down ⁽²⁾
	L	Н	Н	Н	Х	NOP	Nop or Power Down ⁽²⁾
	L	Н	Н	L	Х	BST	Nop or Power Down
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	A, CA, A10	WRIT/ WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	Row activating
	L	L	Н	L	BA, A10	PRE/PALL	Nop
	L	L	L	Н	Х	REF/SELF	Auto refresh or Self-refresh ⁽⁴⁾
	L	L	L	L	OC, BA1=L	MRS	Mode register set
Row Active	Н	Х	Х	Х	Х	DESL	Nop
	L	Н	Н	Н	Х	NOP	Nop
	L	Н	Н	L	Х	BST	Nop
	L	Н	L	Н	BA, CA, A10	READ/READA	Begin read (5)
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	Begin write (5)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Precharge Precharge all banks ⁽⁶⁾
	L	L	L	Н	Х	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Read	Н	Х	Х	Х	Х	DESL	Continue burst to end to Row active
	L	Н	Н	Н	Х	NOP	Continue burst to end Row Row active
	L	Н	Н	L	Х	BST	Burst stop, Row active
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate burst, begin new read ⁽⁷⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	Terminate burst, begin write ^(7,8)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Terminate burst Precharging
	L	L	L	Н	Х	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Vrite	Н	Х	Х	Х	X	DESL	Continue burst to end Write recovering
	L	Н	Н	Н	Х	NOP	Continue burst to end Write recovering
	L	Н	Н	L	Х	BST	Burst stop, Row active
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate burst, start read : Determine AP (7.8)
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	Terminate burst, new write : Determine AP ⁽⁷⁾
	L	L	Н	Н	BA, RA	RA ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Terminate burst Precharging
	L		L	н	X	REF/SELF	ILLEGAL
				L	OC, BA	MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

FUNCTIONAL TRUTH TABLE Continued:

Current State	CS	RAS	CAS	WE	Address	Command	Action
Read with auto Precharging	Н	×	×	×	×	DESL	Continue burst to end, Precharge
	L	Н	Н	Н	х	NOP	Continue burst to end, Precharge
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL (11)
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	ILLEGAL (11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL (11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Write with Auto Precharge	Н	×	×	×	×	DESL	Continue burst to end, Write recovering with auto precharge
	L	Н	Н	Н	×	NOP	Continue burst to end, Write recovering with auto precharge
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽¹¹⁾
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	ILLEGAL (11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,11)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ^(3,11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Precharging	Н	×	x	×	×	DESL	Nop, Enter idle after tRP
	L	Н	Н	Н	×	NOP	Nop, Enter idle after tRP
	L	Н	Н	L	×	BST	Nop, Enter idle after tRP
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Nop Enter idle after tRP
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Row Activating	Н	×	x	×	×	DESL	Nop, Enter bank active after tRCD
	L	Н	Н	Н	×	NOP	Nop, Enter bank active after tRCD
	L	Н	Н	L	×	BST	Nop, Enter bank active after tRCD
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,9)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ⁽³⁾
		L	L	H	×	REF/SELF	ILLEGAL
				L	OC, BA	MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

FUNCTIONAL TRUTH TABLE Continued:

Current State	CS	RAS	CAS	WE	Address	Command	Action
Write Recovering	Н	×	×	×	×	DESL	Nop, Enter row active after tDPL
	L	Н	Н	Н	×	NOP	Nop, Enter row active after tDPL
	L	Н	Н	L	×	BST	Nop, Enter row active after tDPL
	L	Н	L	Н	BA, CA, A10	READ/READA	Begin read ⁽⁸⁾
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	Begin new write
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ⁽³⁾
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Write Recovering	Н	×	×	×	×	DESL	Nop, Enter precharge after tDPL
with Auto	L	Н	Н	Н	×	NOP	Nop, Enter precharge after tDPL
Precharge	L	Н	Н	L	×	BST	Nop, Enter row active after tDPL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ^(3,8,11)
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ^(3,11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL (3,11)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL (3,11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Refresh	Н	×	×	×	×	DESL	Nop, Enter idle after tRC
	L	Н	Н	×	×	NOP/BST	Nop, Enter idle after tRC
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL
	L	L	Н	Н	BA, RA	ACT	ILLEGAL
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Mode Register	Н	×	×	×	×	DESL	Nop, Enter idle after 2 clocks
Accessing	L	Н	Н	Н	×	NOP	Nop, Enter idle after 2 clocks
2	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	×	BA, CA, A10	READ/WRITE	ILLEGAL
	L	L	×	×	BA, RA	ACT/PRE/PALL REF/MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

Notes:

- 1. All entries assume that CKE is active (CKEn-1=CKEn=H).
- 2. If both banks are idle, and CKE is inactive (Low), the device will enter Power Down mode. All input buffers except CKE will be disabled.
- 3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA), depending on the state of that bank.
- 4. If both banks are idle, and CKE is inactive (Low), the device will enter Self-Refresh mode. All input buffers except CKE will be disabled.
- 5. Illegal if tRCD is not satisfied.
- 6. Illegal if tRAS is not satisfied.
- 7. Must satisfy burst interrupt condition.
- 8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
- 9. Must mask preceding data which don't satisfy tDPL.
- 10. Illegal if tRRD is not satisfied.
- 11. Illegal for single bank, but legal for other banks.

11

CKE RELATED COMMAND TRUTH TABLE⁽¹⁾

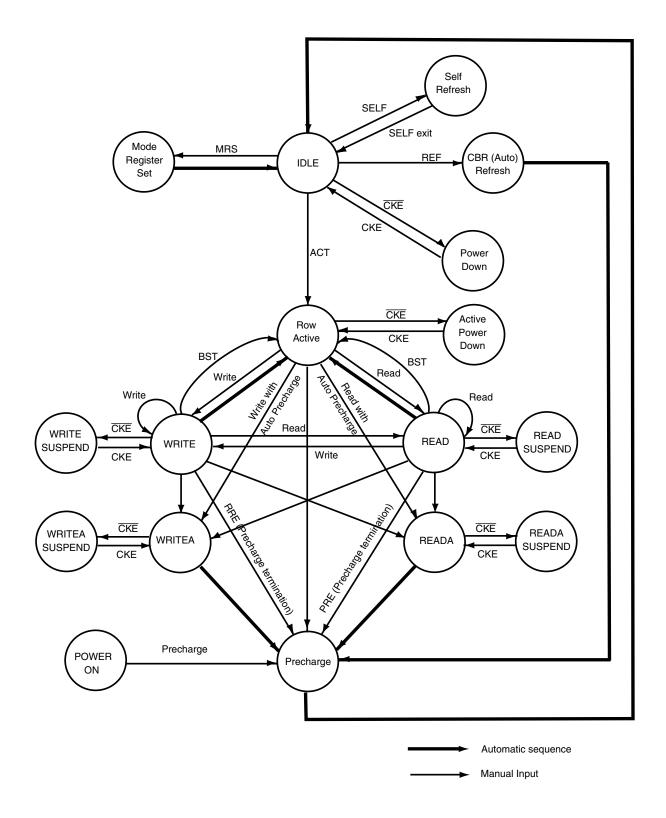
		CKE						
Current State	Operation	n-1	n	CS	RAS	CAS	WE	Address
Self-Refresh (S.R.)	INVALID, CLK (n - 1) would exit S.R.	Н	Х	Х	Х	CAS X X H L X X H L X X H L X X X X X X X X	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	Н	Х	Х	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	L	Н	Н	Х	Х
	Illegal	L	Н	L	Н	L	Х	Х
	Illegal	L	Н	L	L	Х	Х	Х
	Maintain S.R.	L	L	Х	Х	Х	Х	Х
Self-Refresh Recovery	Idle After tRC	Н	Н	Н	Х	Х	Х	Х
	Idle After tRC	Н	Н	L	Н	Н	Х	Х
	Illegal	Н	Н	L	Н	L	Х	Х
	Illegal	Н	Н	L	L	Х	Х	Х
	Begin clock suspend next cycle ⁽⁵⁾	Н	L	Н	Х	Х	Х	Х
	Begin clock suspend next cycle ⁽⁵⁾	Н	L	L	Н	Н	Х	Х
	Illegal	Н	L	L	Н	L	Х	Х
	Illegal	Н	L	L	L	Х	Х	Х
	Exit clock suspend next cycle ⁽²⁾	L	Н	Х	Х	Х	Х	Х
	Maintain clock suspend	L	L	Х	Х	Х	Х	Х
Power-Down (P.D.)	INVALID, CLK (n - 1) would exit P.D.	Н	Х	Х	Х	Х	X X X X X X X X X X	_
	EXIT P.D> Idle ⁽²⁾	L	Н	Х	Х	Х	Х	Х
	Maintain power down mode	L	L	Х	Х		Х	Х
Both Banks Idle	Refer to operations in Operative Command Table	Н	Н	Н	Х	Х	Х	—
	Refer to operations in Operative Command Table	Н	Н	L	Н	Х	Х	—
	Refer to operations in Operative Command Table	Н	Н	L	L	Н	Х	—
	Auto-Refresh	Н	Н	L	L	L	Н	Х
	Refer to operations in Operative Command Table	Н	Н	L	L	L	L	Op - Code
	Refer to operations in Operative Command Table	Н	L	Н	Х	Х	Х	_
	Refer to operations in Operative Command Table	Н	L	L	Н	Х	Х	_
	Refer to operations in Operative Command Table	Н	L	L	L	Н	Х	—
	Self-Refresh ⁽³⁾	Н	L	L	L	L	Н	Х
	Refer to operations in Operative Command Table	Н	L	L	L	L	L	Op - Code
	Power-Down ⁽³⁾	L	Х	Х	Х	Х	Х	Х
Any state	Refer to operations in Operative Command Table	Н	Н	Х	Х	Х	Х	Х
other than	Begin clock suspend next cycle ⁽⁴⁾	н	L	Х	Х	Х	Х	Х
listed above	Exit clock suspend next cycle	L	Н	Х	Х	Х	Х	Х
	Maintain clock suspend	L	L	Х	Х	Х	Х	Х

Notes:

1. H : High level, L : low level, X : High or low level (Don't care).

2. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied

before any command other than EXIT.


3. Power down and Self refresh can be entered only from the both banks idle state.

4. Must be legal command as defined in Operative Command Table.

5. Illegal if txsR is not satisfied.

STATE DIAGRAM

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameters		Rating	Unit
VDD MAX	Maximum Supply Voltage		-0.5 to +4.6	V
V DDQ MAX	Maximum Supply Voltage for Outp	ut Buffer	-0.5 to +4.6	V
VIN	Input Voltage		-0.5 to VDD + 0.5	V
Vout	Output Voltage		-1.0 to VDDQ + 0.5	V
Pd max	Allowable Power Dissipation		1	W
lcs	Output Shorted Current		50	mA
TOPR	Operating Temperature	Com.	0 to +70	°C
		Ind.	-40 to +85	
		A1	-40 to +85	
		A2	-40 to +105	
Тѕтс	Storage Temperature		-65 to +150	°C

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All voltages are referenced to Vss.

