
Datasheet

50 Ω nominal input / conjugate match balun to QFN-4L STM32WL in low power mode, 862-928 MHz with integrated harmonic filter

Chip scale package on glass 8 bumps

Features

- QFN STM32WL sub-GHz wireless microcontrollers impedance matched balun and Tx harmonics filter
- Optimized for QFN STM32WL sub-GHz wireless microcontrollers in low power mode and dedicated to 4-layer PCB
- 50 Ω nominal input / conjugate matched balun to QFN STM32WL
- 50 Ω nominal impedance on antenna side Tx and Rx
- Deep Tx rejection harmonic filter
- Low insertion loss
- Small footprint
- Low profile ≤ 630 µm after reflow
- High RF performance
- RF BOM and area reduction
- ECOPACK2 compliant component

Product status link

BALFHB-WL-05D3

Applications

- STM32WL sub-GHz wireless microcontrollers
- LPWAN-compliant radio solution, enabling the following modulations: LoRa®, (G)FSK, (G)MSK, and BPSK

Description

STMicroelectronics BALFHB-WL-05D3 is an ultra-miniature balun. This device integrates a matching network, balun, and harmonics filter. Matching impedance has been customized for the STM32WL sub-GHz wireless microcontrollers.

It is using STMicroelectronics IPD technology on a nonconductive glass substrate, which optimizes RF performances.

1 Characteristics

Table 1. Absolute maximum ratings (T_{amb} = 25 °C)

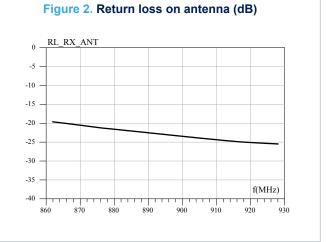
Symbol	Parameter	Value	Unit
P _{IN}	Input power RF _{IN}	27	dBm
V _{ESD}	ESD ratings human body model (JESD22-A114), all I/O one at a time while others connected to GND	2000	V
	ESD ratings machine model, all I/O		
T _{OP}	Operating temperature	-40 to +105	°C

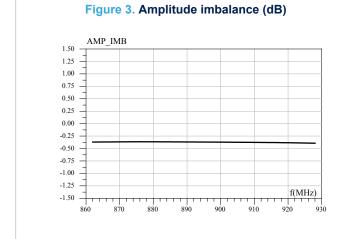
Table 2. Impedances (T_{amb} = 25 °C)

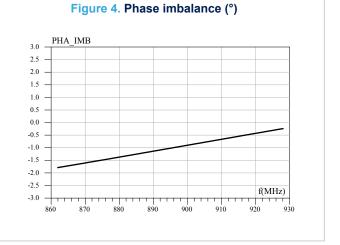
Symbol	Parameter -	Value			
Зушьог	r ai dilletei	Min.	Тур.	Max.	Unit
Z _{RX}	Nominal differential Rx balun impedance	-	Matched to STM32WL	-	
Z _{TX}	Nominal Tx filter impedance	-	Matched to STM32WL	-	Ω
Z _{RX-ANT}	Nominal Rx balun antenna impedance		50	-	77
Z _{TX-ANT}	Nominal Tx filter antenna impedance	-	50	-	

Table 3. Electrical characteristics and RF performances (T_{amb} = 25 °C)

Complete al	Baramatar	Took condition	Value			Heit
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
f	Frequency range		862	868	928	MHz
IL _{RX}	Rx balun insertion loss differential mode $\left S_{DS}\right $ without mismatch loss	Typical value given at 868 MHz		1.20	1.40	dB
IL _{TX}	LP Tx filter insertion loss S ₂₁ without mismatch loss	Typical value given at 868 MHz		0.65	0.95	dB
RL _{RX-ANT}	Rx balun input return loss differential mode $ S_{DD} $ on antenna	Typical value given at 868 MHz	15	20		dB
RL _{TX-ANT}	Tx filter output return loss S ₁₁ on antenna	Typical value given at 868 MHz	16	24		dB
Фimb	RX balun phase imbalance	'	-3.0		3.0	٥
A _{imb}	RX balun amplitude imbalance		-0.6		0.6	dB
		Attenuation at 2fo	33	35		
		Attenuation at 3fo	38	40		
		Attenuation at 4fo	39	48		dB
		Attenuation at 5fo	36	64		
Att_TX	Tx filter harmonic rejection levels S ₂₁	Attenuation at 6fo	30	56		
		Attenuation at 7fo	20	33		
		Attenuation at 8fo	20	27		
		Attenuation at 9fo	30	39		
		Attenuation at 10fo	37	42		


