PWD5T60

Datasheet

Compact high-voltage three-phase power stage with integrated gate driver

life.augmented

VFQFPM12x12x0.95mm

Features

- Power driver integrating gate driver and high-voltage power MOSFETs:
 - R_{DS(on)} = 1.38 Ω
 - BV_{DSS} = 500 V
- Wide input supply voltage range from 9 V to 20 V
- Integrated zero-drop bootstrap diodes
- Comparator for fast overcurrent protection with Smart ShutDown functionality
- Overtemperature protection
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Matched propagation delay for all channels
- UVLO function on low-side and high-side
- Interlocking and deadtime functions
- Dedicated enable pin
- Very compact and simplified layout

Applications

- 3-phase inverters
- Fans and pumps
- Home and industrial appliances
- Refrigerator compressors

Description

lectronics sales office

The PWD5T60 is a is a three-phase high-density power driver integrating gate driver and six N-channel power MOSFETs. The PWD5T60 is the optimal solution for motor drive applications such as fans, pumps and small appliances.

The integrated power MOSFETs have $R_{DS(on)}$ of 1.38 Ω and 500 V blocking voltage. The high integration of the device allows to efficiently drive loads with reduced footprint, making PWD5T60 the optimal solution for space constrained applications.

The device has dedicated input pins for each output and a shutdown pin. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy interfacing with control devices. Matched delays between low-side and high-side sections guarantee no cycle distortion and allow high-frequency operation.

Robustness is a distinctive factor of PWD5T60. Prevention from cross conduction is ensured by interlocking and deadtime functions and a comparator featuring advanced smart ShutDown function ensures fast and effective protection against overload and overcurrent.

The dedicated UVLO protections on both low-side and high-side prevent the power switches from operating in low efficiency or dangerous conditions, enabling optimal and fail-safe operation.

The zero-drop integrated bootstrap diodes as well as all of the embedded features enable the design of compact and simple PCB layout, and reduce the overall bill of material and application cost. The device is available in a compact VFQFPN 12x12x0.95 mm.

1 Block diagram

2 Pin description and connection diagram

57

Figure 2. PWD5T60 pin connection

Table 1. Pin description

Pin #	Pin Name	Туре	Function
1 HIN3		Logic input	High-side driver logic input 3
2	2 LIN1		Low-side driver logic input 1
3	LIN2	Logic input	Low-side driver logic input 2
4	LIN3	Logic input	Low-side driver logic input 3
5	FAULT	Open-drain output	Fault output
6	CIN	Analog input	Comparator positive input
7	EN	Logic input	Enable input, active high
8	OD	Open-drain output	SmartSD timing open-drain output, unlatch and restart input
9, EPAD5	GND	Power supply	Ground for gate driver IC and low-side gate drive return
10, 11, 30 ⁽¹⁾ , 37, EPAD4	OUT1	Power	Half-bridge 1 output
12, 13	SENSE1	Power	Half-bridge 1 sense (low-side MOSFET source)
14, 15	SENSE2	Power	Half-bridge 2 sense (low-side MOSFET source)
16, 17, 38, EPAD3	OUT2	Power	Half-bridge 2 output
18, 19, EPAD2	OUT3	Power	Half-bridge 3 output
20, 21	SENSE3	Power	Half-bridge 3 sense (low-side MOSFET source)
22-29, EPAD1	Supply	Power supply	High voltage supply (high-side MOSFET drain)
31	BOOT1	Power supply	Bootstrap supply voltage 1
32	BOOT2	Power supply	Bootstrap supply voltage 2
33	BOOT3	Power supply	Bootstrap supply voltage 3
34	VCC	Power supply	Driver low side and logic supply voltage
35	HIN1	Logic input	High-side driver logic input 1
36	HIN2	Logic input	High-side driver logic input 2

1. Internally connected. Use for bootstrap capacitor connection only.

3 Electrical data

3.1 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 2 may cause permanent damage to the device. Exposure to maximum rating conditions for extended periods may affect device reliability. All voltages referred to ground (GND) unless otherwise specified.

Symbol	Parameter	Test Condition	Min	Max	Unit
VCC	Power supply voltage		-0.3	21	V
VCC-SENSEx	VCC to SENSE pin voltage		-0.3	25	V
V _{BOx}	BOOT to OUT pin		-0.3	21	V
BV _{DSS}	MOSFETs blocking Voltage	T _J = 25°C		500	V
		DC @T _{CB} = 25 °C ⁽¹⁾		3.5	А
Ι _D	Drain current (per MOSFET)	DC @T _{CB} = 100 °C ⁽¹⁾ ⁽²⁾		2	А
		Pulse @T _{CB} = 25 °C $^{(1)}$ (2) $^{(3)}$		14	A
SR _{OUT}	Full bridge outputs slew rate (10% - 90%)	(2)		40	V/ns
V _{OUTx}	Output voltage		V _{BOOTx} - 21	500	V
V _{BOOTx}	Bootstrap voltage		-0.3	520	V
V _{CIN}	Comparator input voltage		-0.3	20	V
Vi	Logic input voltage (4)		- 0.3	15	V
V _{OD}	Open-drain voltage (OD, FAULT)		-0.3	21	V
V _{FAULT}	FAULT pin voltage		- 0.3	21	V
V _{ISO}	Isolation Voltage (1 min) ⁽²⁾			2500	V _{RMS}
TJ	Junction temperature		-40	125	°C
T _{stg}	Storage temperature		-50	150	°C
P _{TOT}	Total power dissipation ⁽⁵⁾	$T_{amb} = 25^{\circ}C$ JEDEC board ⁽⁶⁾ ⁽⁷⁾		5.2	W
ESD	Human Body Model		2 (8)		kV

Table 2. Absolute maximum ratings

1. T_{CB} is the temperature of the case-bottom pad.

2. Not tested in production.

3. The value specified by the pulse duration limited by maximum junction temperature.

4. EN, LINx and HINx pins.

5. Value calculated basing on thermal resistance, power uniformity distributed over the six power MOSFETs, still air.

- 6. The device mounted on a FR4 2s2p board as JESD51-5/7.
- 7. Actual applicative board max. dissipation could be higher or lower depending on the layout and cooling techniques.
- 8. Pins 12, 13, 14, 15, 20 and 21 have HBM ESD value \pm 1.75 kV

3.2 Recommended operating conditions

All voltages referred to ground (GND) unless otherwise specified.

Symbol	Parameter	Min	Max	Unit
VCC	Power supply voltage	9	20	V
V _{BO} ⁽¹⁾	Floating supply voltage	8.5	20	V
V _{OUT}	DC Output voltage	-10 ⁽²⁾	400	V
V _{CIN}	Comparator input voltage		15	V
Vi	Logic input voltage	0	15	V
V _{OD}	Open-drain voltage (OD, FAULT)	0	20	V
V _{FAULT}	FAULT pin voltage		20	V
f _{SW} ⁽³⁾	Maximum switching frequency		30	kHz
PW ⁽⁴⁾	Minimum input pulse width	300		ns

Table 3. Recommended operating conditions

1. $V_{BO} = V_{BOOT} - V_{OUT}$

2. LVG off. VCC = 9 V. Logic is operational if $V_{BOOT} > 5$ V.

3. Actual maximum f_{SW} depends on power dissipation.

4. Pulse width on LIN or HIN pins propagated to gate driver outputs.

3.3 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{th(J-CT)}	Thermal resistance junction-to-case top	7	°C/W
R _{th(J-CB)}	Thermal resistance junction-to-case bottom	0.32	°C/W

4.1

4 Electrical characteristics

Driver

HIN is referred to channels HIN1, HIN2, HIN3; LIN is referred to channels LIN1, LIN2, LIN3.

Table 5. Electrical characteristics

VCC = 15 V; T_J = +25 °C, unless otherwise specified

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Low-side s	section supply					
VCC _{thON}	VCC UVLO turn on threshold		8.7	9.2	9.7	V
VCC _{thOFF}	VCC UVLO turn off threshold		8.2	8.7	9.2	V
VCC _{hys}	VCC UVLO hysteresis		0.4	0.5	0.6	V
Ι _{QCCU}	VCC under-voltage quiescent supply current	VCC = 7 V; EN = 5 V; CIN = SGND LVG & HVG: OFF		430	744	μA
I _{QCC}	VCC quiescent supply current	EN = 5 V; CIN = SGND LVG & HVG: OFF		1125	1650	μA
High-side f	floating section supply ⁽¹⁾					
V _{BOthON}	V _{BO} UVLO turn on threshold		8.2	8.7	9.2	V
V _{BOthOFF}	V _{BO} UVLO turn off threshold		7.7	8.2	8.7	V
V _{BOhys}	V _{BO} UVLO hysteresis		0.4	0.5	0.6	V
I _{QBOU}	V _{BO} under-voltage quiescent supply current	VCC = V_{BO} = 6.5 V; EN = 5 V; CIN = SGND LVG OFF; HVG = ON		25	62	μA
I _{QBO}	V _{BO} quiescent supply current	V_{BO} = 15 V EN = 5 V; CIN = SGND LVG OFF; HVG = ON		84	150	μA
I _{LK}	High voltage leakage current	BOOT = HVG = OUT = 520 V			15	μA
R _{Dboot}	Bootstrap Diode on resistance			200		Ω
Logic Inpu	ts		I			
V _{il}	Low level logic threshold voltage		0.8		1.4	V
V _{ih}	High level logic threshold voltage		1.8		2.3	V
V _{hyst}	Logic input threshold hysteresis		0.8	0.9	1.2	V
V _{SSDh}	SmartSD restart threshold		3.6	4.1	4.4	V
V _{SSDI}	SmartSD unlatch threshold			0.56	0.75	V
I _{LINh}	LIN logic "1" input bias current	V _{LINx} = 15 V	120	150	200	μA
I _{LINI}	LIN logic "0" input bias current	V _{LINx} = 0 V			1	μA
I _{HINh}	HIN logic "1" input bias current	V _{HINx} = 15 V	120	150	200	μA
I _{HINI}	HIN logic "0" input bias current+	V _{HINx} = 0			1	μA
R _{PD_IN}	Logic input pull-down resistor		75	100	125	kΩ
I _{ENh}	EN logic "1" input bias current	V _{EN} = 15 V	110	150	200	μA
I _{ENI}	EN logic "0" input bias current	V _{EN} = 0 V			1	μA
R _{PD_EN}	EN pull-down resistor		75	100	125	kΩ

57

PWD5T60

Electrical cl

characteristics

Symbol	Parameter	Test conditions	Min	Тур	Max	Uni
Sense com	parator ⁽²⁾ and FAULT					
V _{REF}	Internal voltage reference		430	480	530	m٧
C _{INhyst}	Comparator input hysteresis		40	70		m٧
C _{IN_PD}	Comparator input pull-down current	V _{CIN} = 1 V	7	10	13	μA
I _{OD}	OD internal current source		2.5	5	7.5	μA
R _{ON_OD}	OD On resistance	I _{OD} = 16 mA	19	25	36	W
I _{OL_OD}	OD low level sink current	V _{OD} = 400 mV	11	16	21	mA
I _{SAT_OD}	OD saturation current	V _{OD} = 5 V		108		mA
V _{FLOAT_OD}	OD floating voltage level	OD connected only to an external capacitance	4.5	4.9	5.4	V
R _{ON_F}	FAULT On resistance	I _{FAULT} = 8 mA		50	100	W
I _{OL_F}	FAULT low level sink current	V _{FAULT} = 400 mV	4	8	12	mA
t _{OD}	Comparator propagation delay	$\label{eq:Rpu} \begin{array}{l} R_{pu} = 100 \ k\Omega \ to \ 5 \ V; \\ \mbox{Voltage step on CIN} = 0 \ to \ 3.3 \ V; \\ \mbox{50\% CIN to } 90\% \ OD \end{array}$	350	475	590	ns
t _{CIN-F}	Comparator triggering to FAULT	Voltage step on CIN = 0 to 3.3 V; 50% CIN to 90% FAULT	360	475	590	ns
t _{CINoffMOS}	Comparator triggering to low-side MOSFET turn-off propagation delay	Voltage step on CIN = 0 to 3.3 V; OUT 500 Ω to 5 V, VS = 5 V 50% CIN to 10% OUT	730	840	950	ns
t _{FCIN}	Comparator input filter time		360	475	590	ns
SR	OD Slew rate	C_L = 1 nF; R_{pu} = 33 kΩ to 5 V; 90% to 10% OD	20	60	100	V/µ:
Over temp	erature protection	· · · · · · · · · · · · · · · · · · ·				
T _{TSD}	Shut down temperature ^{(3) (4)}		120	135	150	°C
T _{HYS}	Temperature hysteresis (3) (4)			20		°C
Dynamic c	haracteristics					
t _{FIN}	LIN, HIN input filter time		30	40	50	ns
t _{FEN}	EN input filter time		200	300	400	ns
DT	Deadtime		200	300	400	ns
MDT	Matching deadtime ⁽⁵⁾			0	50	ns