DC RECOMMENDED OPERATING CONDITIONS

 $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ for Commercial grade}. T_A = -40^{\circ}C \text{ to } +85^{\circ}C \text{ for Industrial and A1 grade}. T_A = -40^{\circ}C \text{ to } +105^{\circ}C \text{ for A2 grade}.)$

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	V
Vddq	I/O Supply Voltage	3.0	3.3	3.6	V
VIH ⁽¹⁾	Input High Voltage	2.0		VDDQ + 0.3	V
V IL ⁽²⁾	Input Low Voltage	-0.3	—	+0.8	V

Note:

1. VIH (max) = VDDQ +1.2V (PULSE WIDTH \leq 3NS).

2. VIL (min) = -1.2V (PULSE WIDTH \leq 3NS).

3. All voltages are referenced to \overline{Vss} .

CAPACITANCE CHARACTERISTICS (At TA = 0 to +25°C, VDD = VDDQ = 3.3 ± 0.3V)

Symbol	Parameter	Min.	Max.	Unit	
CIN1	Input Capacitance: CLK	2.0	4.0	pF	
CIN2	Input Capacitance:All other input pins	1.5	4.0	pF	
Cı/o	Data Input/Output Capacitance:DQ's	4.0	6.0	pF	

THERMAL RESISTANCE

Package	Substrate	Theta-ja (Airflow = 0m/s)	Theta-ja (Airflow = 1m/s)	Theta-ja (Airflow = 2m/s)	Theta-jc	Units
BGA(90)	4-layer	36.1	31.4	29.6	7.5	C/W
TSOP2(86)	4-layer	73.1	66.1	62.2	12.5	C/W

DC ELECTRICAL CHARACTERISTICS 1 ⁽³⁾ (Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	-6	-7	-75E	Unit
DD1 (1)	Operating Current	One bank active, CL = 3, BL = 1,	140	120	120	mA
		tclk = tclk (min), tRc = tRc (min)				
IDD2P	Precharge Standby Current	$CKE \le V_{IL}$ (MAX), tck = 15ns	4	4	4	mA
	(In Power-Down Mode)					
IDD2PS	Precharge Standby Current	$CKE \leq VIL (MAX), CLK \leq VIL (MAX)$	4	4	4	mA
	(In Power-Down Mode)					
DD2N (2)	Precharge Standby Current	$\overline{CS} \ge V_{DD}$ - 0.2V, $CKE \ge V_{IH}$ (MIN)	30	30	30	mA
	(In Non Power-Down Mode)	tск = 15ns				
DD2NS	Precharge Standby Current	$\overline{CS} \ge V_{DD}$ - 0.2V, $CKE \ge V_{IH}$ (MIN) or	20	20	20	mA
	(In Non Power-Down Mode)	$CKE \leq V_{IL}$ (MAX), All inputs stable				
IDD3P	Active Standby Current	$CKE \le V_{IL}$ (MAX), tck = 15ns	8	8	8	mA
	(Power-Down Mode)					
I DD3PS	Active Standby Current	$CKE \leq VIL (MAX), CLK \leq VIL (MAX)$	8	8	8	mA
	(Power-Down Mode)					
DD3N ⁽²⁾	Active Standby Current	$\overline{\text{CS}} \ge \text{V}_{\text{DD}}$ - 0.2V, $\text{CKE} \ge \text{V}_{\text{IH}}$ (MIN)	35	35	35	mA
	(In Non Power-Down Mode)	tск = 15ns				
IDD3NS	Active Standby Current	$\overline{CS} \ge V_{DD}$ - 0.2V, $CKE \ge V_{IH}$ (MIN) or	20	20	20	mA
	(In Non Power-Down Mode)	$CKE \leq V_{IL}$ (MAX), All inputs stable				
DD4	Operating Current	All banks active, $BL = 4$, $CL = 3$,	190	170	170	mA
		tск = tск (min)				
IDD5	Auto-Refresh Current	tвс = tвс (min), tськ = tськ (min)	180	160	160	mA
DD6	Self-Refresh Current	CKE ≤ 0.2V	5	5	5	mA

1. IDD (MAX) is specified at the output open condition.

Input signals are changed one time during 30ns.
 All values applicable for operation for T_A ≤ 85°C. For A2 temperature grade with T_A > 85°C: IDD1 and IDD4 are derated to 5% above these values; IDD3NS is derated to 30% above these values.

DC ELECTRICAL CHARACTERISTICS 2 (Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	Min	Max	Unit
lı∟	Input Leakage Current	$0V \le Vin \le V_{DD}$, with pins other than	-10	10	μA
		the tested pin at 0V			
lo∟	Output Leakage Current	Output is disabled, $0V \leq Vout \leq V_{DD}$,	-10	10	μA
Vон	Output High Voltage Level	Іон = -2mA	2.4	_	V
Vol	Output Low Voltage Level	lol = 2mA	_	0.4	V

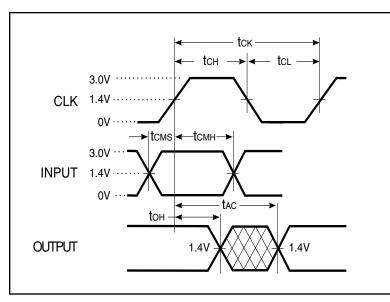
AC ELECTRICAL CHARACTERISTICS (1,2,3,4)

				-6		-7	-7	5E	
Symbol	Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Units
tск3	Clock Cycle Time	CAS Latency = 3	6	_	7	_	_	_	ns
tcк2		CAS Latency = 2	10	_	10	—	7.5	_	ns
tac3	Access Time From CLK	CAS Latency = 3	_	5.4	_	5.4	_	_	ns
tac2		CAS Latency = 2	_	6.5	_	6.5	_	6	ns
tсн	CLK HIGH Level Width		2.5	_	2.5	_	2.5	_	ns
tc∟	CLK LOW Level Width		2.5	_	2.5	—	2.5	_	ns
toн3	Output Data Hold Time	CAS Latency = 3	2.5	—	2.5	—	—	_	ns
toн2		CAS Latency = 2	2.5		2.5	_	2.5		ns
tLZ	Output LOW Impedance Time		0	_	0	_	0	_	ns
tHz3	Output HIGH Impedance Time	CAS Latency = 3	2.5	5.4	2.5	5.4	—	—	ns
tHz2		CAS Latency = 2	2.5	6.5	2.5	6.5	2.5	6	ns
tos	Input Data Setup Time ⁽²⁾		1.5	_	1.5	_	1.5	_	ns
tdн	Input Data Hold Time ⁽²⁾		1.0	—	1.0	—	1.0	—	ns
tas	Address Setup Time ⁽²⁾		1.5	_	1.5	_	1.5	_	ns
tан	Address Hold Time ⁽²⁾		1.0		1.0	_	1.0	_	ns
tcкs	CKE Setup Time ⁽²⁾		1.5		1.5	_	1.5	_	ns
tскн	CKE Hold Time ⁽²⁾		1.0		1.0	_	1.0	_	ns
tcмs	Command Setup Time (\overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , DQM) ⁽²⁾		1.5	_	1.5	_	1.5	_	ns
tсмн	Command Hold Time (CS, RAS, CAS, WE, DQM) ⁽²⁾		1.0	_	1.0	_	1.0	_	ns
trc	Command Period (REF to REF / ACT to ACT)		60	_	70	_	67.5	_	ns
t RFC	Auto Refresh Period		60	_	70	_	67.5	_	ns
tras	Command Period (ACT to PRE)		42	100K	49	100K	37	100K	ns
trp	Command Period (PRE to ACT)		18	_	20	_	15	_	ns
trcd	Active Command To Read / Write Command Delay Time		18		20	_	15	_	ns
trrd	Command Period (ACT [0] to ACT[1])		12		14	_	15	_	ns
t dpl	Input Data To Precharge ⁽⁶⁾		12		14	_	15	_	ns
	Command Delay time								
t DAL	Input Data To Active / Refresh		30	_	35	_	30	_	ns
	Command Delay time (During Auto-Precharge)								
tmrd	Mode Register Program Time		12	_	14	_	15	_	ns
tdde	Power Down Exit Setup Time		6	_	7	_	7.5	_	ns
txsr	Self-Refresh Exit Time ⁽⁵⁾		70	_	70	_	75	_	ns
tτ	Transition Time		0.3	1.2	0.3	1.2	0.3	1.2	ns
TREF	Refresh Cycle Time (4096) TA \leq 70°C Com., Ind., A1, A2		_	64	_	64	_	64	ms
	Ta ≤ 85°C Ind., A1, A2		_	64	_	64	_	64	ms
	Ta > 85°C A2		_	16	_	16	_	16	ms

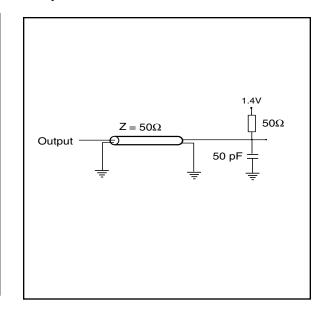
Notes:

The power-on sequence must be executed before starting memory operation.
 Measured with tr = 1 ns. If clock rising time is longer than 1ns, (tr /2 - 0.5) ns should be added to the parameter.
 The reference level is 1.4V when measuring input signal timing. Rise and fall times are measured between VIH(min.) and VIL (max).
 Use recommended operation conditions.
 Self-Refresh Mode is not supported for A2 grade with Ta > +85°C.
 Write Recovery Time (tWR) is equivalent to Input Data To Precharge Command Delay time (tDPL).

16


OPERATING FREQUENCY / LATENCY RELATIONSHIPS

SYMBOL	PARAMETER		-6	-7	-75E	UNITS
_	Clock Cycle Time		6	7	7.5	ns
_	Operating Frequency		166	143	133	MHz
tcac	CAS Latency		3	3	2	cycle
trcd	Active Command To Read/Write Command Delay	Time	3	3	2	cycle
trac	RAS Latency (tRCD + tCAC)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	6	6	4	cycle
trc	Command Period (REF to REF / ACT to ACT)		10	10	9	cycle
tras	Command Period (ACT to PRE)		7	7	5	cycle
trp	Command Period (PRE to ACT)		3	3	2	cycle
trrd	Command Period (ACT[0] to ACT [1])		2	2	2	cycle
tccd	Column Command Delay Time (READ, READA, WRIT, WRITA)		1	1	1	cycle
t DPL	Input Data To Precharge Command Delay Time		2	2	2	cycle
tdal	Input Data To Active/Refresh Command Delay Tim (During Auto-Precharge)	e	5	5	4	cycle
trbd	Burst Stop Command To Output in HIGH-Z Delay Time (Read)	$\frac{\overline{CAS}}{\overline{CAS}} \text{ Latency} = 3$ $\frac{\overline{CAS}}{\overline{CAS}} \text{ Latency} = 2$	3	3	2	cycle
twвd	Burst Stop Command To Input in Invalid Delay Tim (Write)	e	0	0	0	cycle
tral	Precharge Command To Output in HIGH-Z Delay Time (Read)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	3	3	2	cycle
twdl	Precharge Command To Input in Invalid Delay Tim (Write)	e	0	0	0	cycle
tpql	Last Output To Auto-Precharge Start Time (Read)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	-2	-2		cycle
tqмd	DQM To Output Delay Time (Read)		2	2	2	cycle
tомо	DQM To Input Delay Time (Write)		0	0	0	cycle
tmrd	Mode Register Set To Command Delay Time		2	2	2	cycle



ACTEST CONDITIONS

Input Load

Output Load

ACTEST CONDITIONS

Parameter	Rating
AC Input Levels	0V to 3.0V
Input Rise and Fall Times	1 ns
Input Timing Reference Level	1.4V
Output Timing Measurement Reference Level	1.4V

FUNCTIONAL DESCRIPTION

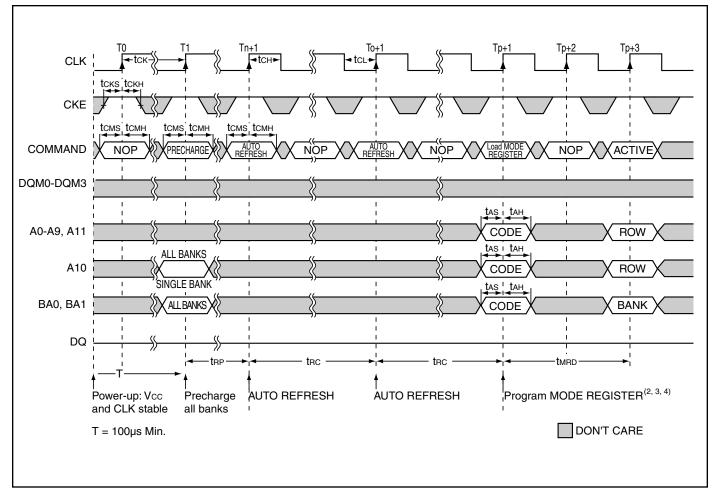
Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an AC-TIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0 and BA1 select the bank, A0-A11 select the row). The address bits A0-A8 registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation.

Initialization

SDRAMs must be powered up and initialized in a predefined manner.

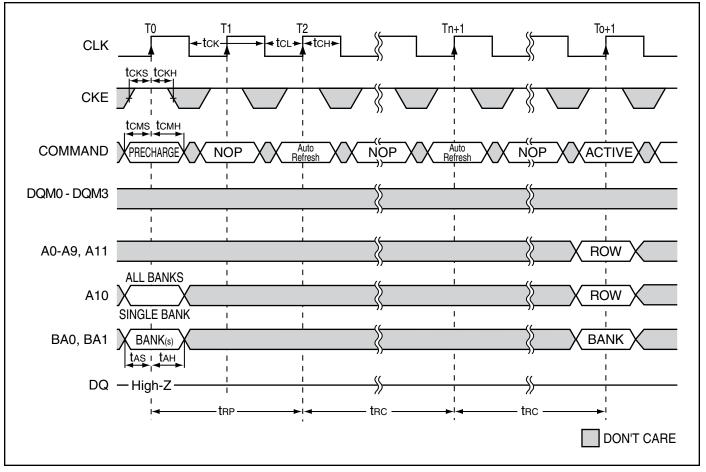
The 256M SDRAM is initialized after the power is applied to VDD and VDDQ (simultaneously) and the clock is stable with DQM High and CKE High.


A 100µs delay is required prior to issuing any command other than a COMMAND INHIBIT or a NOP. The COMMAND INHIBIT or NOP may be applied during the 100µs period and should continue at least through the end of the period.

With at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied once the 100µs delay has been satisfied. All banks must be precharged. This will leave all banks in an idle state after which at least two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is then ready for mode register programming.

The mode register should be loaded prior to applying any operational command because it will power up in an unknown state.

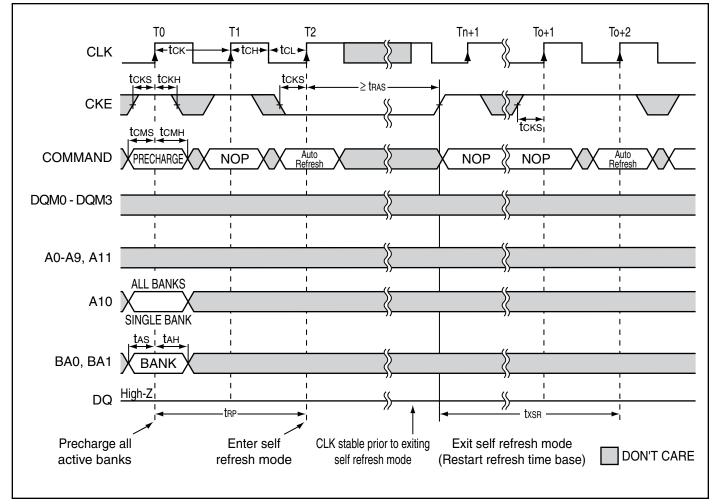
INITIALIZE AND LOAD MODE REGISTER⁽¹⁾



Notes:

- If CS is High at clock High time, all commands applied are NOP.
 The Mode register may be loaded prior to the Auto-Refresh cycles if desired.
- 3. JEDEC and PC100 specify three clocks.
- 4. Outputs are guaranteed High-Z after the command is issued.

AUTO-REFRESH CYCLE



Notes:

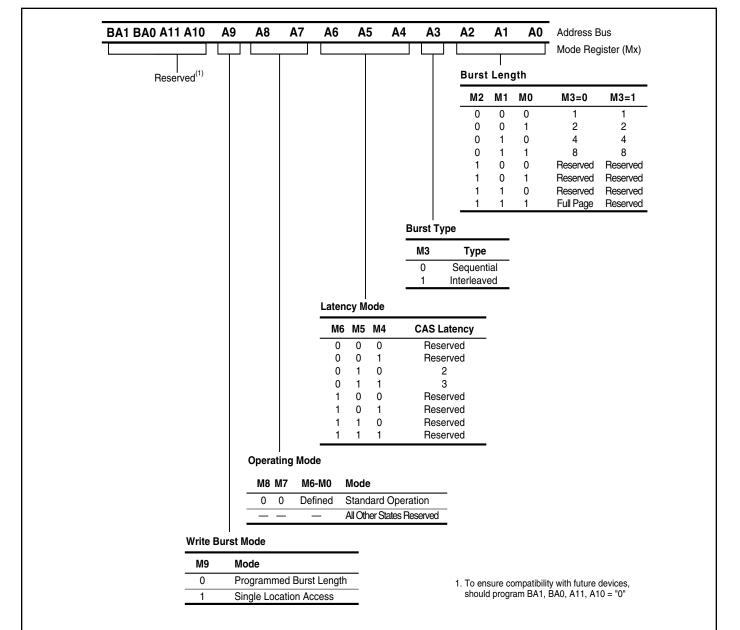
1. \overline{CAS} latency = 2, 3

SELF-REFRESH CYCLE

Note:

1. Self-Refresh Mode is not supported for A2 grade with $T_A > +85^{\circ}C$.

REGISTER DEFINITION


Mode Register

The mode register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in MODE REGISTER DEFINITION.

The mode register is programmed via the LOAD MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power.

Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4- M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the WRITE burst mode, and M10 and M11 are reserved for future use.

The mode register must be loaded when all banks are idle, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation.

MODE REGISTER DEFINITION

23

BURST LENGTH

Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as shown in MODE REGISTER DEFINITION. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4 or 8 locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.

Reserved states should not be used, as unknown operation or incompatibility with future versions may result.

When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, mean-

ing that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1-A8 (x32) when the burst length is set to two; by A2-A8 (x32) when the burst length is set to four; and by A3-A8 (x32) when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Full-page bursts wrap within the page if the boundary is reached.

Burst Type

Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3.

The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in BURST DEFINITION table.

BURST DEFINITION

Burst Length	Starting Column			Order of Accesses Within a Burst	
	th Address		5	Type = Sequential	Type = Interleaved
			A 0		
2			0	0-1	0-1
			1	1-0	1-0
		A 1	A 0		
		0	0	0-1-2-3	0-1-2-3
4		0	1	1-2-3-0	1-0-3-2
		1	0	2-3-0-1	2-3-0-1
		1	1	3-0-1-2	3-2-1-0
	A 2	A 1	A 0		
	0	0	0	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7
	0	0	1	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6
	0	1	0	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5
8	0	1	1	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4
	1	0	0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3
	1	0	1	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2
	1	1	0	6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1
	1	1	1	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0
Full Page	n = A0-A	n = A0-A8		Cn, Cn + 1, Cn + 2 Cn + 3, Cn + 4	Not Supported
(y)	(location 0-y)			Ćn - 1, Cn	

CAS Latency

The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to two or three clocks.

If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available by clock edge n + m. The DQs will start driving as a result of the clock edge one cycle earlier (n + m - 1), and provided that the relevant access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two clocks, the DQs will start driving after T1 and the data will be valid by T2, as shown in CAS Latency diagrams. The Allowable Operating Frequency table indicates the operating frequencies at which each CAS latency setting can be used.

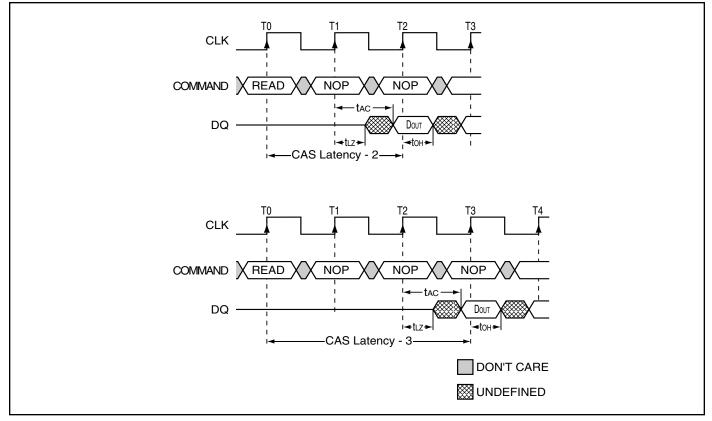
Reserved states should not be used as unknown operation or incompatibility with future versions may result.

Operating Mode

The normal operating mode is selected by setting M7 and M8 to zero; the other combinations of values for M7 and M8 are reserved for future use and/or test modes. The programmed burst length applies to both READ and WRITE bursts.

Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result.

Write Burst Mode


When M9 = 0, the burst length programmed via M0-M2 applies to both READ and WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but write accesses are single-location (nonburst) accesses.

CAS Latency

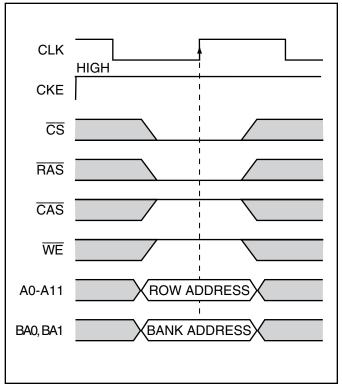
Allowable Operating Frequency (MHz)

Speed	CAS Latency = 2	CAS Latency = 3
-6	100	166
-7	100	143
-75E	133	—

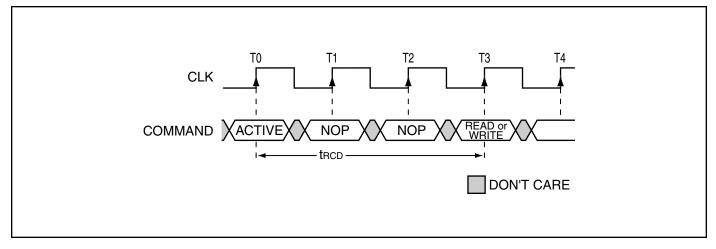
CAS LATENCY

CHIP OPERATION

BANK/ROW ACTIVATION


Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in that bank must be "opened." This is accomplished via the ACTIVE command, which selects both the bank and the row to be activated (see Activating Specific Row Within Specific Bank).

After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the tRCD specification. Minimum tRCD should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the ACTIVE command on which a READ or WRITE command can be entered. For example, a tRCD specification of 18ns with a 125 MHz clock (8ns period) results in 2.25 clocks, rounded to 3. This is reflected in the following example, which covers any case where $2 < [tRCD (MIN)/tcK] \le 3$. (The same procedure is used to convert other specification limits from time units to clock cycles).


A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been "closed" (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by tRc.

A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by tRRD.

ACTIVATING SPECIFIC ROW WITHIN SPE-CIFIC BANK

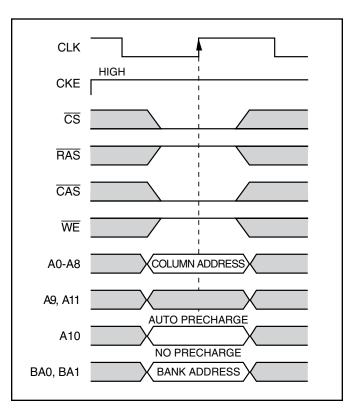
EXAMPLE: MEETING TRCD (MIN) WHEN $2 < [TRCD (MIN)/TCK] \le 3$

READS

READ bursts are initiated with a READ command, as shown in the READ COMMAND diagram.

The starting column and bank addresses are provided with the READ command, and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic READ commands used in the following illustrations, auto precharge is disabled.

During READ bursts, the valid data-out element from the starting column address will be available following the CAS latency after the READ command. Each subsequent data-out element will be valid by the next positive clock edge. The CAS Latency diagram shows general timing for each possible CAS latency setting.


Upon completion of a burst, assuming no other commands have been initiated, the DQs will go High-Z. A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.)

Data from any READ burst may be truncated with a subsequent READ command, and data from a fixed-length READ burst may be immediately followed by data from a READ command. In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either the last element of a completed burst or the last desired data element of a longer burst which is being truncated.

The new READ command should be issued xcycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus one. This is shown in Consecutive READ Bursts for CAS latencies of two and three; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. The SDRAM uses a pipelined architecture and therefore does not require the 2n rule associated with a prefetch architecture. A READ command can be initiated on any clock cycle following a previous READ command. Full-speed random read accesses can be performed to the same bank, as shown in Random READ Accesses, or each subsequent READ may be performed to a different bank.

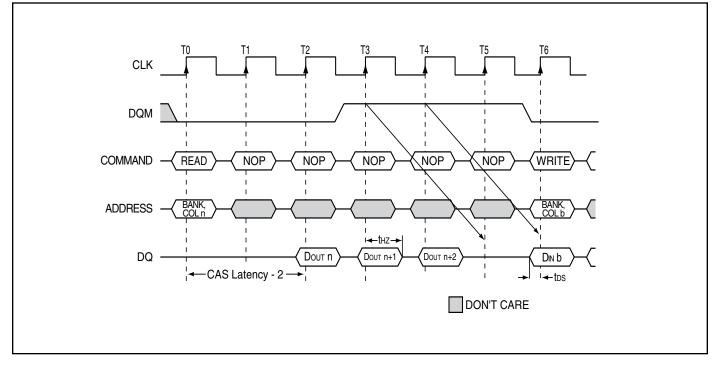
Data from any READ burst may be truncated with a subsequent WRITE command, and data from a fixed-length READ burst may be immediately followed by data from a WRITE command (subject to bus turnaround limitations). The WRITE burst may be initiated on the clock edge immediately following the last (or last desired) data element from the READ burst, provided that I/O contention can be avoided. In a given system design, there may be a possibility that the device driving the input data will go Low-Z before the SDRAM DQs go High-Z. In this case, at least a single-cycle delay should occur between the last read data and the WRITE command.

READ COMMAND

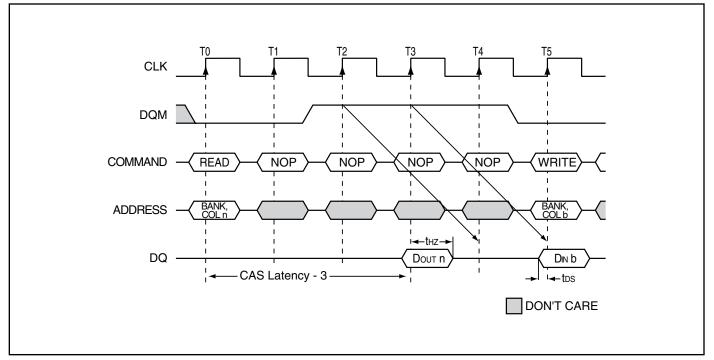
The DQM input is used to avoid I/O contention, as shown in Figures RW1 and RW2. The DQM signal must be asserted (HIGH) at least three clocks prior to the WRITE command (DQM latency is two clocks for output buffers) to suppress data-out from the READ. Once the WRITE command is registered, the DQs will go High-Z (or remain High-Z), regardless of the state of the DQM signal, provided the DQM was active on the clock just prior to the WRITE command that truncated the READ command. If not, the second WRITE will be an invalid WRITE. For example, if DQM was LOW during T4 in Figure RW2, then the WRITEs at T5 and T7 would be valid, while the WRITE at T6 would be invalid.

The DQM signal must be de-asserted prior to the WRITE command (DQM latency is zero clocks for input buffers) to ensure that the written data is not masked.

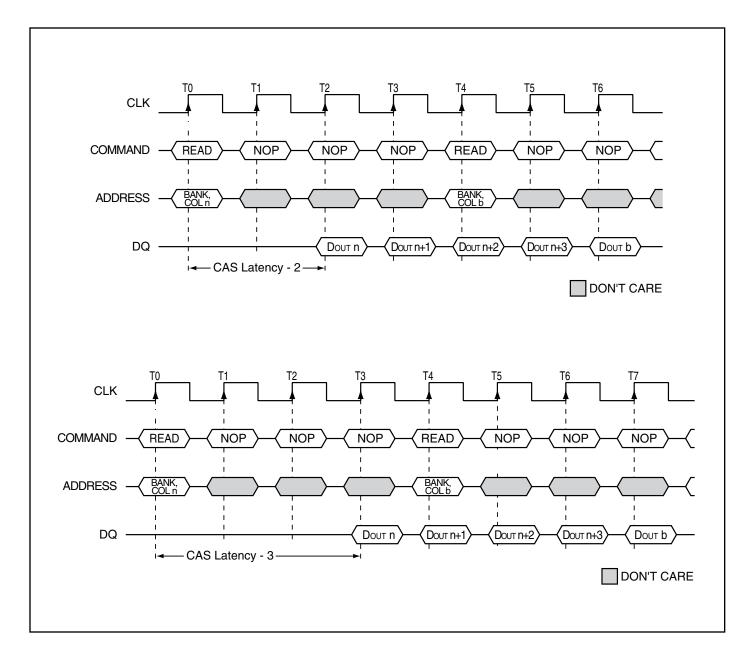
A fixed-length READ burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued *x* cycles before the clock edge at which the last desired data element is valid, where *x* equals the CAS latency minus one. This is shown in the READ to PRECHARGE


diagram for each possible CAS latency; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. Note that part of the row precharge time is hidden during the access of the last data element(s).

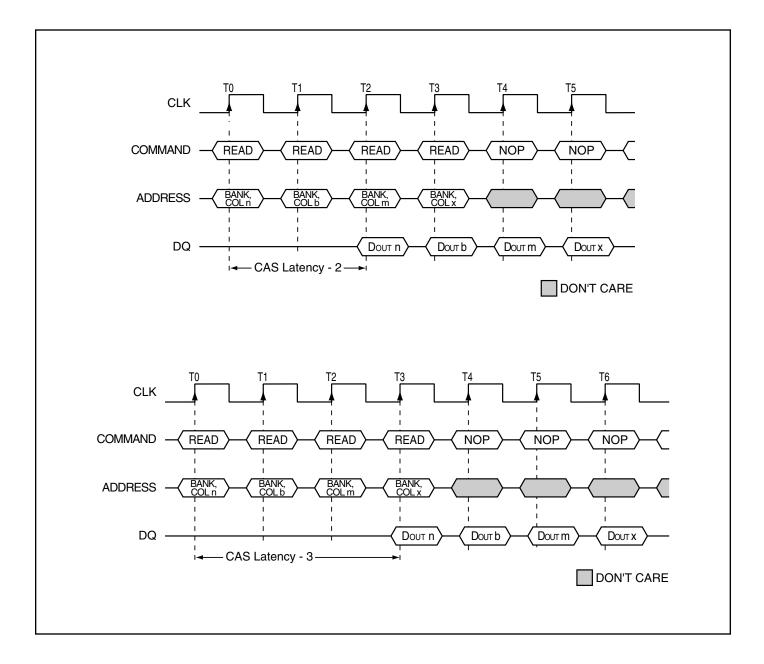
In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRE-CHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts.


Full-page READ bursts can be truncated with the BURST TERMINATE command, and fixed-length READ bursts may be truncated with a BURST TERMINATE command, provided that auto precharge was not activated. The BURST TERMINATE command should be issued *x* cycles before the clock edge at which the last desired data element is valid, where *x* equals the CAS latency minus one. This is shown in the READ Burst Termination diagram for each possible CAS latency; data element n+3 is the last desired data element of a longer burst.

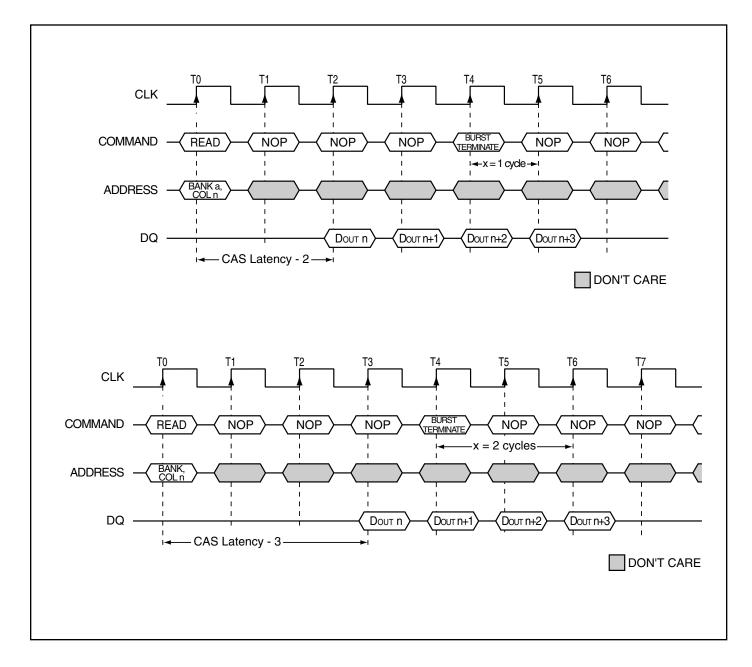
RW1 - READ to WRITE



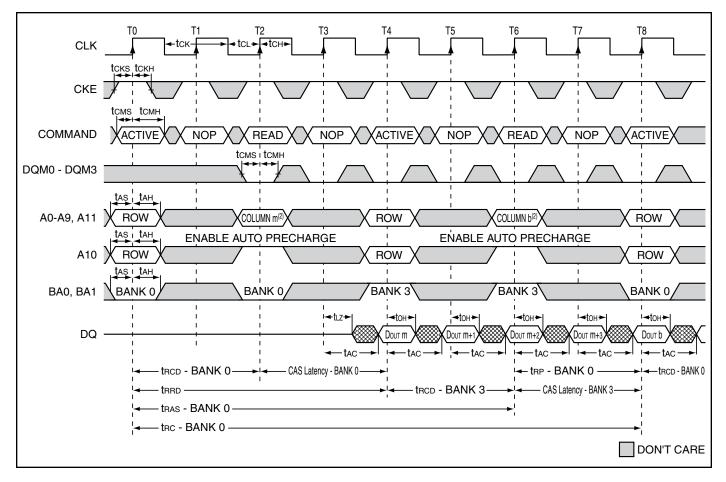
RW2 - READ to WRITE



CONSECUTIVE READ BURSTS

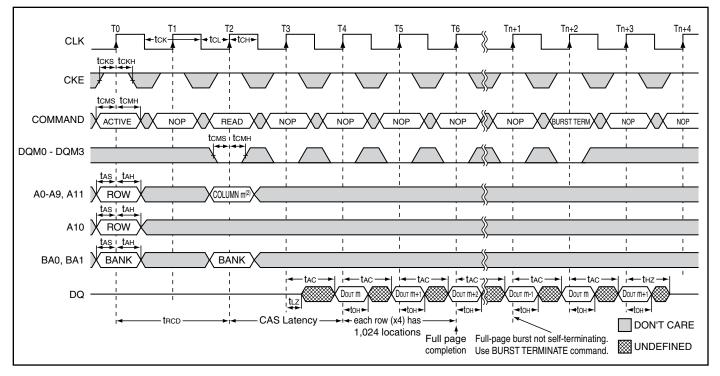


RANDOM READ ACCESSES



READ BURST TERMINATION

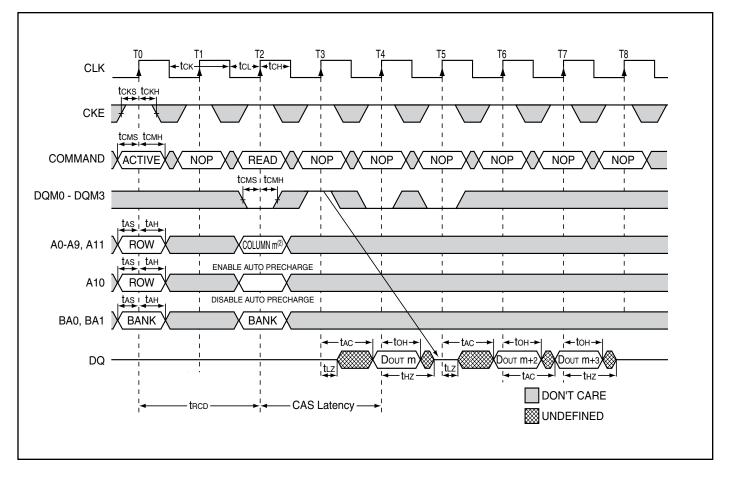
ALTERNATING BANK READ ACCESSES



Notes:

1) <u>CAS</u> latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"

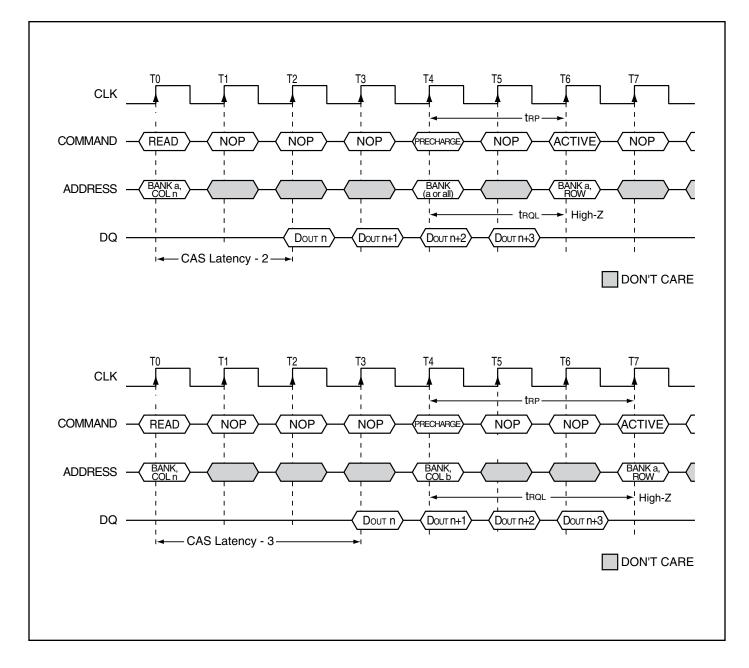
READ - FULL-PAGE BURST



Notes:

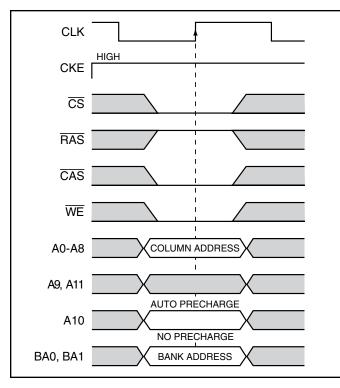
- 1) \overline{CAS} latency = 2, Burst Length = Full Page
- 2) x32: A9, A11 = "Don't Care"

READ - DQM OPERATION



Notes:

1) CAS latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"


READ to PRECHARGE

WRITES

WRITE bursts are initiated with a WRITE command, as shown in WRITE Command diagram.

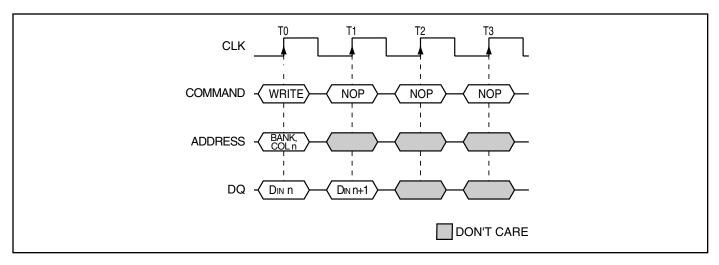
WRITE COMMAND

The starting column and bank addresses are provided with the WRITE command, and auto precharge is either enabled or disabled for that access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic WRITE commands used in the following illustrations, auto precharge is disabled.

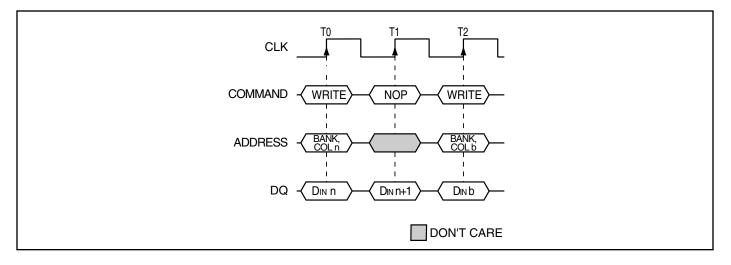
During WRITE bursts, the first valid data-in element will be registered coincident with the WRITE command. Subsequent data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no other commands have been initiated, the DQs will remain High-Z and any additional input data will be ignored (see WRITE Burst). A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.)

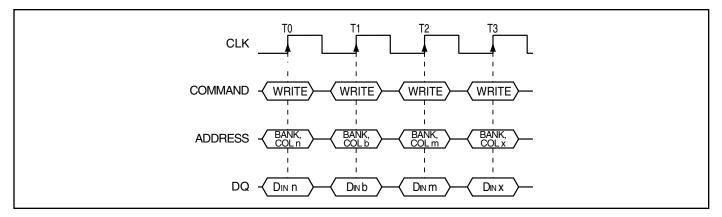
Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a fixed-length WRITE burst may be immediately followed by data for a WRITE command. The new WRITE command can be issued on any clock following the previous WRITE command, and the data provided coincident with the new command applies to the new command. An example is shown in WRITE to WRITE diagram. Data *n* + 1 is either the last of a burst of two or the last desired of a longer burst. The SDRAM uses a pipelined architecture and therefore does not require the *2n* rule associated with a prefetch architecture. AWRITE command can be initiated on any clock cycle following a previous WRITE command. Full-speed random write accesses within a page can be performed to the same bank, as shown in Random WRITE Cycles, or each subsequent WRITE may be performed to a different bank.

Data for any WRITE burst may be truncated with a subsequent READ command, and data for a fixed-length WRITE burst may be immediately followed by a subsequent READ command. Once the READ com mand is registered, the data inputs will be ignored, and WRITEs will not be executed. An example is shown in WRITE to READ. Data n + 1 is either the last of a burst of two or the last desired of a longer burst.


Data for a fixed-length WRITE burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page WRITE burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued tDPL after the clock edge at which the last desired input data element is registered. The auto precharge mode requires a tDPL of at least one clock plus time, regardless of frequency. In addition, when truncating a WRITE burst, the DQM signal must be used to mask input data for the clock edge prior to, and the clock edge coincident with, the PRECHARGE command. An example is shown in the WRITE to PRE-CHARGE diagram. Data n+1 is either the last of a burst of two or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met.

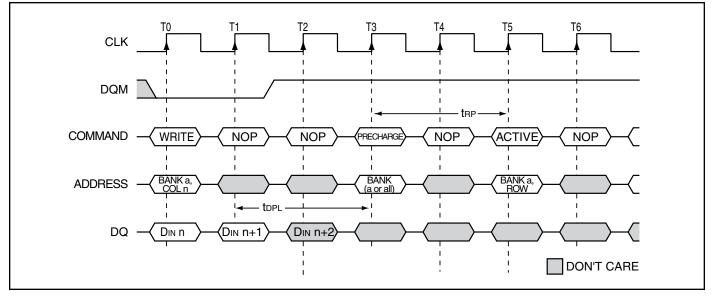
In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRECHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts.


Fixed-length or full-page WRITE bursts can be truncated with the BURST TERMINATE command. When truncating a WRITE burst, the input data applied coincident with the BURST TERMINATE command will be ignored. The last data written (provided that DQM is LOW at that time) will be the input data applied one clock previous to the BURST TERMINATE command. This is shown in WRITE Burst Termination, where data *n* is the last desired data element of a longer burst.

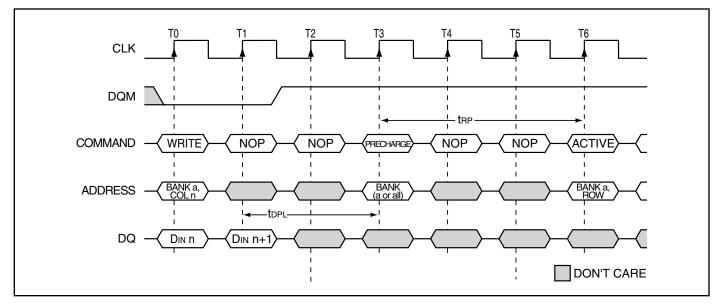

WRITE BURST

WRITE TO WRITE

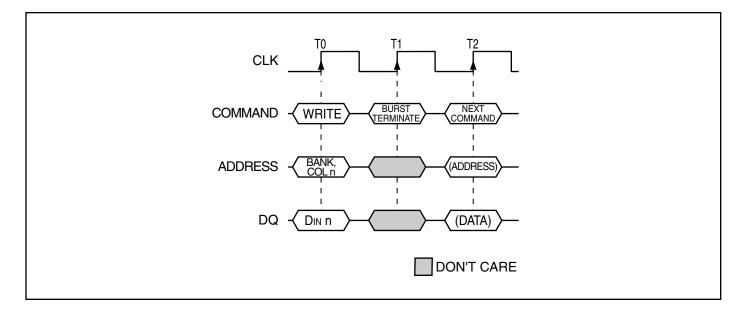
RANDOM WRITE CYCLES



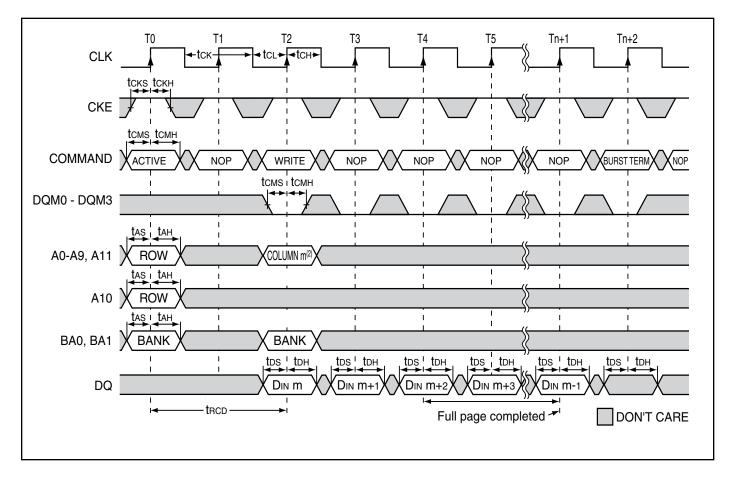
WRITE to READ



WP1 - WRITE to PRECHARGE

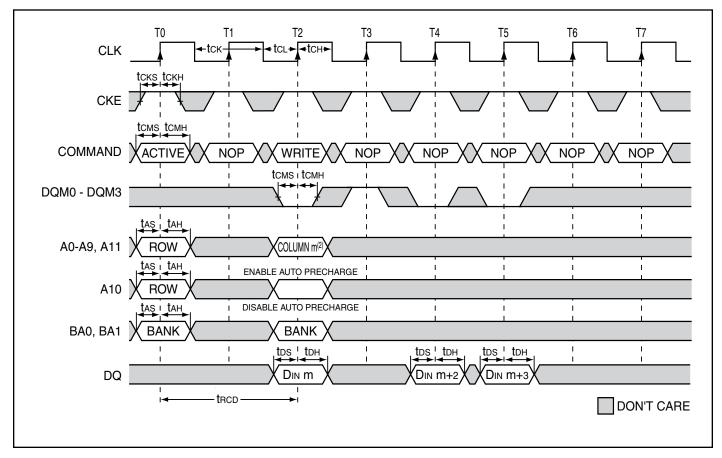


WP2 - WRITE to PRECHARGE



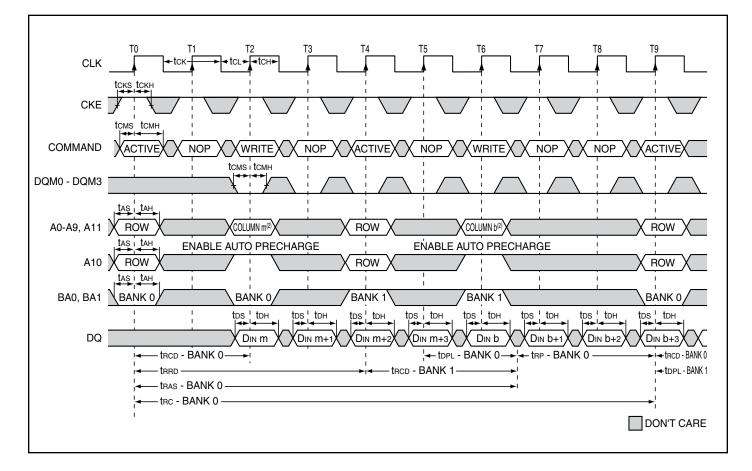
WRITE Burst Termination

WRITE - FULL PAGE BURST


Notes:

1) Burst Length = Full Page

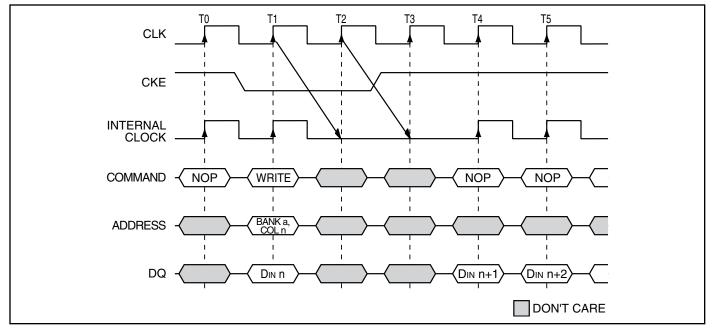
2) x32: A9, A11 = "Don't Care"

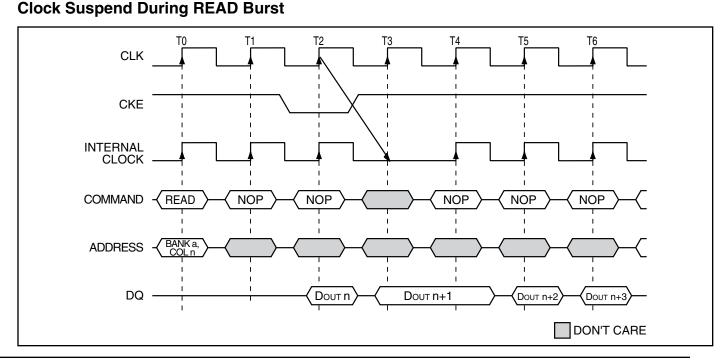

WRITE - DQM OPERATION

- 1) Burst Length = 4
- 2) x32: A9, A11 = "Don't Care"

ALTERNATING BANK WRITE ACCESSES

- 1) Burst Length = 4
- 2) x32: A9, A11 = "Don't Care"

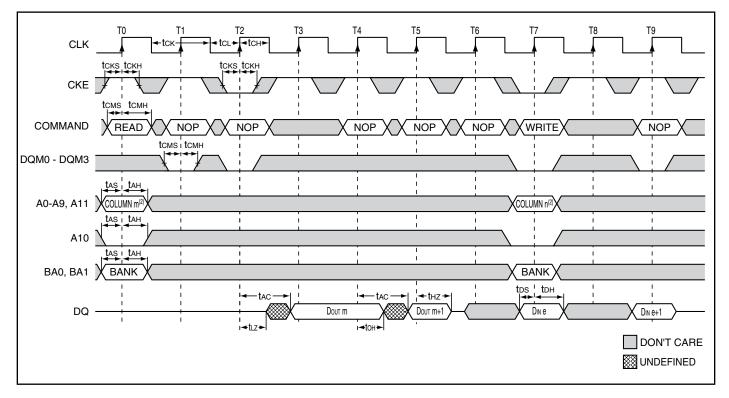

CLOCK SUSPEND


Clock suspend mode occurs when a column access/burst is in progress and CKE is registered LOW. In the clock suspend mode, the internal clock is deactivated, "freezing" the synchronous logic.

For each positive clock edge on which CKE is sampled LOW, the next internal positive clock edge is suspended. Any command or data present on the input pins at the time

of a suspended internal clock edge is ignored; any data present on the DQ pins remains driven; and burst counters are not incremented, as long as the clock is suspended. (See following examples.)

Clock suspend mode is exited by registering CKE HIGH; the internal clock and related operation will resume on the subsequent positive clock edge.



Clock Suspend During WRITE Burst

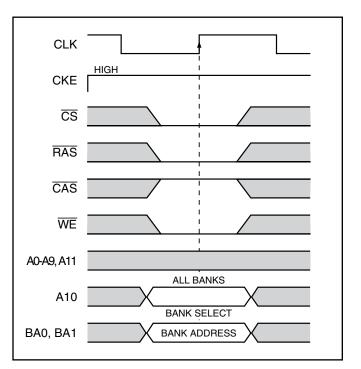
CLOCK SUSPEND MODE

Notes:

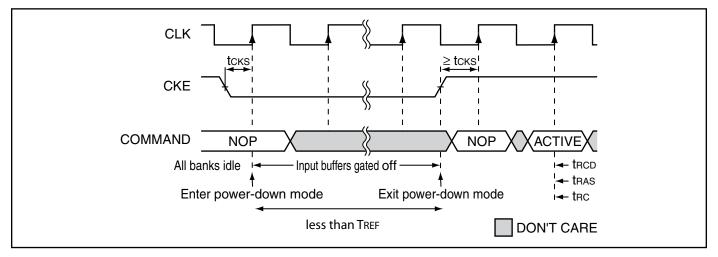
1) \overline{CAS} latency = 3, Burst Length = 2, Auto Precharge is disabled.