DS14104 - Rev 3 page 2/13


page 3/13



1.1 RF measurements (Rx balun)

DS14104 - Rev S

1.2 RF measurements (Tx filter)

Figure 5. Transmission wide band with harmonics attenuation (dB)

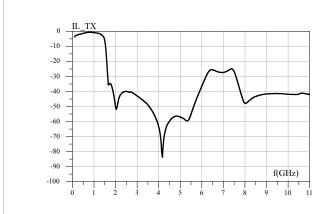


Figure 6. Insertion loss (dB)

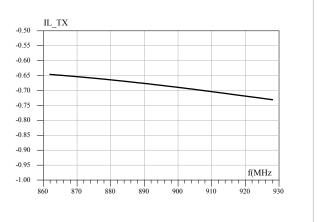
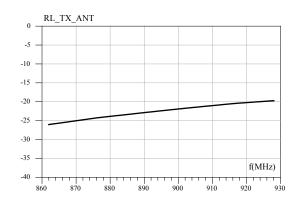



Figure 7. Return loss on antenna (dB)

DS14104 - Rev 3 page 4/13

2 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 CSPG package information

Figure 8. CSPG 8 bumps package outline (bottom view - bumps up)

Table 4. CSPG 8 bumps mechanical data

	Dimensions							
Ref.	Millimeters							
	Min.	Тур.	Max.					
A	0.580	0.630	0.680					
A1	0.180	0.205	0.230					
A2	0.380	0.400	0.420					
b	0.230	0.255	0.280					
D	2.100	2.150	2.200					
D1		0.340						
D2		0.500						
D3		0.210						
D4		0.630						
E	1.800	1.850	1.900					
E1		0.690						
E2		0.085						
E3		0.605						
fD1		0.235						
fD2		0.235						
fE1		0.235						
fE2		0.235						

DS14104 - Rev 3 page 5/13

2.2 CSPG 8 bumps packing information

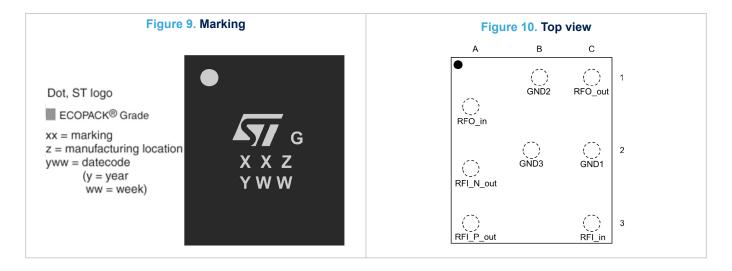


Table 5. Pads description top view (pads down)

Pad ref.	Pad name	Description		
A1	RFO_in	Tx filter input		
A2	RFI_N_out	Differential-N Rx balun output		
A3	RFI_P_out	Differential-P Rx balun output		
B1	GND2	Ground #2		
B2	GND3	Ground #3		
C1	RFO_out	Tx filter output		
C2	GND1	Ground #1		
C3	RFI_in	Single ended Rx balun input		

DS14104 - Rev 3 page 6/13

Pin 1 located according to EIA-481

P0

W

P1

P2

A0

User direction of unreeling

Figure 11. Tape and reel outline

Note: Pocket dimensions are not on scale Pocket shape may vary depending on package

Table 6. Tape and reel mechanical data

	Dimensions						
Ref	Millimeters						
	Min	Тур	Max				
A0	1.89	1.94	1.99				
В0	2.19	2.24	2.29				
Ø D0	1.40	1.50	1.60				
Ø D1	0.95	1.00	1.05				
E1	1.65	1.75	1.85				
F	3.45	3.50	3.55				
K0	0.70	0.75	0.80				
P0	3.90	4.00	4.10				
P1	3.90	4.00	4.10				
P2	1.95	2.00	2.05				
W	W 7.90		8.30				

Note: More packing information is available in the application note:

• AN2348 Flip-Chip: "Package description and recommendations for use"

DS14104 - Rev 3 page 7/13

PCB assembly recommendations

Land pattern 3.1

STM32WL **QFN** 300 µm 250 µm BALFHB-WL-05D3 200 µm 200 µm 210 µm 200 µm 50Ω line

Figure 12. QFN-4L PCB land pattern recommendation

The land pattern on layer 1 must be respected as described in Figure 12.

The ground plane on layer 1 is mandatory under the BALF, with its shape and definition optimized to achieve the best possible equipotentiality.

The density of vias and drills must be maximized near the BALF area to ensure optimal RF performance.

The layout around the IPD must be followed as closely as possible.

Table 7. Characteristic impedances of RF transmission lines for a QFN package with a 4-layer PCB in low power mode

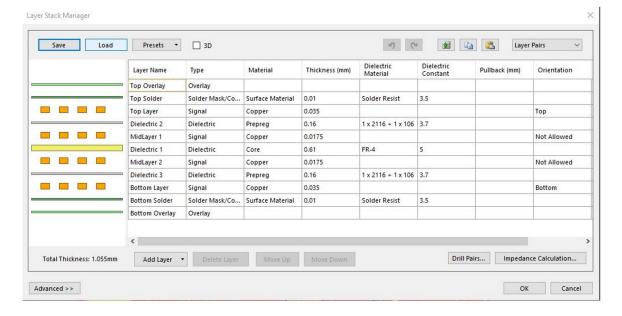
RF transmission line	Туре	Value	Unit	Description
RFO_out Antenna	Z_0	50	Ω	Line between the BALF RFO_out pin and the Tx antenna
RFI_in Antenna	Z ₀	50	Ω	Line between the BALF RFI_in pin and the Rx antenna
RFO_LP	Z ₀	57	Ω	Line between the BALF RFO pin and the STM32 RFO_LP pin
	Z_0	61	Ω	
RFI_out	Z _{odd}	53	Ω	Differential lines between the BALF RFI_x_out pins and the STM32 RFI_x_out pins
	Z _{even}	70	Ω	

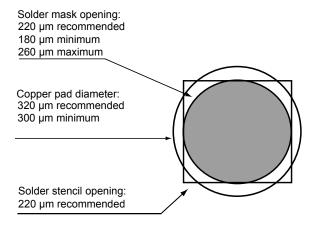
The characteristic impedances and lengths of the transmission lines must also be followed as precisely as possible.

Moreover, the physical dimensions of the lines must be adjusted according to the specific PCB stack-up, if it differs from the one presented in the datasheet, to maintain the expected characteristic impedance values.

The dimensions of the lines were calculated considering the ground plane on layer 2.

DS14104 - Rev 3 page 8/13




Figure 13. Stack-up recommendation for a QFN-4L PCB

The PCB stack-up presented above is the one used to validate the product. The PCB dimensions should closely follow the recommendations, particularly the thickness of the dielectric between layer 1 and layer 2, which must remain within ± 30 % of the specified values (that is, between 110 and 210 μ m for a 4-layer PCB dedicated to the QFN package)

Other dimensions may vary without significantly impacting the overall functionality of the product.

3.2 Stencil opening design

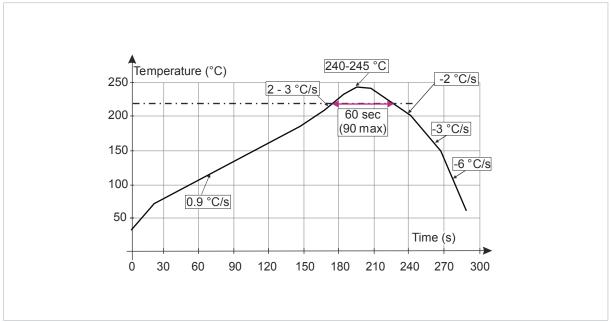
Figure 14. Footprint - 3 mils stencil - solder mask defined

3.3 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with fine particles: powder particle size 20-38 μm .

DS14104 - Rev 3 page 9/13

3.4 Placement


- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ±0.05 mm is recommended.
- 4. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.5 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

3.6 Reflow profile

Figure 15. ST ECOPACK® recommended soldering reflow profile for PCB mounting

Note: Minimize air convection currents in the reflow oven to avoid component movement.

Note: More information is available in the application note:

AN2348 Flip-Chip: "Package description and recommendations for use"

DS14104 - Rev 3 page 10/13

4 Ordering information

Table 8. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
BALFHB-WL-05D3	W5	CSPG	3.9 mg	5000	Tape and reel

DS14104 - Rev 3 page 11/13

Revision history

Table 9. Document revision history

Date	Revision	Changes
14-Oct-2022	1	Initial release.
21-Dec-2022	2	Updated <i>Table 1. Absolute maximum ratings (T_{amb} = 25 °C).</i>
15-Jul-2025	3	Updated Section 3.1: Land pattern, and Section 3.2: Stencil opening design.

DS14104 - Rev 3 page 12/13

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

DS14104 - Rev 3 page 13/13