1. $V_{BO} = V_{BOOT} - V_{OUT}$

2. Comparator is disabled when VCC is in UVLO condition

3. Characterization data, not tested in production.

4. The temperature sensor is located in the driver.

5. $MDT = |DT_{LH} - DT_{HL}|$

4.2 Power MOSFETs

HIN is referred to channels HIN1, HIN2, HIN3; LIN is referred to channels LIN1, LIN2, LIN3.

Table 6. Electrical characteristics

VCC = 15 V; T_J = +25 °C, unless otherwise specified.

Symbol	Parameter Test conditions		Min	Тур	Max	Unit
V _{(BR)DS}	Drain-source breakdown voltage	I _D = 1 mA ⁽¹⁾	600			V
I _{DSS}	Zero gate voltage drain current	V _{DS} = 500 V EN = SENSE = GND			1	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_{D} = 250 $\mu A^{(1)}$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	I _D = 1.75 A; V _{GS} = 10 V;	-	1.38	1.75	Ω
I _{AS}	Avalanche current, repetitive or not repetitive	Pulse width limited by T_J max. ⁽¹⁾			1	А
E _{AS}	Single pulse avalanche energy	Starting $T_J = 25 \text{ °C}$, $I_D = I_{AS}$, $V_{DD} = 50 \text{ V}$ ⁽¹⁾			132	mJ
V_{SD}	Diode forward on voltage	$EN = SENSE = GND$ $I_{SD} = 3.5 A;$	-	-	1.6	V

1. Tested at wafer level before packaging.

5 Device characterization values

The PWD5T60 integrates six 500 V N-channel power MOSFETs in three phase full bridge configuration. Table 7, Table 8. Inductive load switching characteristics and electrical characteristics curves contained in this section represent typical values based on characterization and simulation results and are not subject to the production test.

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
MOSFET D	ynamic					
0	T-del and a shares	V _{GS} = 10 V, T _J = 25 °C		5.0		
Qg	Total gate charge	V_{DS} = 480 V, I _D = 3.5 A	-	5.3	-	nC
Source-Dra	in diode				1	
t _{rr}	Diode reverse recovery time	I _{SD} = 3.5 A, T _J = 25 °C	-	58	-	ns
Q _{rr}	Diode reverse recovery charge	di/dt = 100 A/µs,	-	109	-	μC
I _{RRM}	Diode reverse recovery current	V _{DS} = 60 V	-	4	-	А
t _{rr}	Diode reverse recovery time	I _{SD} = 3.5 A, T _J = 150 °C	-	109	-	ns
Q _{rr}	Diode reverse recovery charge	di/dt = 100 A/µs,	-	309	-	μC
I _{RRM}	Diode reverse recovery current	V _{DS} = 60 V	-	5	-	Α

Table 7. Power MOSFETs

Table 8. Inductive load switching characteristics

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
t _(ON) ⁽¹⁾	Turn-on time		-	390	-	ns
t _{C(ON)} (2)	Crossover time (on)		-	150	-	ns
t _(OFF) ⁽¹⁾	Turn-off time	VS = 300 V,	-	165	-	ns
t _{C(OFF)} ⁽²⁾	Crossover time (off)	VCC = V _{BO} = 15 V,	-	40	-	ns
t _{SD}	Shutdown to high/low-side propagation delay	I _D = 1.75 A See Figure 3	-	HS: 75 LS: 85	-	ns
Eon	Turn-on switching losses		-	75	-	μJ
E _{off}	Turn-off switching losses		-	8	-	μJ

1. $t_{(ON)}$ and $t_{(OFF)}$ include the propagation delay time of the internal driver.

2. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching times of MOSFET itself under the internally given gate driving conditions.

DS14	558 - Rev 2
Downloaded from	Arrow.com.

6 Functional description

6.1 Inputs and outputs

57/

The device is controlled through the following logic inputs:

- EN: enable input, active high;
- LIN: low-side driver inputs, active high;
- HIN: high-side driver inputs, active high.

Table 9. Inputs truth table (applicable when the device is not in UVLO or SmartSD protection)

	Input pins			Output pins		
	EN	LIN	HIN	LVG	HVG	
	L	Х	Х	OFF	OFF	
	Н	L	L	OFF	OFF	
	Н	Н	L	ON	OFF	
	Н	L	Н	OFF	ON	
Interlocking	Н	Н	Н	OFF	OFF	

Note: X : Do not care.

The FAULT and OD pins are open-drain outputs.

The FAULT signal is set low in case VCC UVLO is detected, or in case the SmartShutDown comparator triggers an event. It is only used to signal a UVLO or SmartSD activation to external circuits, and its state does not affect the behavior of other functions or circuits inside the driver.

The OD behavior is explained in Section 6.5.

6.2 Deadtime

The deadtime feature, in companion with the interlocking feature, guarantees that driver outputs of the same channel are not high simultaneously and at least a DT time passes between the turn-off of one driver's output and the turn-on of the companion output of the same channel. If a deadtime longer than the internal DT is applied to the LIN and HIN inputs by the external controller, the internal DT is ignored and the outputs follow the deadtime determined by the inputs.

6.3 VCC UVLO protection

Undervoltage protection is available on VCC and BOOT supply pins. In order to avoid intermittent operation, a hysteresis sets the turn-off threshold with respect to the turn-on threshold.

When VCC voltage goes below the V_{CCthOFF} threshold, all the outputs are switched off, both LVG and HVG. When VCC voltage reaches the V_{CCthOFF} threshold, the driver returns to normal operation and sets the LVG outputs according to actual input pin status; HVG is also set according to input pin status if the corresponding V_{BO} section is not in UVLO condition. The FAULT output is kept low when VCC is in UVLO condition. The following figures show some examples of typical operation conditions.

Dedicated undervoltage protection is available on each bootstrap section between BOOTx and OUTx supply pins. In order to avoid intermittent operation, a hysteresis sets the turn-off threshold with respect to the turn-on threshold.

When the V_{BO} voltage goes below the $V_{BOthOFF}$ threshold, the HVG output of the corresponding bootstrap section is switched off. When the V_{BO} voltage reaches the V_{BOthON} threshold, the device returns to normal operation and the output remains off up to the next input pin transition that requests HVG to turn on.

Figure 13. V_{BO} power-ON and UVLO timing

6.5 Comparator and Smart shutdown

The PWD5T60 integrates a comparator committed to the fault protection function, thanks to the SmartShutDown (SmartSD) circuit.

The SmartSD architecture allows immediate turn-off of the gate driver outputs in the case of overload or overcurrent condition, by minimizing the propagation delay between the fault detection event and the actual output switch-off. In fact, the time delay between the fault detection and the output turn-off is not dependent on the value of the external components connected to the OD pin, which are only used to set the duration of disable time after the fault.

This provides the possibility to increase the duration of the output disable time after the fault event up to very large values without increasing the delay time of the protection. The duration of the disable time is determined by the values of the external capacitor C_{OD} and of the optional pull-up resistor connected to the OD pin.

The comparator has an internal voltage reference V_{REF} connected to the inverting input, while the non-inverting input is available on the CIN pin. The comparator's CIN input can be connected to an external shunt resistor in order to implement a fast and simple overcurrent protection function. The output signal of the comparator is filtered from glitches shorter than t_{FCIN} and then fed to the SmartSD logic.

If the impulse on the CIN pin is higher than V_{REF} and wider than t_{FCIN} , the SmartSD logic is triggered and immediately sets all of the driver outputs to low-level (OFF).

At the same time, \overline{FAULT} is forced low to signal the event (for example to an MCU input) and OD starts to discharge the external C_{OD} capacitor used to set the duration of the output disable time of the fault event.

The FAULT pin is released and driver outputs restart following the input pins as soon as the *output disable time* expires.