2) x32: A9, A11 = "Don't Care"

PRECHARGE

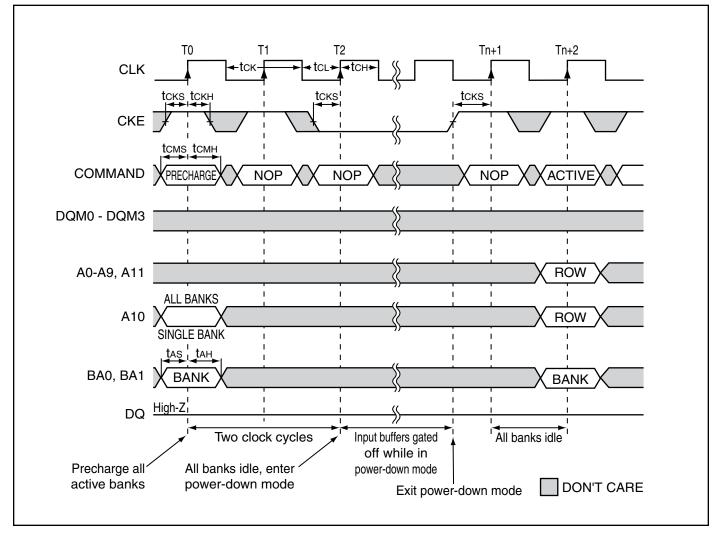

The PRECHARGE command (see figure) is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access some specified time (tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. When all banks are to be precharged, inputs BA0, BA1 are treated as "Don't Care." Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

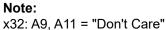
POWER-DOWN


Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND INHIBIT when no accesses are in progress. If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in either bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CKE, for maximum power savings while in standby. The device may not remain in the power-down state longer than the refresh period (64ms) since no refresh operations are performed in this mode.

The power-down state is exited by registering a NOP or COMMAND INHIBIT and CKE HIGH at the desired clock edge (meeting tcks). See figure below (Power-Down).

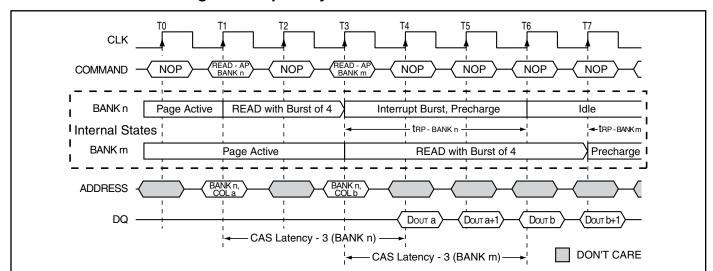
PRECHARGE Command




POWER-DOWN

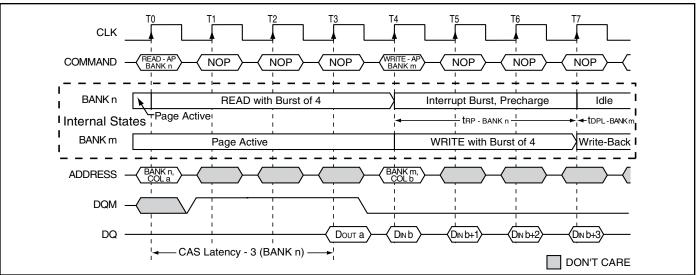
POWER-DOWN MODE CYCLE

BURST READ/SINGLE WRITE


The burst read/single write mode is entered by programming the write burst mode bit (M9) in the mode register to a logic 1. In this mode, all WRITE commands result in the access of a single column location (burst of one), regardless of the programmed burst length. READ commands access columns according to the programmed burst length and sequence, just as in the normal mode of operation (M9 = 0).

CONCURRENT AUTO PRECHARGE

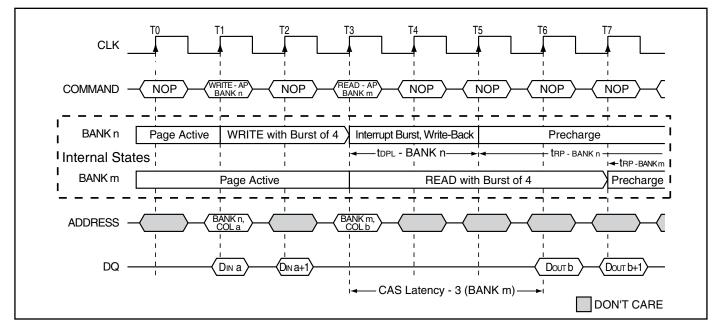
An access command (READ or WRITE) to another bank while an access command with auto precharge enabled is executing is not allowed by SDRAMs, unless the SDRAM supports CONCURRENT AUTO PRECHARGE. *ISSI* SDRAMs support CONCURRENT AUTO PRECHARGE. Four cases where CONCURRENT AUTO PRECHARGE occurs are defined below.

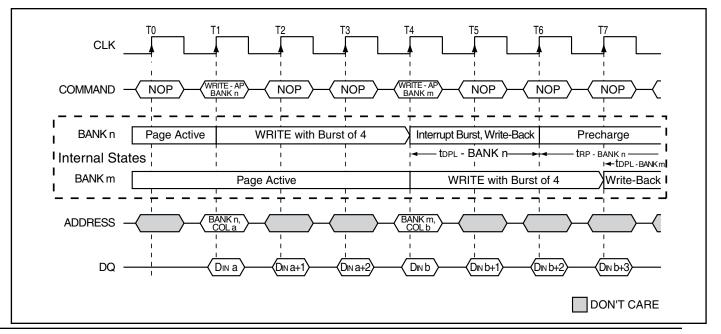

READ with Auto Precharge

- 1. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is registered.
- 2. Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be used three clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered.

READ With Auto Precharge interrupted by a READ

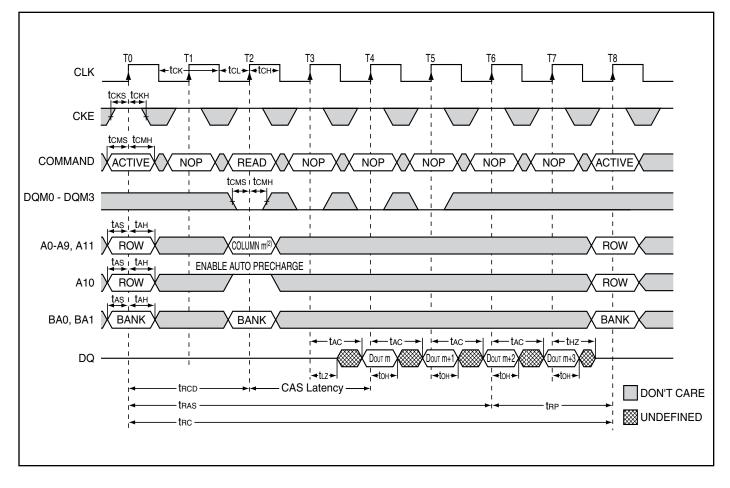
READ With Auto Precharge interrupted by a WRITE




WRITE with Auto Precharge

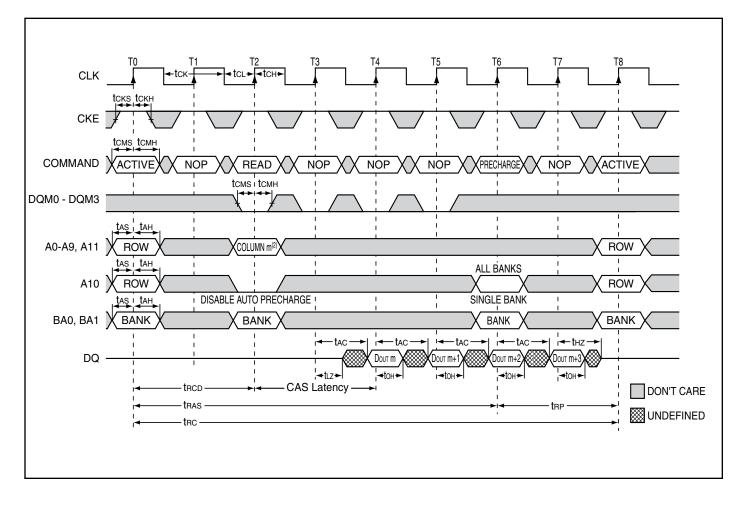
- 3. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out appearing (CAS latency) later. The PRECHARGE to bank n will begin after topL is met, where topL begins when the READ to bank m is registered. The last valid WRITE to bank n will be datain registered one clock prior to the READ to bank m.
- 4. Interrupted by a WRITE (with or without auto precharge): AWRITE to bank m will interrupt a WRITE on bank n when registered. The PRECHARGE to bank n will begin after tDPL is met, where tDPL begins when the WRITE to bank m is registered. The last valid data WRITE to bank n will be data registered one clock prior to a WRITE to bank m.

WRITE With Auto Precharge interrupted by a READ



WRITE With Auto Precharge interrupted by a WRITE

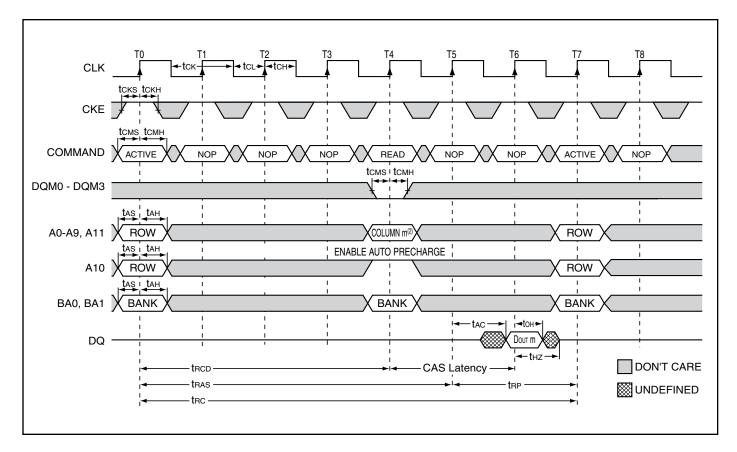
READ WITH AUTO PRECHARGE



Notes:

1) <u>CAS</u> latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"

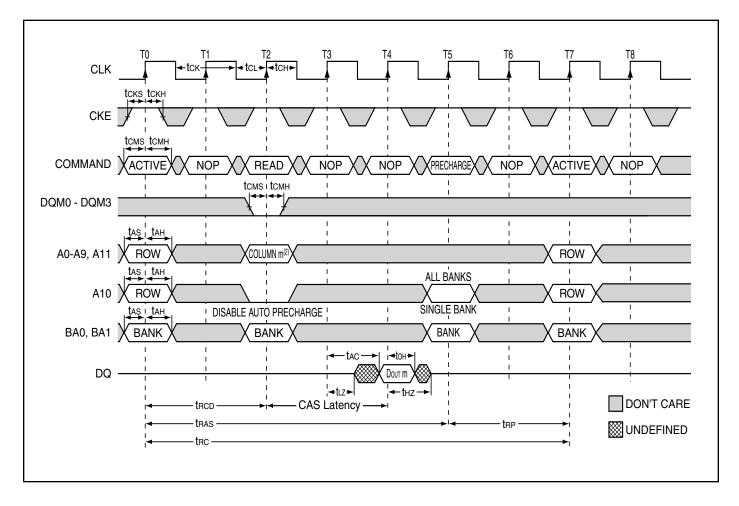
READ WITHOUT AUTO PRECHARGE



Notes:

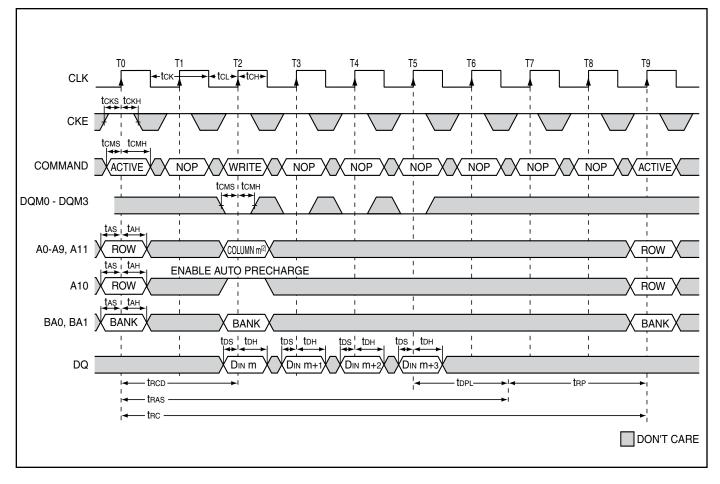
1) <u>CAS</u> latency = 2, Burst Length = 4 2) x32: A9, A11 = "Don't Care"

SINGLE READ WITH AUTO PRECHARGE


Notes:

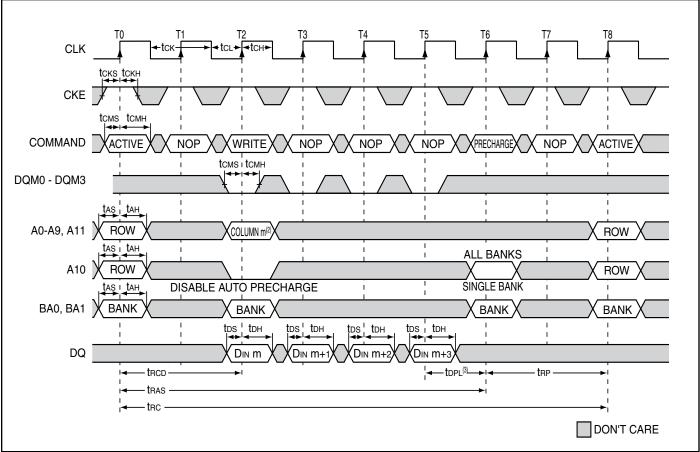
1) \overline{CAS} latency = 2, Burst Length = 1

2) x32: A9, A11 = "Don't Care"


SINGLE READ WITHOUT AUTO PRECHARGE

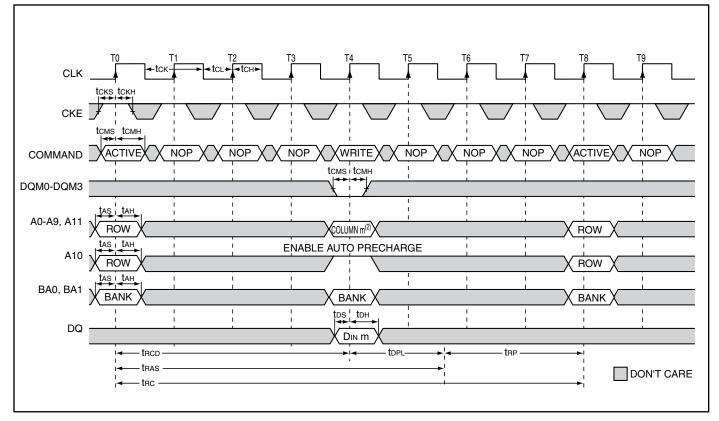
- 1) \overline{CAS} latency = 2, Burst Length = 1
- 2) x32: A9, A11 = "Don't Care"

WRITE - WITH AUTO PRECHARGE

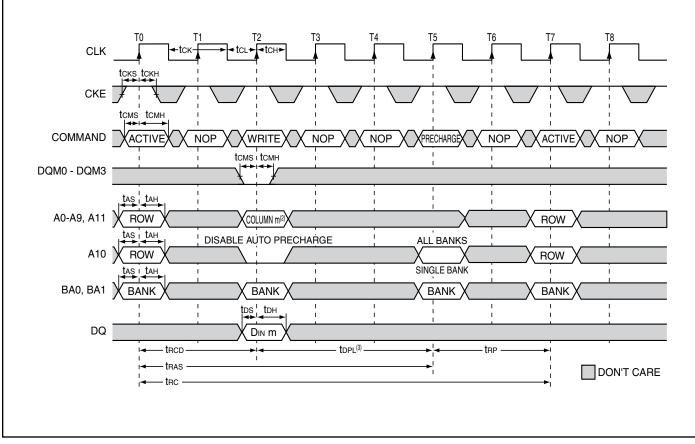


Notes:

1) Burst Length = 4 2) x32: A9, A11 = "Don't Care"


WRITE - WITHOUT AUTO PRECHARGE

- 1) Burst Length = 4
- 2) x32: A9, A11 = "Don't Care"
- 3) tRAS must not be violated.


SINGLE WRITE WITH AUTO PRECHARGE

- 1) Burst Length = 1
- 2) x32: A9, A11 = "Don't Care"

SINGLE WRITE - WITHOUT AUTO PRECHARGE

- 1) Burst Length = 1
- 2) x32: A9, A11 = "Don't Care"
- 3) tRAS must not be violated.

ORDERING INFORMATION - VDD = 3.3V

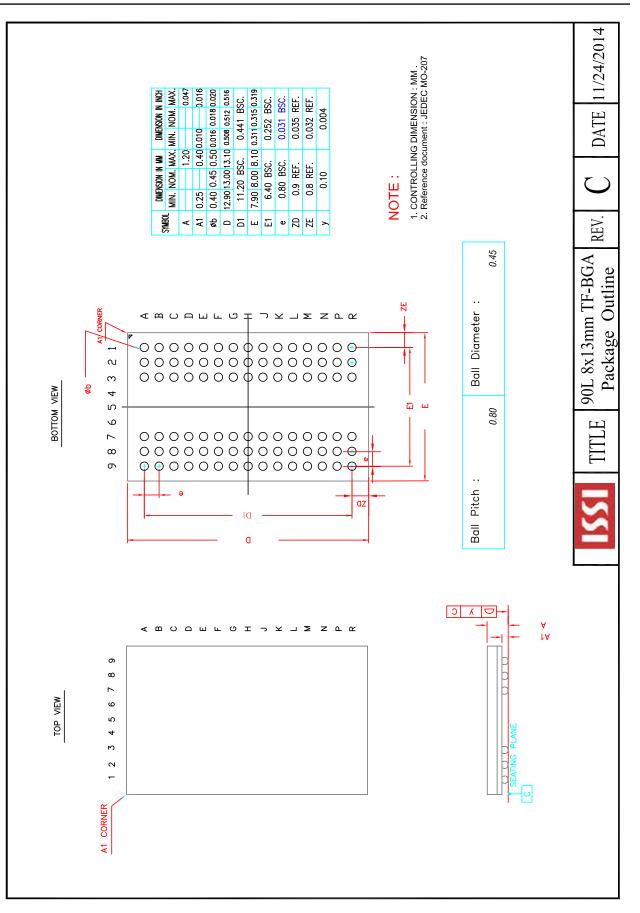
Commercial Range: 0°C to +70°C

Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS42S32800J-6TL	86-Pin, TSOP-II, Lead-free
166 MHz	6	IS42S32800J-6BL	90-Ball TF-BGA, Lead-free
143 MHz	7	IS42S32800J-7TL	86-Pin, TSOP-II, Lead-free
143 MHz	7	IS42S32800J-7BL	90-Ball TF-BGA, Lead-free

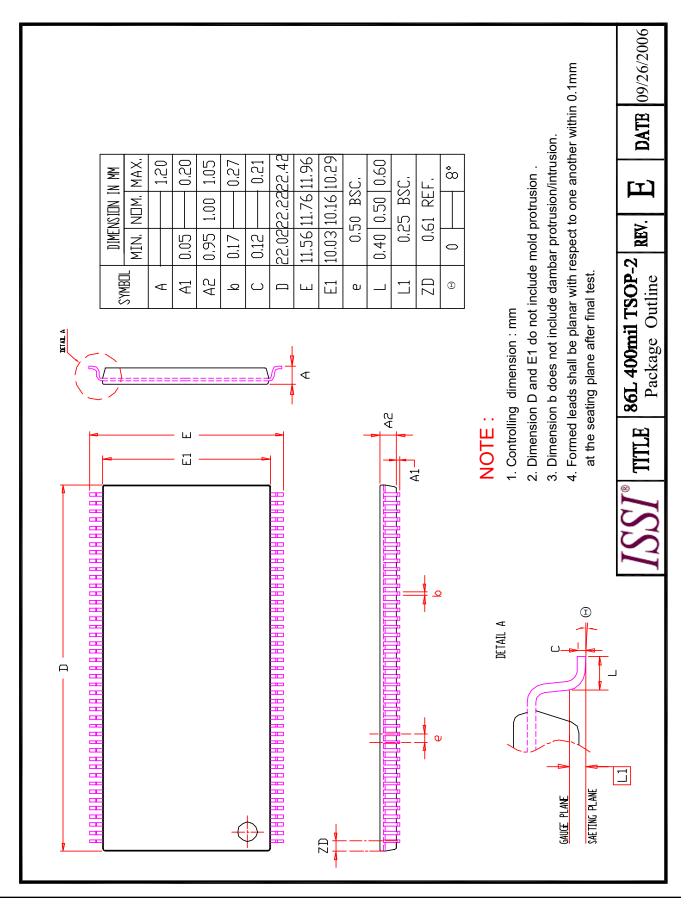
Industrial Range: -40°C to +85°C

Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS42S32800J-6TLI	86-Pin, TSOP-II, Lead-free
166 MHz	6	IS42S32800J-6BI	90-Ball TF-BGA
166 MHz	6	IS42S32800J-6BLI	90-Ball TF-BGA, Lead-free
143 MHz	7	IS42S32800J-7TLI	86-Pin, TSOP-II, Lead-free
143 MHz	7	IS42S32800J-7BI	90-Ball TF-BGA
143 MHz	7	IS42S32800J-7BLI	90-Ball TF-BGA, Lead-free
133 MHz	7.5	IS42S32800J-75ETLI	86-Pin, TSOP-II, Lead-free
133 MHz	7.5	IS42S32800J-75EBLI	90-Ball TF-BGA, Lead-free

Automotive Range: -40°C to +85°C


Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS45S32800J-6TLA1	86-Pin, TSOP-II, Lead-free
166 MHz	6	IS45S32800J-6BLA1	90-Ball TF-BGA, Lead-free
143 MHz	7	IS45S32800J-7TLA1	86-Pin, TSOP-II, Lead-free
143 MHz	7	IS45S32800J-7BLA1	90-Ball TF-BGA, Lead-free

Automotive Range: -40°C to +105°C


Frequency	Speed (ns)	Order Part No.	Package
143 MHz	7	IS45S32800J-7TLA2	86-Pin, TSOP-II, Lead-free
143 MHz	7	IS45S32800J-7BLA2	90-Ball TF-BGA, Lead-free

*Contact ISSI for leaded part support.

