

MOSFET – Power, Single, N-Channel

40 V, 7.7 mΩ, 45 A

NVD5C478NL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_{.I} = 25 °C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		T _C = 25 °C	I _D	45	Α
Current R _{0JC} (Notes 1 & 3)	Steady	T _C = 100 °C		32	
Power Dissipation R _{θJC}	State	T _C = 25 °C	P_{D}	30	W
(Note 1)		T _C = 100 °C		15	
Continuous Drain		T _A = 25 °C	I _D	14	Α
Current R _{0JA} (Notes 1, 2 & 3)	Steady	T _A = 100 °C		9.9	
Power Dissipation R _{θJA}	State	T _A = 25 °C	P _D	3.0	W
(Notes 1 & 2)		T _A = 100 °C		1.5	
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	I _{DM}	220	Α
Operating Junction and S	torage Te	mperature	T _J , T _{stg}	–55 to 175	°C
Source Current (Body Diode)			I _S	25	Α
Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25$ °C, $I_{L(pk)} = 3.4$ A)			E _{AS}	98	mJ
Lead Temperature for Solo (1/8" from case for 10 s)	dering Pu	rposes	TL	260	°C

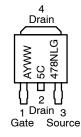
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain) (Note 1)	$R_{\theta JC}$	5.0	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	50	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(on)}	I _D
40 V	7.7 mΩ @ 10 V	45 A
40 V	11.8 mΩ @ 4.5 V	45 A



N-CHANNEL MOSFET

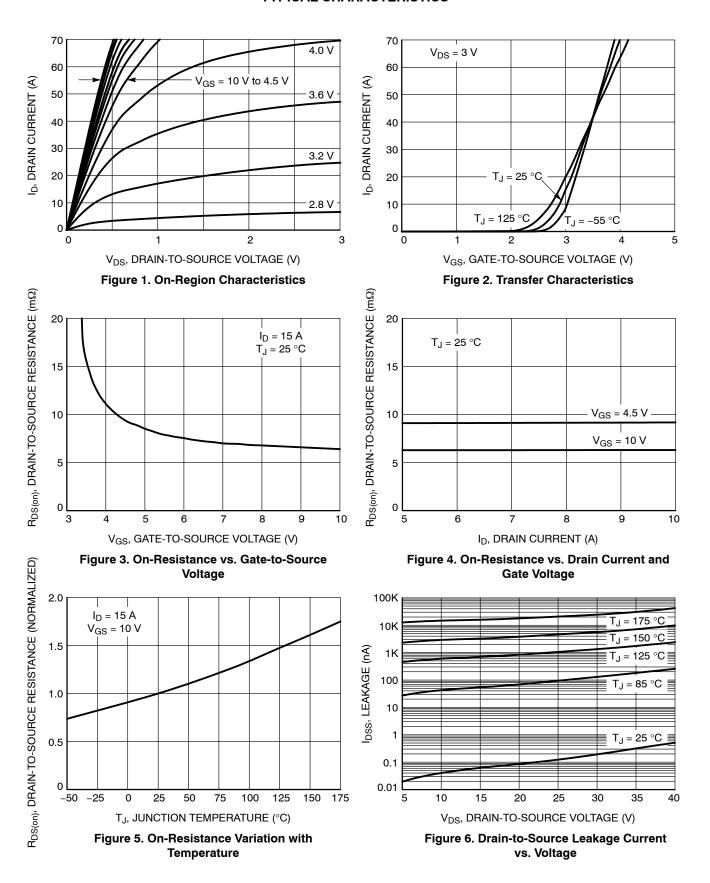
DPAK3 CASE 369C STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENT

A = Assembly Location

Y = Year WW = Work Week 5C478NL = Device Code G = Pb-Free Package

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	-				-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	= 250 μA	40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				19		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V.	T _J = 25 °C			10	μΑ
		$V_{GS} = 0 V$, $V_{DS} = 40 V$	T _J = 125 °C			250	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS (Note 4)					•	•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 30 μΑ	1.2		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _E	₀ = 15 A		9.4	11.8	mΩ
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 15 A			6.4	7.7	mΩ
Forward Transconductance	9FS	$V_{DS} = 3 \text{ V}, I_{D}$	= 15 A		45		S
CHARGES, CAPACITANCES AND GATE RE	SISTANCES		•		•	1	
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 25 \text{ V}$			1100		pF
Output Capacitance	C _{oss}				410		1
Reverse Transfer Capacitance	C _{rss}				25		1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 32 \text{ V},$ $I_D = 15 \text{ A}$			9.5		nC
Total Gate Charge	Q _{G(TOT)}				20		nC
Threshold Gate Charge	Q _{G(TH)}				2.1		1
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 10 \text{ V}, V_{D}$ $I_{D} = 15 \text{ A}$	_S = 32 V, A		3.6		1
Gate-to-Drain Charge	Q_{GD}	. _D = 13.	``		3.3		1
Plateau Voltage	V _{GP}				3.1		V
SWITCHING CHARACTERISTICS (Note 5)					•		•
Turn-On Delay Time	t _{d(on)}				7.0		ns
Rise Time	t _r	V _{GS} = 10 V, V _D	s = 32 V.		16		1
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 A, R_G$			21		1
Fall Time	t _f	1			3.0		
DRAIN-SOURCE DIODE CHARACTERISTICS	S				•		•
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = 15 \text{ A}$ $T_{J} = 25 ^{\circ}\text{C}$ $T_{J} = 125 ^{\circ}\text{C}$			0.88	1.2	V
					0.73		1
Reverse Recovery Time	t _{RR}		1		29		ns
Charge Time	ta	$V_{GS} = 0 \text{ V dIs/dt}$	= 100 A/us		13		1
Discharge Time	tb	$V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 15 \text{ A}$			15		1
Reverse Recovery Charge	Q_{RR}				20		nC
	ı .				1		1

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

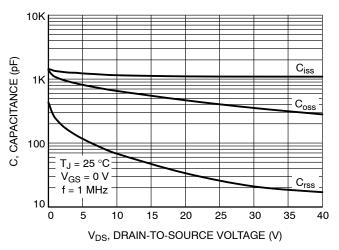


Figure 7. Capacitance Variation

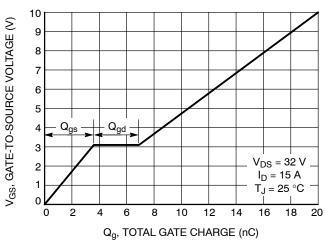


Figure 8. Gate-to-Source Voltage vs. Total Charge

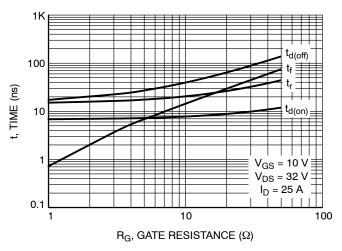


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

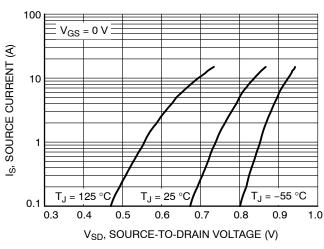


Figure 10. Diode Forward Voltage vs. Current

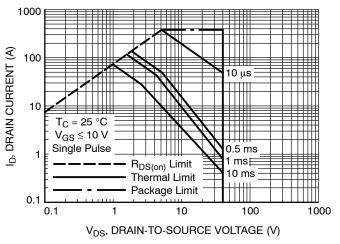


Figure 11. Maximum Rated Forward Biased Safe Operating Area

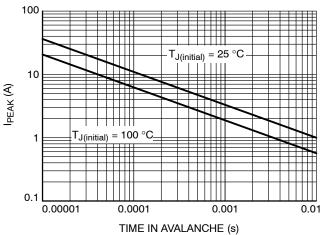


Figure 12. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS

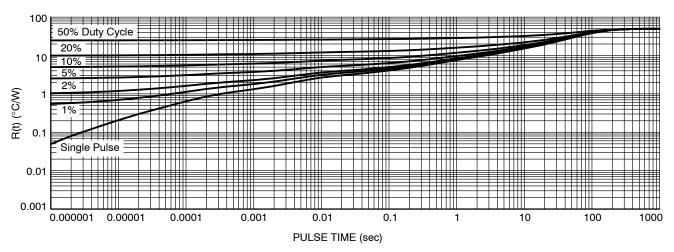


Figure 13. Thermal Response

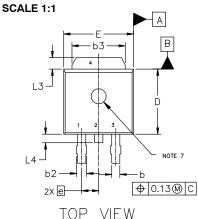
ORDERING INFORMATION

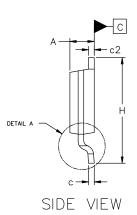
Order Number	Package	Shipping [†]
NVD5C478NLT4G	DPAK3 (Pb-Free)	2500 / Tape & Reel

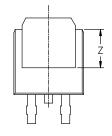
[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

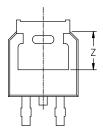
REVISION HISTORY

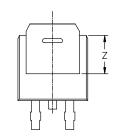
Revision	Description of Changes	Date
1	Document rebranded to onsemi format.	10/6/2025

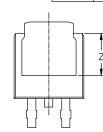

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

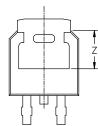


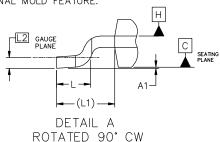

DPAK3 6.10x6.54x2.28, 2.29P CASE 369C **ISSUE J**


DATE 12 AUG 2025






	MILLIMETERS			
DIM	MIN	NOM	MAX	
А	2.18	2.28	2.38	
A1	0.00		0.13	
b	0.63	0.76	0.89	
b2	0.72	0.93	1.14	
b3	4.57	5.02	5.46	
С	0.46	0.54	0.61	
c2	0.46	0.54	0.61	
D	5.97	6.10	6.22	
Е	6.35	6.54	6.73	
е	2.29 BSC			
Н	9.40	9.91	10.41	
L	1.40	1.59	1.78	
L1		2.90 REF	-	
L2	0.51 BSC			
L3	0.89		1.27	
L4			1.01	
Z	3.93			


BOTTOM VIEW

ALTERNATE CONSTRUCTIONS

NOTES:

- DIMENSIONING AND TOLERANCING ASME Y14.5M, 2018.

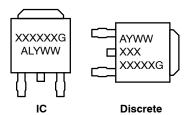
- CONTROLLING DIMENSION: MILLIMETERS.
 THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3, AND Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR
 BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. OPTIONAL MOLD FEATURE.

-5.80

RECOMMENDED MOUNTING FOOTPRINT*

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK3 6.10x6.54x2.28, 2.2	9P	PAGE 1 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DPAK3 6.10x6.54x2.28, 2.29P

CASE 369C ISSUE J

DATE 12 AUG 2025

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE		PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
COLLE	ECTOR	2. DRAIN	2. CATHODE	2. ANODE	2. ANODE
EMITT	ER	SOURCE	ANODE	3. GATE	CATHODE
COLLE	ECTOR	DRAIN	4. CATHODE	4. ANODE	4. ANODE
STYLE 6:	STYLE 7:	: STYL	E 8: STYI	LE 9:	STYLE 10:

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK3 6.10x6.54x2.28, 2.2	DPAK3 6.10x6.54x2.28, 2.29P	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales