

# NTMS4935N

## Power MOSFET 30 V, 16 A, N-Channel, SO-8

### Features

- Low  $R_{DS(on)}$  to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

### Applications

- DC-DC Converters
- Points of Loads
- Power Load Switch
- Motor Controls

**MAXIMUM RATINGS** ( $T_J = 25^\circ\text{C}$  unless otherwise stated)

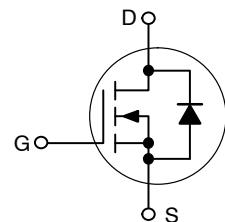
| Parameter                                                                                                                                                                                          |              |                                                    | Symbol            | Value      | Unit             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------|-------------------|------------|------------------|
| Drain-to-Source Voltage                                                                                                                                                                            |              |                                                    | $V_{DSS}$         | 30         | V                |
| Gate-to-Source Voltage                                                                                                                                                                             |              |                                                    | $V_{GS}$          | $\pm 20$   | V                |
| Continuous Drain Current $R_{\theta JA}$ (Note 1)                                                                                                                                                  | Steady State | $T_A = 25^\circ\text{C}$                           | $I_D$             | 13         | A                |
|                                                                                                                                                                                                    |              | $T_A = 70^\circ\text{C}$                           |                   | 10.4       |                  |
| Power Dissipation $R_{\theta JA}$ (Note 1)                                                                                                                                                         | Steady State | $T_A = 25^\circ\text{C}$                           | $P_D$             | 1.38       | W                |
| Continuous Drain Current $R_{\theta JA}$ (Note 2)                                                                                                                                                  | Steady State | $T_A = 25^\circ\text{C}$                           | $I_D$             | 10         | A                |
|                                                                                                                                                                                                    |              | $T_A = 70^\circ\text{C}$                           |                   | 8.0        |                  |
| Power Dissipation $R_{\theta JA}$ (Note 2)                                                                                                                                                         |              | $T_A = 25^\circ\text{C}$                           | $P_D$             | 0.81       | W                |
| Continuous Drain Current $R_{\theta JA}$ , $t \leq 10\text{ s}$ (Note 1)                                                                                                                           | Steady State | $T_A = 25^\circ\text{C}$                           | $I_D$             | 16         | A                |
|                                                                                                                                                                                                    |              | $T_A = 70^\circ\text{C}$                           |                   | 12.7       |                  |
| Power Dissipation $R_{\theta JA}$ , $t \leq 10\text{ s}$ (Note 1)                                                                                                                                  | Steady State | $T_A = 25^\circ\text{C}$                           | $P_D$             | 2.1        | W                |
| Pulsed Drain Current                                                                                                                                                                               |              | $T_A = 25^\circ\text{C}$ , $t_p = 10\ \mu\text{s}$ | $I_{DM}$          | 126        | A                |
| Operating Junction and Storage Temperature                                                                                                                                                         |              |                                                    | $T_J$ , $T_{stg}$ | -55 to 150 | $^\circ\text{C}$ |
| Source Current (Body Diode)                                                                                                                                                                        |              |                                                    | $I_S$             | 2.1        | A                |
| Single Pulse Drain-to-Source Avalanche Energy ( $T_J = 25^\circ\text{C}$ , $V_{DD} = 30\text{ V}$ , $V_{GS} = 10\text{ V}$ , $I_L = 16\text{ A}_{pk}$ , $L = 1.0\text{ mH}$ , $R_G = 25\ \Omega$ ) |              |                                                    | $E_{AS}$          | 128        | mJ               |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s)                                                                                                                                  |              |                                                    | $T_L$             | 260        | $^\circ\text{C}$ |

### THERMAL RESISTANCE MAXIMUM RATINGS

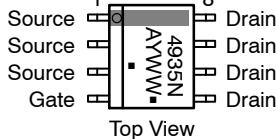
| Parameter                                           | Symbol          | Value | Unit               |
|-----------------------------------------------------|-----------------|-------|--------------------|
| Junction-to-Ambient – Steady State (Note 1)         | $R_{\theta JA}$ | 91.9  | $^\circ\text{C/W}$ |
| Junction-to-Ambient – $t \leq 10\text{ s}$ (Note 1) | $R_{\theta JA}$ | 60.4  |                    |
| Junction-to-Foot (Drain)                            | $R_{\theta JF}$ | 21.6  |                    |
| Junction-to-Ambient – Steady State (Note 2)         | $R_{\theta JA}$ | 154   |                    |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surfacedeounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
2. Surfacedeounted on FR4 board using the minimum recommended pad size.




**ON Semiconductor®**


<http://onsemi.com>

| $V_{(BR)DSS}$ | $R_{DS(ON)}\text{ MAX}$ | $I_D\text{ MAX}$ |
|---------------|-------------------------|------------------|
| 30 V          | 5.1 m $\Omega$ @ 10 V   | 16 A             |
|               | 7.0 m $\Omega$ @ 4.5 V  |                  |

### N-Channel



### MARKING DIAGRAM/ PIN ASSIGNMENT



4935N = Device Code  
A = Assembly Location  
Y = Year  
WW = Work Week  
▪ = Pb-Free Package

(Note: Microdot may be in either location)

### ORDERING INFORMATION

| Device       | Package           | Shipping <sup>†</sup> |
|--------------|-------------------|-----------------------|
| NTMS4935NR2G | SO-8<br>(Pb-Free) | 2500/Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

# NTMS4935N

## ELECTRICAL CHARACTERISTICS ( $T_J = 25^\circ\text{C}$ unless otherwise specified)

| Parameter | Symbol | Test Condition | Min | Typ | Max | Unit |
|-----------|--------|----------------|-----|-----|-----|------|
|-----------|--------|----------------|-----|-----|-----|------|

### OFF CHARACTERISTICS

|                                                           |                                 |                                                                 |                           |      |           |                            |
|-----------------------------------------------------------|---------------------------------|-----------------------------------------------------------------|---------------------------|------|-----------|----------------------------|
| Drain-to-Source Breakdown Voltage                         | $V_{(\text{BR})\text{DSS}}$     | $V_{\text{GS}} = 0 \text{ V}, I_D = 250 \mu\text{A}$            | 30                        |      |           | V                          |
| Drain-to-Source Breakdown Voltage Temperature Coefficient | $V_{(\text{BR})\text{DSS}}/T_J$ |                                                                 |                           | 13.4 |           | $\text{mV}/^\circ\text{C}$ |
| Zero Gate Voltage Drain Current                           | $I_{\text{DSS}}$                | $V_{\text{GS}} = 0 \text{ V}, V_{\text{DS}} = 24 \text{ V}$     | $T_J = 25^\circ\text{C}$  |      | 1.0       | $\mu\text{A}$              |
|                                                           |                                 |                                                                 | $T_J = 125^\circ\text{C}$ |      | 10        |                            |
| Gate-to-Source Leakage Current                            | $I_{\text{GSS}}$                | $V_{\text{DS}} = 0 \text{ V}, V_{\text{GS}} = \pm 20 \text{ V}$ |                           |      | $\pm 100$ | nA                         |

### ON CHARACTERISTICS (Note 3)

|                                            |                                |                                                        |     |     |     |                            |
|--------------------------------------------|--------------------------------|--------------------------------------------------------|-----|-----|-----|----------------------------|
| Gate Threshold Voltage                     | $V_{\text{GS}(\text{TH})}$     | $V_{\text{GS}} = V_{\text{DS}}, I_D = 250 \mu\text{A}$ | 1.0 |     | 2.5 | V                          |
| Negative Threshold Temperature Coefficient | $V_{\text{GS}(\text{TH})}/T_J$ |                                                        |     | 5.5 |     | $\text{mV}/^\circ\text{C}$ |
| Drain-to-Source On Resistance              | $R_{\text{DS}(\text{on})}$     | $V_{\text{GS}} = 10 \text{ V}, I_D = 7.5 \text{ A}$    |     | 4.2 | 5.1 | $\text{m}\Omega$           |
|                                            |                                | $V_{\text{GS}} = 4.5 \text{ V}, I_D = 6.5 \text{ A}$   |     | 5.3 | 7.0 |                            |
| Forward Transconductance                   | $g_{\text{FS}}$                | $V_{\text{DS}} = 1.5 \text{ V}, I_D = 7.5 \text{ A}$   |     | 28  |     | S                          |

### CHARGES, CAPACITANCES AND GATE RESISTANCE

|                              |                            |                                                                                    |  |      |  |             |
|------------------------------|----------------------------|------------------------------------------------------------------------------------|--|------|--|-------------|
| Input Capacitance            | $C_{\text{iss}}$           | $V_{\text{GS}} = 0 \text{ V}, f = 1.0 \text{ MHz}, V_{\text{DS}} = 25 \text{ V}$   |  | 3639 |  | $\text{pF}$ |
| Output Capacitance           | $C_{\text{oss}}$           |                                                                                    |  | 971  |  |             |
| Reverse Transfer Capacitance | $C_{\text{rss}}$           |                                                                                    |  | 31   |  |             |
| Total Gate Charge            | $Q_{\text{G}(\text{TOT})}$ | $V_{\text{GS}} = 4.5 \text{ V}, V_{\text{DS}} = 15 \text{ V}, I_D = 7.5 \text{ A}$ |  | 23.3 |  | $\text{nC}$ |
| Threshold Gate Charge        | $Q_{\text{G}(\text{TH})}$  |                                                                                    |  | 6.2  |  |             |
| Gate-to-Source Charge        | $Q_{\text{GS}}$            |                                                                                    |  | 9.7  |  |             |
| Gate-to-Drain Charge         | $Q_{\text{GD}}$            |                                                                                    |  | 3.8  |  |             |
| Total Gate Charge            | $Q_{\text{G}(\text{TOT})}$ | $V_{\text{GS}} = 10 \text{ V}, V_{\text{DS}} = 15 \text{ V}, I_D = 7.5 \text{ A}$  |  | 52.1 |  | nC          |

### SWITCHING CHARACTERISTICS (Note 4)

|                     |                            |                                                                                                              |  |      |  |             |
|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------|--|------|--|-------------|
| Turn-On Delay Time  | $t_{\text{d}(\text{on})}$  | $V_{\text{GS}} = 10 \text{ V}, V_{\text{DS}} = 15 \text{ V}, I_D = 1.0 \text{ A}, R_{\text{G}} = 6.0 \Omega$ |  | 14   |  | $\text{ns}$ |
| Rise Time           | $t_r$                      |                                                                                                              |  | 3.7  |  |             |
| Turn-Off Delay Time | $t_{\text{d}(\text{off})}$ |                                                                                                              |  | 60   |  |             |
| Fall Time           | $t_f$                      |                                                                                                              |  | 40.2 |  |             |
|                     |                            |                                                                                                              |  |      |  |             |

### DRAIN-SOURCE DIODE CHARACTERISTICS

|                         |                 |                                                                                         |                           |  |      |     |             |
|-------------------------|-----------------|-----------------------------------------------------------------------------------------|---------------------------|--|------|-----|-------------|
| Forward Diode Voltage   | $V_{\text{SD}}$ | $V_{\text{GS}} = 0 \text{ V}, I_S = 2.0 \text{ A}$                                      | $T_J = 25^\circ\text{C}$  |  | 0.72 | 1.0 | $\text{V}$  |
|                         |                 |                                                                                         | $T_J = 125^\circ\text{C}$ |  | 0.55 |     |             |
| Reverse Recovery Time   | $t_{\text{RR}}$ | $V_{\text{GS}} = 0 \text{ V}, dI_S/dt = 100 \text{ A}/\mu\text{s}, I_S = 2.0 \text{ A}$ |                           |  | 47.3 |     | $\text{ns}$ |
| Charge Time             | $t_a$           |                                                                                         |                           |  | 23.3 |     |             |
| Discharge Time          | $t_b$           |                                                                                         |                           |  | 24   |     |             |
| Reverse Recovery Charge | $Q_{\text{RR}}$ |                                                                                         |                           |  | 57   |     |             |
|                         |                 |                                                                                         |                           |  |      |     |             |

### PACKAGE PARASITIC VALUES

|                   |       |                          |  |      |     |             |
|-------------------|-------|--------------------------|--|------|-----|-------------|
| Source Inductance | $L_S$ | $T_A = 25^\circ\text{C}$ |  | 0.66 |     | $\text{nH}$ |
| Drain Inductance  | $L_D$ |                          |  | 0.2  |     |             |
| Gate Inductance   | $L_G$ |                          |  | 1.5  |     |             |
| Gate Resistance   | $R_G$ |                          |  | 0.5  | 1.0 | $\Omega$    |