The overall disable time is composed of two phases:

The OD *unlatch time* (t_1 in Figure 14), which is the time required to discharge the C_{OD} capacitor down to the V_{SSDI} threshold. The discharge starts as soon as the SSD comparator is triggered.

• The OD Restart time (t₂ in Figure 14), which is the time required to recharge the C_{OD} capacitor up to the V_{SSDh} threshold. The recharge of C_{OD} starts when the OD internal MOSFET is turned-off, which happens when the fault condition has been removed (CIN < V_{REF} - C_{INhyst}) and the voltage on OD reaches the V_{SSDI} threshold. This time normally covers most of the overall output disable time.

If no external pull-up is connected to OD, the external C_{OD} capacitor is discharged with a time constant defined by C_{OD} and the internal MOSFET's characteristic (Equation 1), and the Restart time is determined by the internal current source I_{OD} and by C_{OD} (Equation 2).

Equation 1

$$\boldsymbol{t}_{1} \cong \boldsymbol{R}_{\boldsymbol{O}\boldsymbol{N}_{-}\boldsymbol{O}\boldsymbol{D}} \cdot \boldsymbol{C}_{\boldsymbol{O}\boldsymbol{D}} \cdot \ln\left(\frac{\boldsymbol{V}_{\boldsymbol{O}\boldsymbol{D}}}{\boldsymbol{V}_{\boldsymbol{S}\boldsymbol{S}\boldsymbol{D}\boldsymbol{l}}}\right) \tag{1}$$

Equation 2

$$t_2 \simeq \frac{C_{OD} \cdot V_{SSDh}}{I_{OD}} \cdot \ln\left(\frac{V_{SSDl} - V_{OD}}{V_{SSDh} - V_{OD}}\right)$$
(2)

Where $V_{OD} = V_{FLOAT_OD}$

In case the OD pin is connected to VCC by an external pull-up resistor R_{OD_ext} , the OD discharge time is determined by the external network $R_{OD_ext} C_{OD}$ and by the internal MOSFET's R_{ON_OD} (Equation 3), while the Restart time is determined by current in R_{OD_ext} (Equation 4).

Equation 3

$$t_1 \cong C_{OD} \cdot \left(R_{OD_ext} / / R_{ON_OD} \right) \cdot \ln \left(\frac{V_{OD} - V_{On}}{V_{SSDl} - V_{On}} \right)$$
(3)

Equation 4

$$t_2 \cong C_{OD} \cdot R_{OD_ext} \cdot \ln\left(\frac{V_{SSDI} - V_{OD}}{V_{SSDh} - V_{OD}}\right)$$
(4)

where:

$$V_{on} = \frac{R_{ON}OD}{R_{OD}ext + R_{ON}OD} \cdot VCC \quad ; \quad V_{OD} = VCC$$

SMART SHUTDOWN CIRCUIT

6.6 Overtemperature protection

The device integrates an overtemperature protection, which turns and keeps all MOSFETs off when T_J exceeds T_{TSD} .

Overtemperature protection is signaled externally setting the FAULT pin low.

Once T_J falls below (T_{TSD} - T_{HYS}) the FAULT pin is released and the MOSFETs are set according to the logic input values.

7 Typ application

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 VFQFPN 12x12x0.95 mm, 36 leads, 0.65 mm pitch, package information

		Dimensions [mm]	
Symbol	Min.	Тур.	Max
A	0.80	0.90	1.00
A1	0.000	0.020	0.050
A3		0.203 REF	
b	0.25	0.30	0.35
b1	0.35	0.40	0.45
b2	0.95	1.00	1.05
b3	1.85	1.90	1.95
D		12.00 BSC	
E		12.00 BSC	
е		0.65 BSC	
e1		1.50 BSC	
e2		0.60 BSC	
e3		1.30 BSC	
D1	4.231	4.331	4.431
E1	3.236	3.336	3.436
D2	2.916	3.016	3.116
E2	2.300	2.400	2.500
D3	3.388	3.488	3.588
E3	2.300	2.400	2.500
D4	2.020	2.120	2.220
E4	0.812	0.912	1.012
D5	2.388	2.488	2.588
E5	0.812	0.912	1.012
D6	2.452	2.552	2.652
D6-1	2.956	3.056	3.156
D6-2	0.404	0.504	0.604
E6	3.108	3.208	3.308
E6-1	0.605	0.705	0.805
D7	7.640	7.740	7.840
E7	3.300	3.400	3.500
К	0.900	1.000	1.100
L	0.450	0.550	0.650

Table 10. Package dimensions

Symbol	Dimensions [mm]			
	Min.	Тур.	Мах	
L1	0.508	0.608	0.708	
	TOLERANCE			
ааа	0.150			
bbb	0.100			
ccc	0.100			
ddd	0.050			
eee	0.080			

57

BOTTOM VIEW

PWD5T60

8.2 Suggested footprint

57

The PWD5T60 footprint for the PCB layout is usually defined based on several design factors as assembly plant technology capabilities and board component density.

For easy device usage and evaluation, ST provides the following footprint design, which is suitable for the largest variety of PCBs.

Figure 17. Suggested footprint (top view)

9 Ordering information

Table 11. Order code

Order code	Package	Package marking	Packaging
PWD5T60	VFQFPN 12x12x0.95 mm, 36 leads, 0.65 mm pitch	PWD5T60	Tray
PWD5T60TR	VFQFPN 12x12x0.95 mm, 36 leads, 0.65 mm pitch	PWD5T60	Tape & reel

Revision history

Table 12. Document revision history

Date	Version	Changes
15-Jan-2024	1	Initial release.
18-Jun-2024	2	Updated Table 3 (removed the note of the V _{OUT} maximum value), Table 2 (updated note 3) and Table 5 (correct the typo of the t_{OD} and t_{CIN-F} typical value, removed DT and MDT test conditions).

Contents

1	Bloc	ck diagram	2	
2	Pin	description and connection diagram	3	
3	Elec	Electrical data		
	3.1	Absolute maximum ratings	4	
	3.2	Recommended operating conditions	5	
	3.3	Thermal data	5	
4	Elec	trical characteristics	6	
	4.1	Driver	6	
	4.2	Power MOSFETs	8	
5	Dev	ice characterization values	9	
6	Fun	ctional description	12	
	6.1	Inputs and outputs	12	
	6.2	Deadtime	12	
	6.3	VCC UVLO protection.	13	
	6.4	V _{BO} UVLO protection	14	
	6.5	Comparator and Smart shutdown	14	
	6.6	Overtemperature protection	16	
7	Тур	application	17	
8	Pac	kage information	18	
	8.1	VFQFPN 12x12x0.95 mm, 36 leads, 0.65 mm pitch, package information	18	
	8.2	Suggested footprint		
9	Ord	ering information		
Rev	vision	history	23	
List	of ta	bles		
List	of fig	jures		

List of tables

Table 1.	Pin description.	3
Table 2.	Absolute maximum ratings	4
Table 3.	Recommended operating conditions.	5
Table 4.	Thermal data	5
Table 5.	Electrical characteristics	6
	Electrical characteristics	
Table 7.	Power MOSFETs	9
Table 8.	Inductive load switching characteristics.	9
Table 9.	Inputs truth table (applicable when the device is not in UVLO or SmartSD protection)	2
	Package dimensions 1	
	Order code	
Table 12.	Document revision history	23

List of figures

Figure 1.	PWD5T60 block diagram	. 2
Figure 2.	PWD5T60 pin connection	. 3
Figure 3.	Switching time definition	10
Figure 4.	Normalized gate threshold voltage vs temperature	10
Figure 5.	Normalized drain-source breakdown voltage vs. temperature	10
Figure 6.	Static drain-source on-resistance	11
Figure 7.	Normalized on-resistance vs temperature	11
Figure 8.	Transfer characteristics	11
Figure 9.	Output characteristics	11
Figure 10.	Static source-drain diode forward characteristics.	11
Figure 11.	VCC power ON and UVLO, LVG timing	13
Figure 12.	VCC power ON and UVLO, HVG timing	13
Figure 13.	V_{BO} power-ON and UVLO timing $\hdots \hdots \$	14
Figure 14.	Smart shutdown timing waveforms	16
Figure 15.	Typical application 3-phase single-shunt	17
Figure 16.	Package outline	20
Figure 17.	Suggested footprint (top view)	21

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved