MOSFET – Power, Complementary ChipFET 20 V, +3.9 A / -3.0 A

Features

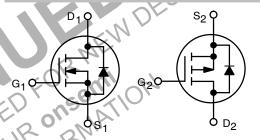
- Complementary N-Channel and P-Channel MOSFET
- Small Size, 40% Smaller than TSOP-6 Package
- Leadless SMD Package Featuring Complementary Pair
- ChipFET Package Provides Great Thermal Characteristics Similar to Larger Packages
- Low R_{DS(on)} in a ChipFET Package for High Efficiency Performance
- Low Profile (< 1.10 mm) Allows Placement in Extremely Thin Environments Such as Portable Electronics
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load Switch Applications Requiring Level Shift
- DC-DC Conversion Circuits
- Drive Small Brushless DC Motors
- Designed for Power Management Applications in Portable, Battery Powered Products

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

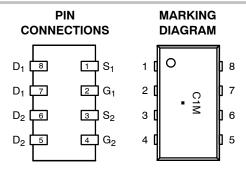
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	20	V
Gate-to-Source Voltage		7/0	V _{GS}	±12	V
Continuous Drain Current (Note 1)	N-Ch Steady	T _A = 25°C	l _D	2.9	Α
	State	T _A = 85°C	CEN	2.1	
	t ≤ 5	$T_A = 25^{\circ}C$	5	3.9	
OF	P-Ch Steady	$T_A = 25^{\circ}C$	I _D	-2.2	Α
W/S.	State	T _A = 85°C		-1.6	
11.	t ≤ 5	T _A = 25°C		-3.0	
Pulsed Drain Current	N-Ch	t = 10 μs	I _{DM}	12	Α
(Note 1)	P-Ch	t = 10 μs]	-9.0	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.1	W
	t ≤ 5	T _A = 25°C		2.1	
Operating Junction and Statement Temperature	T _J , T _{STG}	-55 to 150	°C		
Lead Temperature for Solo (1/8" from case for 10 sec	TL	260	°C		


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
N-Channel	60 mΩ @ 4.5 V	3.9 A
20 V	80 mΩ @ 2.5 V	3.9 A
P-Channel	130 mΩ @ -4.5 V	3.0 A
–20 V	200 mΩ @ -2.5 V	G -3.0 A



N-Channel MOSFET

P-Channel MOSFET

ChipFET CASE 1206A STYLE 2

C1 = Specific Device Code

M = Month Code

= Pb–Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTHC5513T1G	ChipFET (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit		
Junction-to-Ambient (Note 1)	T 25°C	$R_{ hetaJA}$	110	°C/W	
	t ≤ 5	T _A = 25°C		60	

^{2.} Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions Min			Тур	Max	Unit
OFF CHARACTERISTICS (Note 3)	•	•			•	•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N		I _D = 250 μA	20			V
		Р	V _{GS} = 0 V	I _D = -250 μA	-20			
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} =	16 V			1.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} =	-16 V			-1.0	1
		N	V _{GS} = 0 V, V _{DS} = 16 V	, T _J = 85 °C		-1(5	1
		Р	$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$	/, T _J = 85 °C	,	(5)	-5	1
Gate-to-Source Leakage Current	I _{GSS}		$V_{DS} = 0 \text{ V}, V_{GS} =$	= ±12 V	V D		±100	nA
ON CHARACTERISTICS (Note 3)					1.			
Gate Threshold Voltage	V _{GS(TH)}	N	AV W	I _D = 250 μA	0.6		1.2	V
		Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.6	7	-1.2	
Drain-to-Source On Resistance	R _{DS} (on)	N	$V_{GS} = 4.5 V , I_{D} =$	= 2.9 A	10.	0.058	0.080	
		Р	$V_{GS} = -4.5 \text{ V}, I_{D} =$	= -2.2 A		0.130	0.155	Ω
		N	V _{GS} = 2.5 V , I _D = 2.3 A		0.077	0.115	52	
		P	$V_{GS} = -2.5 \text{ V}, I_D = -1.7 \text{ A}$		0.200	0.240		
Forward Transconductance	9FS	N	V _{DS} = 10 V, I _D = 2.9A		6.0		S	
	1	P	$V_{DS} = -10 \text{ V}, I_{D} =$	-2.2 A		6.0		
CHARGES AND CAPACITANCES		C_{\cdot}						
Input Capacitance	C _{ISS}	N		V _{DS} = 10 V		180		pF
	CAS	Р		V _{DS} = -10 V		185		
Output Capacitance	C _{OSS}	N	f = 1 MHz, V _{GS} = 0 V	V _{DS} = 10 V		80		
DE"	DRE	Р	1 = 1 Wil 12, VGS = 0 V	V _{DS} = -10 V		95		
Reverse Transfer Capacitance	C _{RSS}	N		V _{DS} = 10 V		25		
		Р		V _{DS} = -10 V		30		
Total Gate Charge	$Q_{G(TOT)}$	N	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 2.9 A		2.6	4.0	nC	
		Р	V _{GS} = -4.5 V, V _{DS} = -10 V, I _D = -2.2 A		3.0	6.0		
Gate-to-Source Gate Charge	Q_{GS}	N	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 2.9 A			0.6		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V, I_D = -2.2 A$		0.5		
Gate-to-Drain "Miller" Charge	Q_{GD}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}$	V, I _D = 2.9 A		0.7		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V_{1D} = -2.2 \text{ A}$		0.9		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 250 μs, Duty Cycle ≤ 2%.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions			Тур	Max	Unit
SWITCHING CHARACTERISTICS (No	ote 4)							
Turn-On Delay Time	t _{d(ON)}					5.0	10	ns
Rise Time	t _r	N	V _{DD} = 16 V, V _{GS} = 4.5 V, I _D = 2.9 A,			9.0	18	
Turn-Off Delay Time	t _{d(OFF)}		$R_G = 2.5 \Omega$			10	20	
Fall Time	t _f					3.0	6.0	
Turn-On Delay Time	t _{d(ON)}					7.0	12	
Rise Time	t _r	P	V_{DD} = -16 V, V_{GS} = -4.5 V, I_{D} = -2.2 A, R_{G} = 2.5 Ω			13	25	
Turn-Off Delay Time	t _{d(OFF)}] [33	50	1
Fall Time	t _f	1				27	40	1
DRAIN-SOURCE DIODE CHARACTE	RISTICS							
Forward Diode Voltage (Note 5)	V_{SD}	N	V 0V	I _S = 2.6 A		0.8	1.15	V
		Р	V _{GS} = 0 V	I _S = −2.1 A		-0.8	-1.15	
Reverse Recovery Time (Note 4)	t _{RR}	N		l _S = 1.5 A		12.5		ns
		Р		$I_S = -1.5 \text{ A}$	11	32		
Charge Time	t _a	N		I _S = 1.5 A	•	9.0		1
		Р	$V_{GS} = 0 V$	I _S = -1.5 A	,	10		1
Discharge Time	t _b	N	$V_{GS} = 0 \text{ V},$ $dI_S / dt = 100 \text{ A/}\mu\text{s}$	I _S = 1.5 A	70,	3.5		1
		P	ED	I _S = -1.5 A		22		1
Reverse Recovery Charge	Q _{RR}	N	NUIR	I _S = 1.5 A		6.0		nC
							i	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Switching characteristics are independent of operating junction temperatures.

5. Pulse Test: Pulse Width ≤ 250 μs, Duty Cycle ≤ 2%.

TYPICAL N-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

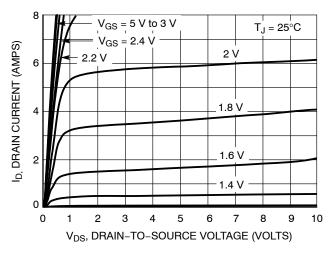
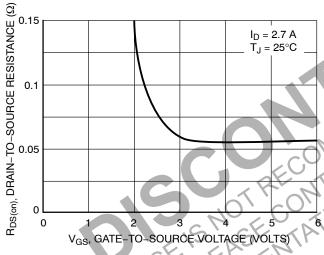



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

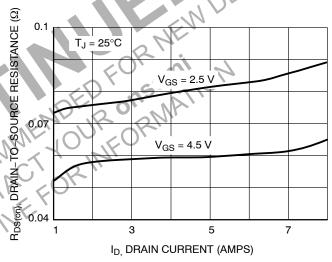
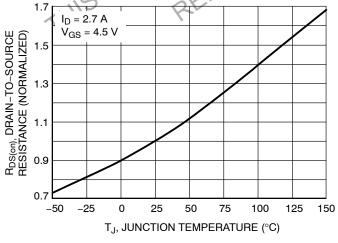



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

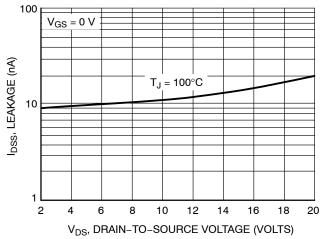
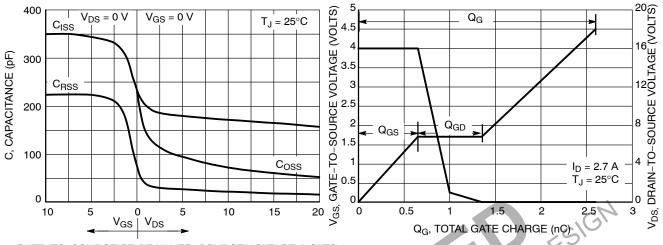



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL N-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

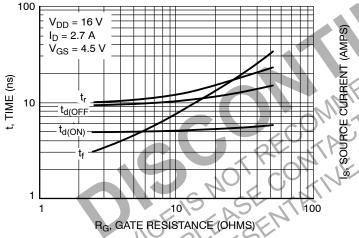


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

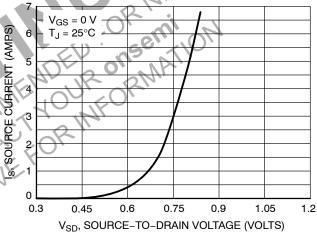


Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

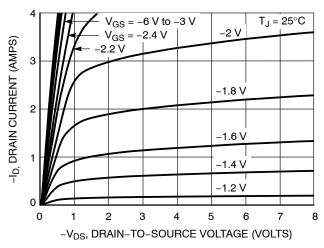


Figure 11. On-Region Characteristics

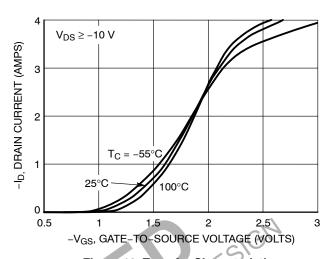


Figure 12. Transfer Characteristics

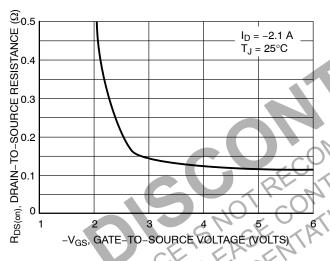


Figure 13. On-Resistance vs. Gate-to-Source Voltage

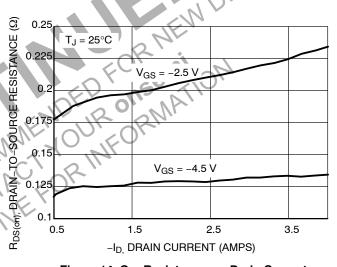


Figure 14. On-Resistance vs. Drain Current and Gate Voltage

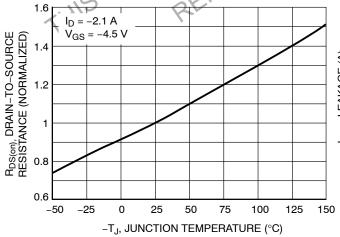


Figure 15. On-Resistance Variation with Temperature

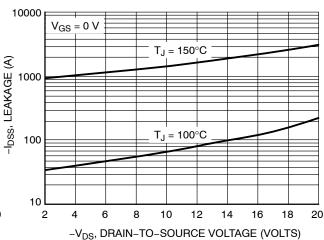
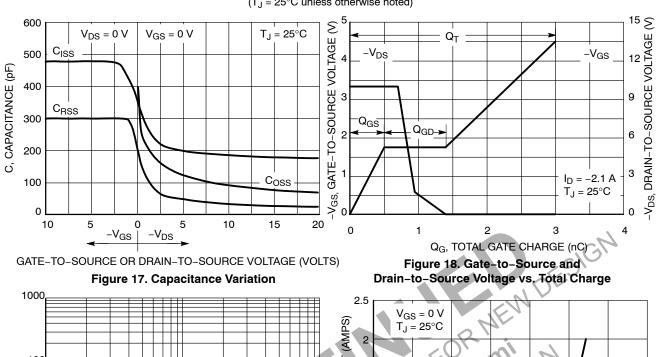



Figure 16. Drain-to-Source Leakage Current vs. Voltage

TYPICAL P-CHANNEL PERFORMANCE CURVES

(T_{.1} = 25°C unless otherwise noted)

100 t, TIME (ns) 10 V_{DD} = -16 V t_{d(ON)} + + + $I_{D} = -2.1 \text{ A}$ R_G, GATE RESISTANCE (OHMS)

Figure 19. Resistive Switching Time Variation vs. Gate Resistance

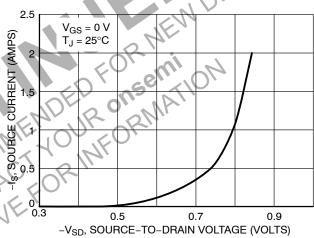


Figure 20. Diode Forward Voltage vs. Current

TYPICAL PERFORMANCE CURVES

(T_J = 25°C unless otherwise noted)

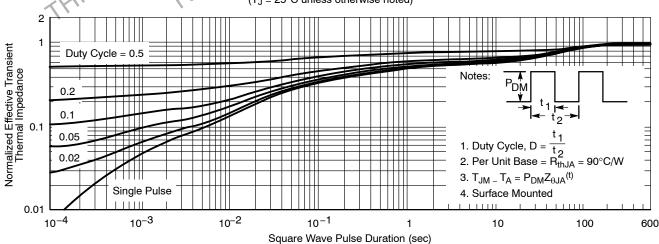


Figure 21. Thermal Response

SOLDERING FOOTPRINT*

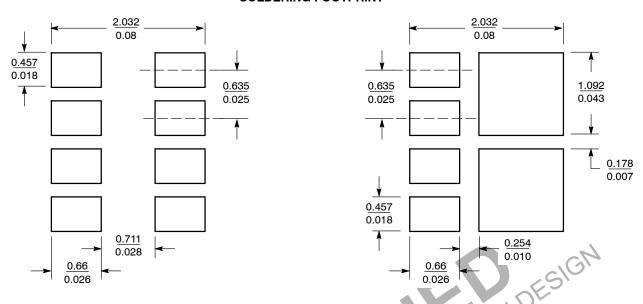
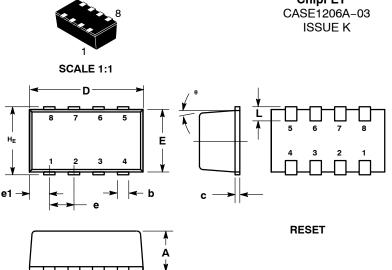


Figure 22. Basic

Figure 23. Style 2

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Ronsemi


BASIC PAD PATTERNS

The basic pad layout with dimensions is shown in Figure 22. This is sufficient for low power dissipation MOSFET applications, but power semiconductor performance requires a greater copper pad area, particularly for the drain leads.

The minimum recommended pad pattern shown in Figure 23 improves the thermal area of the drain THIS DEVICE PLES connections (pins 5, 6, 7, 8) while remaining within the

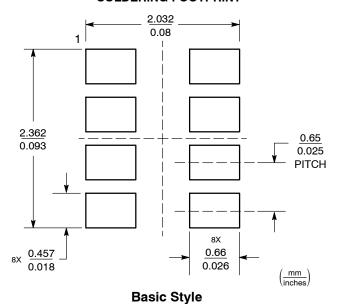
confines of the basic footprint. The drain copper area is 0.0019 sq. in. (or 1.22 sq. mm). This will assist the power dissipation path away from the device (through the copper lead-frame) and into the board and exterior chassis (if applicable) for the single device. The addition of a further copper area and/or the addition of vias to other board layers will enhance the performance still further.

ChipFET™

DATE 19 MAY 2009

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL
- AND VERTICAL SHALL NOT EXCEED 0.08 MM.


 5. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.

	M	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е		0.65 BSC			0.025 BSC)
e1		0.55 BSC			0.022 BSC	
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ	5° NOM				5° NOM	

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. DRAIN	PIN 1. SOURCE 1	PIN 1. ANODE	PIN 1. COLLECTOR	PIN 1. ANODE	PIN 1. ANODE
DRAIN	2. GATE 1	2. ANODE	2. COLLECTOR	2. ANODE	2. DRAIN
DRAIN	SOURCE 2	SOURCE	COLLECTOR	DRAIN	3. DRAIN
GATE	4. GATE 2	4. GATE	4. BASE	4. DRAIN	4. GATE
SOURCE	5. DRAIN 2	5. DRAIN	EMITTER	SOURCE	SOURCE
DRAIN	6. DRAIN 2	6. DRAIN	COLLECTOR	GATE	6. DRAIN
DRAIN	7. DRAIN 1	7. CATHODE	COLLECTOR	CATHODE	7. DRAIN
8. DRAIN	8. DRAIN 1	CATHODE	COLLECTOR	CATHODE	CATHODE / DRAIN

0.05 (0.002)

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

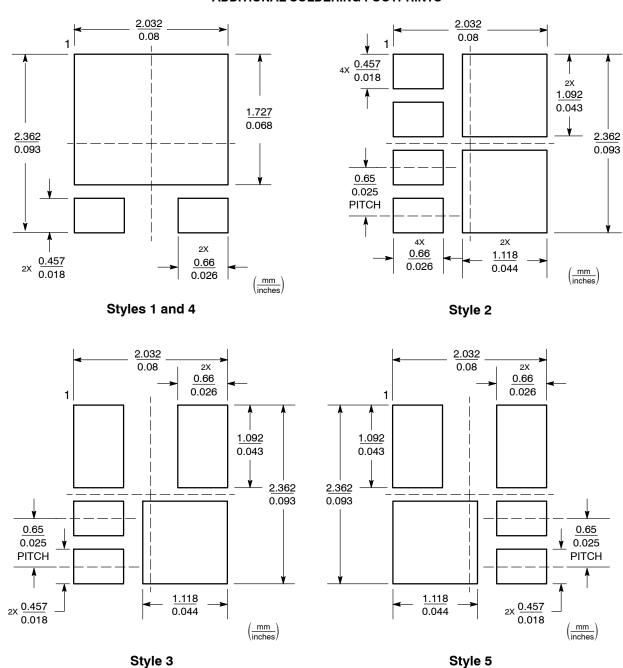
XXX = Specific Device Code

М = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ChipFET		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