3. Pulse Test: pulse width = 300  $\mu\text{s}$ , duty cycle  $\leq 2\%$ .

4. Switching characteristics are independent of operating junction temperatures.

## TYPICAL PERFORMANCE CURVES

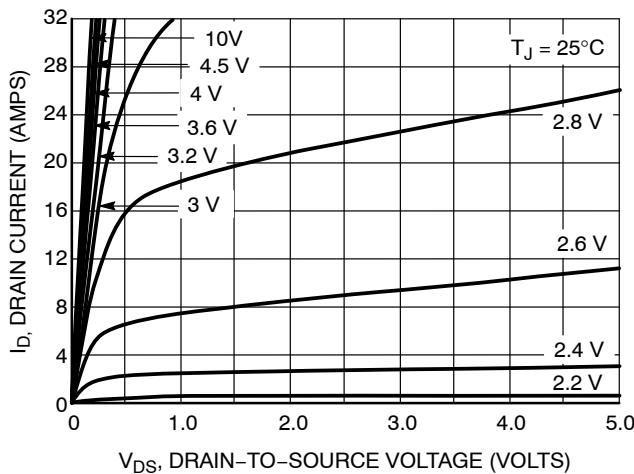



Figure 1. On-Region Characteristics

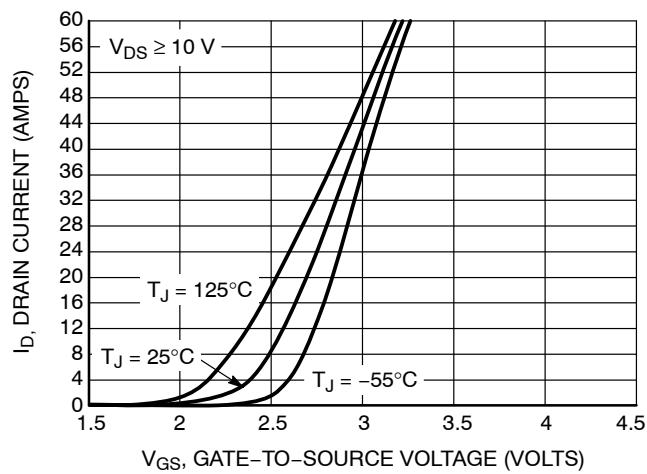



Figure 2. Transfer Characteristics

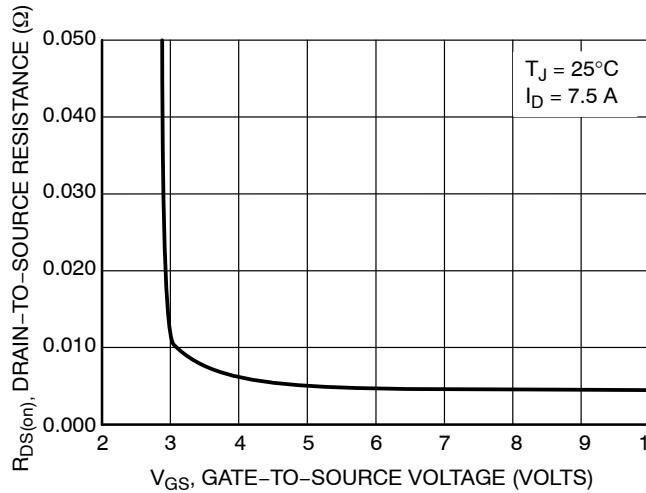



Figure 3. On-Resistance vs. Gate-to-Source Voltage

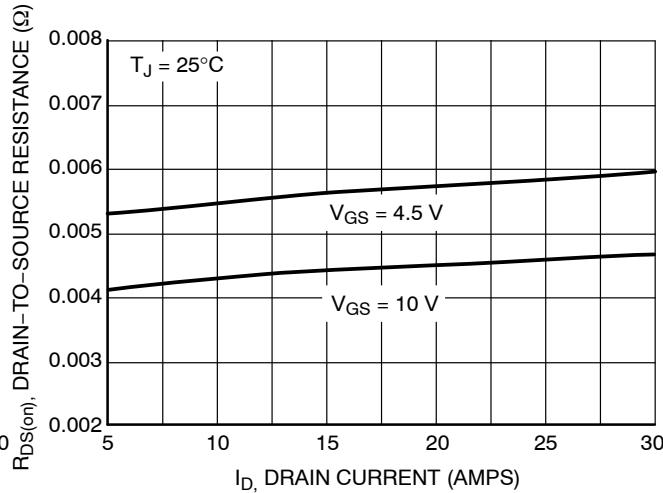



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

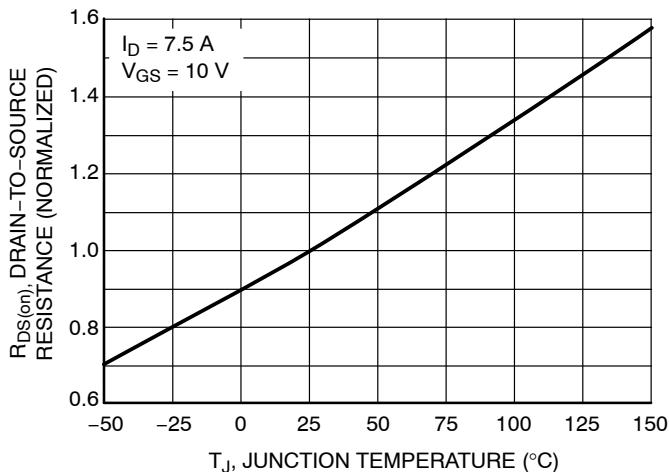



Figure 5. On-Resistance Variation with Temperature

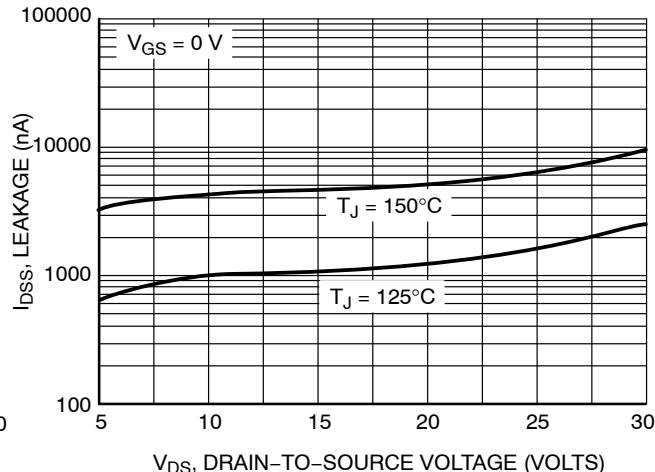



Figure 6. Drain-to-Source Leakage Current vs. Voltage

## TYPICAL PERFORMANCE CURVES

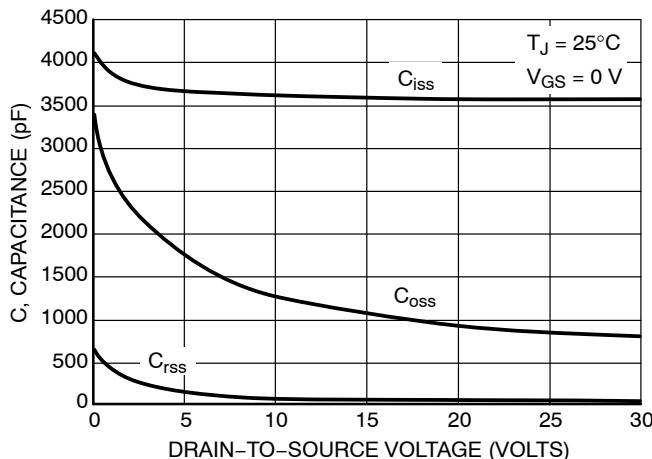



Figure 7. Capacitance Variation

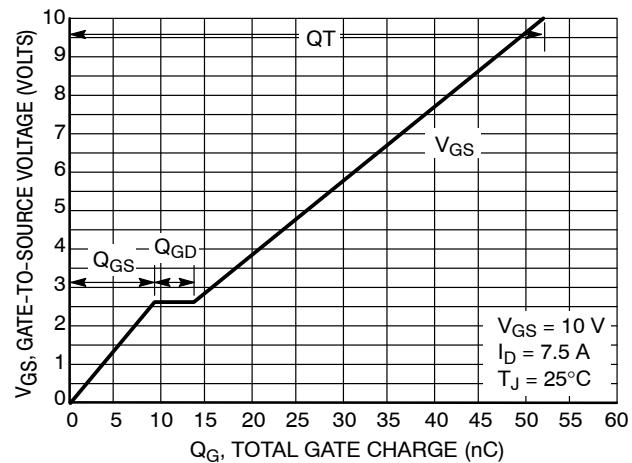



Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

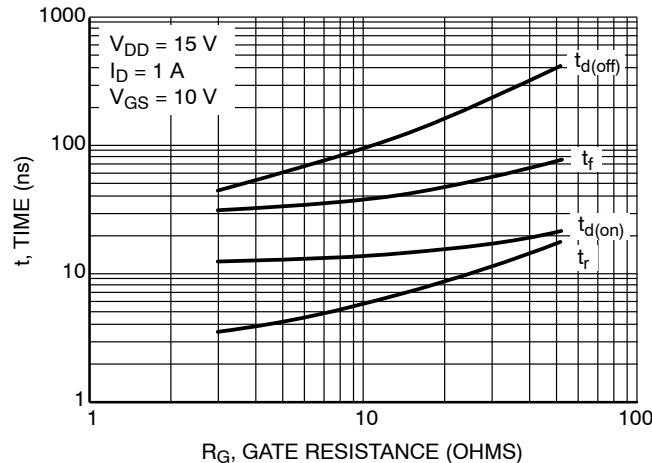



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

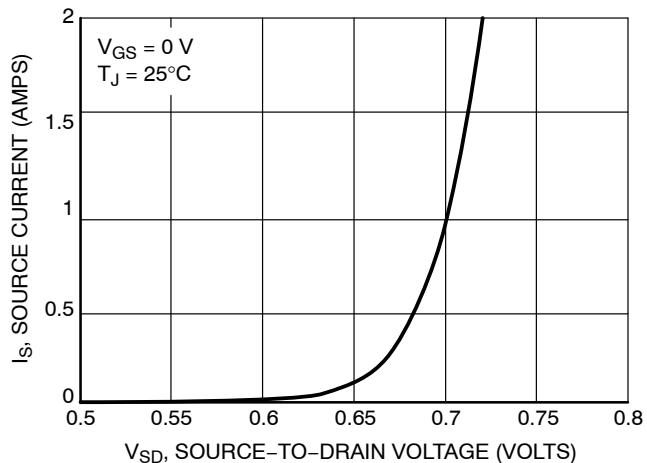



Figure 10. Diode Forward Voltage vs. Current

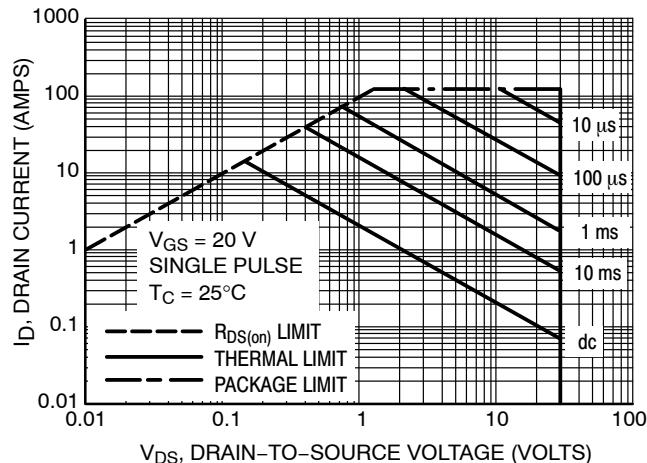
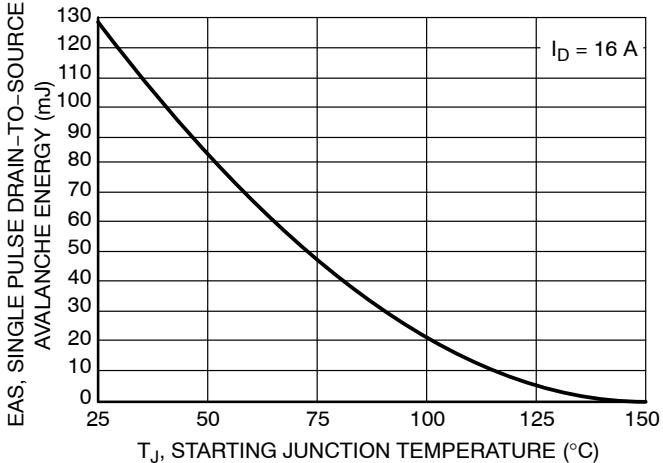
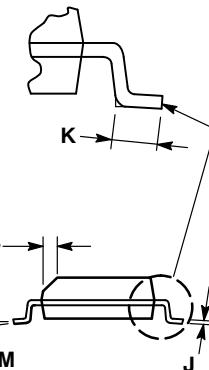
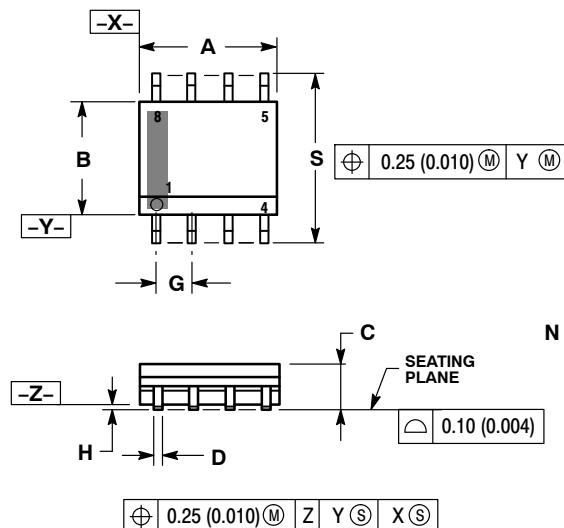



Figure 11. Maximum Rated Forward Biased Safe Operating Area

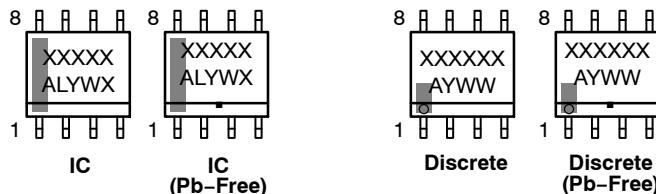





Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature



SCALE 1:1

SOIC-8 NB  
CASE 751-07  
ISSUE AK


DATE 16 FEB 2011



## NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

| DIM | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
|     | MIN         | MAX  | MIN       | MAX   |
| A   | 4.80        | 5.00 | 0.189     | 0.197 |
| B   | 3.80        | 4.00 | 0.150     | 0.157 |
| C   | 1.35        | 1.75 | 0.053     | 0.069 |
| D   | 0.33        | 0.51 | 0.013     | 0.020 |
| G   | 1.27 BSC    |      | 0.050 BSC |       |
| H   | 0.10        | 0.25 | 0.004     | 0.010 |
| J   | 0.19        | 0.25 | 0.007     | 0.010 |
| K   | 0.40        | 1.27 | 0.016     | 0.050 |
| M   | 0 °         | 8 °  | 0 °       | 8 °   |
| N   | 0.25        | 0.50 | 0.010     | 0.020 |
| S   | 5.80        | 6.20 | 0.228     | 0.244 |

GENERIC  
MARKING DIAGRAM\*

XXXXXX = Specific Device Code  
A = Assembly Location  
L = Wafer Lot  
Y = Year  
W = Work Week  
▪ = Pb-Free Package

XXXXXX = Specific Device Code  
A = Assembly Location  
Y = Year  
WW = Work Week  
▪ = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "▪", may or may not be present. Some products may not follow the Generic Marking.

\*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## STYLES ON PAGE 2

|                  |             |                                                                                                                                                                                     |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | SOIC-8 NB   | PAGE 1 OF 2                                                                                                                                                                         |

**onsemi** and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

**SOIC-8 NB**  
**CASE 751-07**  
**ISSUE AK**

DATE 16 FEB 2011

|                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 1:<br>PIN 1. Emitter<br>2. Collector<br>3. Collector<br>4. Emitter<br>5. Emitter<br>6. Base<br>7. Base<br>8. Emitter                                                                 | STYLE 2:<br>PIN 1. Collector, Die #1<br>2. Collector, #1<br>3. Collector, #2<br>4. Collector, #2<br>5. Base, #2<br>6. Emitter, #2<br>7. Base, #1<br>8. Emitter, #1                | STYLE 3:<br>PIN 1. Drain, Die #1<br>2. Drain, #1<br>3. Drain, #2<br>4. Drain, #2<br>5. Gate, #2<br>6. Source, #2<br>7. Gate, #1<br>8. Source, #1                            | STYLE 4:<br>PIN 1. Anode<br>2. Anode<br>3. Anode<br>4. Anode<br>5. Anode<br>6. Anode<br>7. Anode<br>8. Common Cathode                                                                           |
| STYLE 5:<br>PIN 1. Drain<br>2. Drain<br>3. Drain<br>4. Drain<br>5. Gate<br>6. Gate<br>7. Source<br>8. Source                                                                               | STYLE 6:<br>PIN 1. Source<br>2. Drain<br>3. Drain<br>4. Source<br>5. Source<br>6. Gate<br>7. Gate<br>8. Source                                                                    | STYLE 7:<br>PIN 1. Input<br>2. External Bypass<br>3. Third Stage Source<br>4. Ground<br>5. Drain<br>6. Gate 3<br>7. Second Stage Vd<br>8. First Stage Vd                    | STYLE 8:<br>PIN 1. Collector, Die #1<br>2. Base, #1<br>3. Base, #2<br>4. Collector, #2<br>5. Collector, #2<br>6. Emitter, #2<br>7. Emitter, #1<br>8. Collector, #1                              |
| STYLE 9:<br>PIN 1. Emitter, Common<br>2. Collector, Die #1<br>3. Collector, Die #2<br>4. Emitter, Common<br>5. Emitter, Common<br>6. Base, Die #2<br>7. Base, Die #1<br>8. Emitter, Common | STYLE 10:<br>PIN 1. Ground<br>2. Bias 1<br>3. Output<br>4. Ground<br>5. Ground<br>6. Bias 2<br>7. Input<br>8. Ground                                                              | STYLE 11:<br>PIN 1. Source 1<br>2. Gate 1<br>3. Source 2<br>4. Gate 2<br>5. Drain 2<br>6. Drain 2<br>7. Drain 1<br>8. Drain 1                                               | STYLE 12:<br>PIN 1. Source<br>2. Source<br>3. Source<br>4. Gate<br>5. Drain<br>6. Drain<br>7. Drain<br>8. Drain                                                                                 |
| STYLE 13:<br>PIN 1. N.C.<br>2. Source<br>3. Source<br>4. Gate<br>5. Drain<br>6. Drain<br>7. Drain<br>8. Drain                                                                              | STYLE 14:<br>PIN 1. N-Source<br>2. N-Gate<br>3. P-Source<br>4. P-Gate<br>5. P-Drain<br>6. P-Drain<br>7. N-Drain<br>8. N-Drain                                                     | STYLE 15:<br>PIN 1. Anode 1<br>2. Anode 1<br>3. Anode 1<br>4. Anode 1<br>5. Cathode, Common<br>6. Cathode, Common<br>7. Cathode, Common<br>8. Cathode, Common               | STYLE 16:<br>PIN 1. Emitter, Die #1<br>2. Base, Die #1<br>3. Emitter, Die #2<br>4. Base, Die #2<br>5. Collector, Die #2<br>6. Collector, Die #2<br>7. Collector, Die #1<br>8. Collector, Die #1 |
| STYLE 17:<br>PIN 1. VCC<br>2. V2OUT<br>3. V1OUT<br>4. TXE<br>5. RXE<br>6. VEE<br>7. GND<br>8. ACC                                                                                          | STYLE 18:<br>PIN 1. Anode<br>2. Anode<br>3. Source<br>4. Gate<br>5. Drain<br>6. Drain<br>7. Cathode<br>8. Cathode                                                                 | STYLE 19:<br>PIN 1. Source 1<br>2. Gate 1<br>3. Source 2<br>4. Gate 2<br>5. Drain 2<br>6. Mirror 2<br>7. Drain 1<br>8. Mirror 1                                             | STYLE 20:<br>PIN 1. Source (N)<br>2. Gate (N)<br>3. Source (P)<br>4. Gate (P)<br>5. Drain<br>6. Drain<br>7. Drain<br>8. Drain                                                                   |
| STYLE 21:<br>PIN 1. Cathode 1<br>2. Cathode 2<br>3. Cathode 3<br>4. Cathode 4<br>5. Cathode 5<br>6. Common Anode<br>7. Common Anode<br>8. Cathode 6                                        | STYLE 22:<br>PIN 1. I/O Line 1<br>2. Common Cathode/VCC<br>3. Common Cathode/VCC<br>4. I/O Line 3<br>5. Common Anode/GND<br>6. I/O Line 4<br>7. I/O Line 5<br>8. Common Anode/GND | STYLE 23:<br>PIN 1. Line 1 IN<br>2. Common Anode/GND<br>3. Common Anode/GND<br>4. Line 2 IN<br>5. Line 2 OUT<br>6. Common Anode/GND<br>7. Common Anode/GND<br>8. Line 1 OUT | STYLE 24:<br>PIN 1. Base<br>2. Emitter<br>3. Collector/Anode<br>4. Collector/Anode<br>5. Cathode<br>6. Cathode<br>7. Collector/Anode<br>8. Collector/Anode                                      |
| STYLE 25:<br>PIN 1. VIN<br>2. N/C<br>3. REXT<br>4. GND<br>5. IOUT<br>6. IOUT<br>7. IOUT<br>8. IOUT                                                                                         | STYLE 26:<br>PIN 1. GND<br>2. dv/dt<br>3. Enable<br>4. ILIMIT<br>5. Source<br>6. Source<br>7. Source<br>8. VCC                                                                    | STYLE 27:<br>PIN 1. ILIMIT<br>2. OVLO<br>3. UVLO<br>4. INPUT+<br>5. SOURCE<br>6. SOURCE<br>7. SOURCE<br>8. DRAIN                                                            | STYLE 28:<br>PIN 1. SW_TO_GND<br>2. DASIC_OFF<br>3. DASIC_SW_DET<br>4. GND<br>5. V_MON<br>6. VBUCK<br>7. VBUCK<br>8. VIN                                                                        |
| STYLE 29:<br>PIN 1. Base, Die #1<br>2. Emitter, #1<br>3. Base, #2<br>4. Emitter, #2<br>5. Collector, #2<br>6. Collector, #2<br>7. Collector, #1<br>8. Collector, #1                        | STYLE 30:<br>PIN 1. DRAIN 1<br>2. DRAIN 1<br>3. GATE 2<br>4. SOURCE 2<br>5. SOURCE 1/DRAIN 2<br>6. SOURCE 1/DRAIN 2<br>7. SOURCE 1/DRAIN 2<br>8. GATE 1                           |                                                                                                                                                                             |                                                                                                                                                                                                 |

|                  |             |                                                                                                                                                                                     |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | SOIC-8 NB   | PAGE 2 OF 2                                                                                                                                                                         |

**onsemi** and **OnSemi** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

**onsemi**, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](http://www.onsemi.com/site/pdf/Patent-Marking.pdf). **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## ADDITIONAL INFORMATION

### TECHNICAL PUBLICATIONS:

Technical Library: [www.onsemi.com/design/resources/technical-documentation](http://www.onsemi.com/design/resources/technical-documentation)  
onsemi Website: [www.onsemi.com](http://www.onsemi.com)

### ONLINE SUPPORT: [www.onsemi.com/support](http://www.onsemi.com/support)

For additional information, please contact your local Sales Representative at  
[www.onsemi.com/support/sales](http://www.onsemi.com/support/sales)

