

# **MOSFET** – N-Channel, POWERTRENCH®

**30 V, 9.0 A, 16 m** $\Omega$ 

# FDMA8878, FDMA8878-F130

#### **General Description**

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been optimized for  $R_{DS(on)}$ , switching performance.

#### **Features**

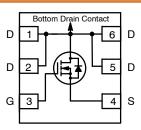
- Max  $R_{DS(on)} = 16 \text{ m}\Omega$  @  $V_{GS} = 10 \text{ V}$ ,  $I_D = 9.0 \text{ A}$
- Max  $R_{DS(on)} = 19 \text{ m}\Omega$  @  $V_{GS} = 4.5 \text{ V}$ ,  $I_D = 8.5 \text{ A}$
- High Performance Trench Technology for Extremely Low R<sub>DS(on)</sub>
- Fast Switching Speed
- Pb-Free, Halide Free and RoHS Compliant

#### **Applications**

- DC-DC Buck Converters
- Load Switch in NB
- Notebook Battery Power Management

#### **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25^{\circ}C$  unless otherwise noted.

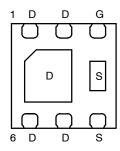

| Symbol                            | Parameter                                                                                                            | Ratings         | Unit |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|------|
| $V_{DS}$                          | Drain to Source Voltage                                                                                              | 30              | V    |
| V <sub>GS</sub>                   | Gate to Source Voltage (Note 3)                                                                                      | ±20             | V    |
| Ι <sub>D</sub>                    | Drain Current Continuous (Package Limited), T <sub>C</sub> = 25°C Continuous, T <sub>A</sub> = 25°C (Note 1a) Pulsed | 10<br>9.0<br>40 | A    |
| P <sub>D</sub>                    | Power Dissipation, T <sub>A</sub> = 25°C<br>(Note 1a)<br>(Note 1b)                                                   | 2.4<br>0.9      | W    |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction<br>Temperature Range                                                                  | -55 to +150     | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### THERMAL CHARACTERISTICS

| Symbol          | Parameter                                               | Ratings | Unit |
|-----------------|---------------------------------------------------------|---------|------|
| $R_{\theta JA}$ | Thermal Resistance,<br>Junction to Ambient<br>(Note 1a) | 52      | °C/W |
|                 | (Note 1b)                                               | 145     |      |






#### **MARKING DIAGRAM**



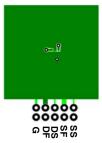
Z = Assembly Plant Code
XY = 2-Digit Date Code
KK = Lot Run Code
878 = Specific Device Code

#### **PIN ASSIGNMENT**

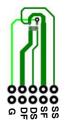


#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 5 of this data sheet.


#### **ELECTRICAL CHARACTERISTICS** $T_A = 25^{\circ}C$ unless otherwise noted.

| $\begin{array}{c} \textbf{OFF CHARAC}\\ \textbf{BV}_{DSS}\\ \hline \Delta \textbf{BV}_{DSS}\\ \hline \Delta \textbf{T}_J\\ \textbf{I}_{DSS}\\ \textbf{I}_{GSS}\\ \textbf{ON CHARAC}\\ \hline \textbf{V}_{GS(th)}\\ \hline \Delta \textbf{T}_J\\ \hline \textbf{R}_{DS(on)}\\ \hline \\ \textbf{GSS}\\ \hline \textbf{DYNAMIC CH}\\ \hline \textbf{C}_{iss}\\ \hline \textbf{C}_{oss}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate—Body Leakage                                                                                                                                      | $\begin{split} I_D &= 250 \ \mu\text{A}, \ V_{GS} = 0 \ \text{V} \\ I_D &= 250 \ \mu\text{A}, \ \text{Referenced to } 25^\circ\text{C} \\ V_{DS} &= 24 \ \text{V}, \ V_{GS} = 0 \ \text{V} \\ V_{GS} &= \pm 20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ \end{split}$ $\begin{split} V_{DS} &= V_{GS}, \ I_D = 250 \ \mu\text{A} \\ I_D &= 250 \ \mu\text{A}, \ \text{Referenced to } 25^\circ\text{C} \\ \end{split}$ $\begin{split} I_D &= 9.0 \ \text{A}, \ V_{GS} = 10 \ \text{V}, \\ I_D &= 8.5 \ \text{A}, \ V_{GS} = 4.5 \ \text{V} \\ I_D &= 9.0 \ \text{A}, \ V_{GS} = 10 \ \text{V}, \\ T_J &= 125^\circ\text{C} \\ \end{split}$ $\begin{split} V_{DD} &= 5 \ \text{V}, \ I_D = 9.0 \ \text{A} \end{split}$ | 30<br>-<br>-<br>-<br>-<br>1.2<br>-<br>- | - 26<br>1.8<br>-5 13 16 17 | 3.0<br>-<br>16<br>19<br>21 | V<br>mV/°C<br>μA<br>nA<br>V<br>mV/°C |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|----------------------------|--------------------------------------|
| $\frac{\Delta BV_{DSS}}{\Delta T_J}$ $I_{DSS}$ $I_{GSS}$ $DN CHARAC$ $V_{GS(th)}$ $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ $R_{DS(on)}$ $g_{FS}$ $DYNAMIC CH$ $C_{iss}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Breakdown Voltage Temperature Coefficient  Zero Gate Voltage Drain Current Gate—Body Leakage  TERISTICS  Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient  Static Drain to Source On—Resistance  Forward Transconductance | $\begin{split} &I_D = 250 \ \mu\text{A}, \\ &Referenced \ to \ 25^{\circ}\text{C} \\ &V_{DS} = 24 \ \text{V}, \ V_{GS} = 0 \ \text{V} \\ &V_{GS} = \pm 20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ &V_{DS} = V_{GS}, \ I_D = 250 \ \mu\text{A} \\ &I_D = 250 \ \mu\text{A}, \ Referenced \ to \ 25^{\circ}\text{C} \\ &I_D = 9.0 \ \text{A}, \ V_{GS} = 10 \ \text{V}, \\ &I_D = 8.5 \ \text{A}, \ V_{GS} = 4.5 \ \text{V} \\ &I_D = 9.0 \ \text{A}, \ V_{GS} = 10 \ \text{V}, \\ &T_J = 125^{\circ}\text{C} \end{split}$                                                                                                                                                                                            |                                         | 1.8<br>-5<br>13<br>16      | 3.0<br>-<br>16<br>19       | mV/°C μA nA V mV/°C                  |
| IDSS IGSS ON CHARAC  VGS(th)  ΔVGS(th)  ΔTJ  RDS(on)  GFS  DYNAMIC CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coefficient  Zero Gate Voltage Drain Current  Gate—Body Leakage  TERISTICS  Gate to Source Threshold Voltage  Gate to Source Threshold Voltage Temperature Coefficient  Static Drain to Source On—Resistance  Forward Transconductance                             | Referenced to 25°C $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \text{ μA}$ $I_D = 250 \text{ μA}, \text{ Referenced to } 25^{\circ}\text{C}$ $I_D = 9.0 \text{ A}, V_{GS} = 10 \text{ V},$ $I_D = 8.5 \text{ A}, V_{GS} = 4.5 \text{ V}$ $I_D = 9.0 \text{ A}, V_{GS} = 10 \text{ V},$ $T_J = 125^{\circ}\text{C}$                                                                                                                                                                                                                                                                                                                 | 1.2                                     | 1.8<br>-5<br>13<br>16      | 3.0<br>-<br>16<br>19       | μA nA V mV/°C                        |
| $\begin{array}{c} I_{GSS} \\ \hline \textbf{DN CHARAC} \\ \hline V_{GS(th)} \\ \hline \Delta V_{GS(th)} \\ \hline \Delta T_J \\ \hline R_{DS(on)} \\ \hline \\ \hline \textbf{GFS} \\ \hline \textbf{DYNAMIC CH} \\ \hline C_{iss} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gate-Body Leakage TERISTICS Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On-Resistance Forward Transconductance                                                                                | $\begin{split} V_{GS} = \pm 20 \ \text{V}, V_{DS} = 0 \ \text{V} \\ \\ V_{DS} = V_{GS}, I_D = 250 \ \mu\text{A} \\ \\ I_D = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C} \\ \\ I_D = 9.0 \ \text{A}, V_{GS} = 10 \ \text{V}, \\ \\ I_D = 8.5 \ \text{A}, V_{GS} = 4.5 \ \text{V} \\ \\ I_D = 9.0 \ \text{A}, V_{GS} = 10 \ \text{V}, \\ \\ T_J = 125^{\circ}\text{C} \end{split}$                                                                                                                                                                                                                                                                                                                  | 1.2                                     | 1.8<br>-5<br>13<br>16      | 3.0<br>-<br>16<br>19       | nA  V  mV/°C                         |
| $\begin{array}{c} \textbf{DN CHARAC} \\ \textbf{V}_{GS(th)} \\ \hline \Delta \textbf{V}_{GS(th)} \\ \hline \Delta \textbf{T}_{J} \\ \hline \textbf{R}_{DS(on)} \\ \\ \hline \\ \textbf{GS(on)} \\ \\ \hline \\ \textbf{GS(th)} \\ \hline \Delta \textbf{T}_{J} \\ \hline \\ \textbf{R}_{DS(on)} \\ \\ \hline \\ \textbf{GS(on)} \\ \\ \textbf{GS(on)} \\ \\ \hline \\ \textbf{GS(on)} \\ \\ \\ \textbf{GS(on)} \\ \\ \textbf{GS(on)} \\ \\ \\ \textbf{GS(on)} \\ \\ \\ \textbf{GS(on)} \\ \\ \\ \textbf{GS(on)} \\ \\ $ | Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On–Resistance Forward Transconductance                                                                                                            | $\begin{split} &V_{DS} = V_{GS}, I_D = 250 \; \mu A \\ &I_D = 250 \; \mu A, \; \text{Referenced to } 25^{\circ}\text{C} \\ \\ &I_D = 9.0 \; A, \; V_{GS} = 10 \; V, \\ &I_D = 8.5 \; A, \; V_{GS} = 4.5 \; V \\ \\ &I_D = 9.0 \; A, \; V_{GS} = 10 \; V, \\ &T_J = 125^{\circ}\text{C} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                     | 1.8<br>-5<br>13<br>16      | 3.0<br>-<br>16<br>19       | V<br>mV/°C                           |
| $\frac{V_{GS(th)}}{\Delta V_{GS(th)}}$ $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ $R_{DS(on)}$ $g_{FS}$ $DYNAMIC~CH$ $C_{iss}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On–Resistance Forward Transconductance                                                                                                            | $\begin{split} I_D &= 250~\mu\text{A},~\text{Referenced to}~25^{\circ}\text{C} \\ \\ I_D &= 9.0~\text{A},~\text{V}_{GS} = 10~\text{V}, \\ \\ I_D &= 8.5~\text{A},~\text{V}_{GS} = 4.5~\text{V} \\ \\ I_D &= 9.0~\text{A},~\text{V}_{GS} = 10~\text{V}, \\ \\ T_J &= 125^{\circ}\text{C} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>-                             | -5<br>13<br>16             | -<br>16<br>19              | mV/°C                                |
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ $R_{DS(on)}$ $\frac{g_{FS}}{DYNAMIC~CH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gate to Source Threshold Voltage Temperature Coefficient  Static Drain to Source On–Resistance  Forward Transconductance                                                                                                                                           | $\begin{split} I_D &= 250~\mu\text{A},~\text{Referenced to}~25^{\circ}\text{C} \\ \\ I_D &= 9.0~\text{A},~\text{V}_{GS} = 10~\text{V}, \\ \\ I_D &= 8.5~\text{A},~\text{V}_{GS} = 4.5~\text{V} \\ \\ I_D &= 9.0~\text{A},~\text{V}_{GS} = 10~\text{V}, \\ \\ T_J &= 125^{\circ}\text{C} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>-                             | -5<br>13<br>16             | -<br>16<br>19              | mV/°C                                |
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ $R_{DS(on)}$ $\frac{g_{FS}}{DYNAMIC~CH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature Coefficient  Static Drain to Source On–Resistance  Forward Transconductance                                                                                                                                                                            | $I_{D} = 9.0 \text{ A, } V_{GS} = 10 \text{ V,}$ $I_{D} = 8.5 \text{ A, } V_{GS} = 4.5 \text{ V}$ $I_{D} = 9.0 \text{ A, } V_{GS} = 10 \text{ V,}$ $T_{J} = 125^{\circ}\text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                       | 13<br>16                   | 19                         | ,                                    |
| g <sub>FS</sub><br>D <b>ynamic C</b> h<br>C <sub>iss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forward Transconductance                                                                                                                                                                                                                                           | $I_D$ = 8.5 A, $V_{GS}$ = 4.5 V<br>$I_D$ = 9.0 A, $V_{GS}$ = 10 V,<br>$T_J$ = 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       | 16                         | 19                         | mΩ                                   |
| g <sub>FS</sub><br>D <b>YNAMIC CH</b><br>C <sub>iss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                    | I <sub>D</sub> = 9.0 A, V <sub>GS</sub> = 10 V,<br>T <sub>J</sub> = 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | 1                          |                            |                                      |
| OYNAMIC CH<br>C <sub>iss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    | T <sub>J</sub> = 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 17                         | 21                         |                                      |
| OYNAMIC CH<br>C <sub>iss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    | V <sub>DD</sub> = 5 V, I <sub>D</sub> = 9.0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                            | 1                          |                                      |
| C <sub>iss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HARACTERISTICS                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                       | 41                         | -                          | S                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                            |                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Input Capacitance                                                                                                                                                                                                                                                  | $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                       | 539                        | 720                        | pF                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Output Capacitance                                                                                                                                                                                                                                                 | f = 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                       | 172                        | 230                        |                                      |
| C <sub>rss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reverse Transfer Capacitance                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                       | 24                         | 35                         |                                      |
| $R_{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gate Resistance                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                       | 1.3                        | _                          | Ω                                    |
| WITCHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHARACTERISTICS                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                            |                            |                                      |
| t <sub>d(on)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turn-On Delay Time                                                                                                                                                                                                                                                 | V <sub>DD</sub> = 15 V, I <sub>D</sub> = 9.0 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                       | 6                          | 12                         | ns                                   |
| t <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rise Time                                                                                                                                                                                                                                                          | $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                       | 2                          | 10                         |                                      |
| t <sub>d(off)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Turn-Off Delay Time                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                       | 14                         | 25                         |                                      |
| t <sub>f</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fall Time                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                       | 2                          | 10                         |                                      |
| Q <sub>g(TOT)</sub> Total Gate Charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Gate Charge                                                                                                                                                                                                                                                  | $V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 15 \text{ V}, I_D = 9.0 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       | 8.5                        | 12                         | nC                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                    | $V_{GS} = 0 \text{ V to } 4.5 \text{ V}, V_{DD} = 15 \text{ V}, I_D = 9.0 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                       | 4.1                        | 5.8                        | nC                                   |
| $Q_{gs}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gate to Source Charge                                                                                                                                                                                                                                              | V <sub>DD</sub> = 15 V, I <sub>D</sub> = 9.0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                       | 1.6                        | _                          |                                      |
| $Q_{qd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gate to Drain "Miller" Charge                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                       | 1.2                        | -                          |                                      |
| DRAIN-SOUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RCE DIODE CHARACTERISTICS AND MA                                                                                                                                                                                                                                   | AXIMUM RATINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                            |                            |                                      |
| $V_{SD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Source to Drain Diode Forward Voltage                                                                                                                                                                                                                              | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 2.0 A (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                       | 0.75                       | 1.2                        | V                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                    | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 9.0 A (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                       | 0.86                       | 1.2                        |                                      |
| t <sub>rr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reverse Recovery Time                                                                                                                                                                                                                                              | I <sub>F</sub> = 9.0 A, di/dt = 100 A/μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                       | 16                         | 28                         | ns                                   |
| Q <sub>rr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reverse Recovery Charge                                                                                                                                                                                                                                            | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                       | 4                          | 10                         | nC                                   |


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### NOTES:

1.  $R_{\theta JA}$  is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.  $R_{\theta,JC}$  is guaranteed by design while  $R_{\theta,CA}$  is determined by the user's board design.



a) 52°C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz. copper.



b) 145°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300  $\mu$ s, Duty Cycle < 2.0% 3. As an N-ch device, the negative  $V_{gs}$  rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

#### **TYPICAL CHARACTERISTICS**

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$ 

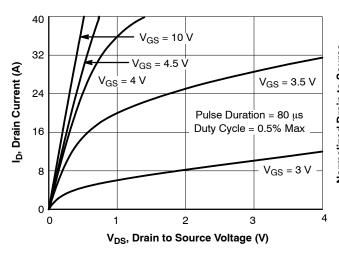



Figure 1. On-Region Characteristics

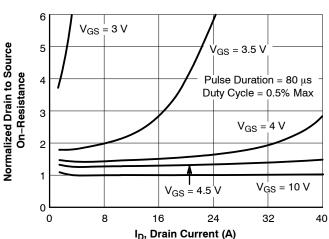



Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

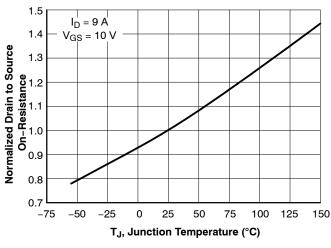



Figure 3. Normalized On–Resistance vs. Junction Temperature

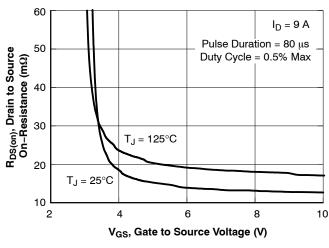



Figure 4. On-Resistance vs. Gate-to-Source Voltage

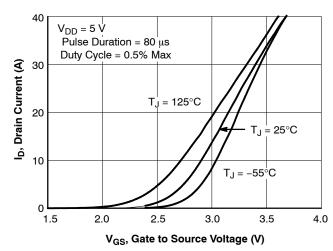



Figure 5. Transfer Characteristics

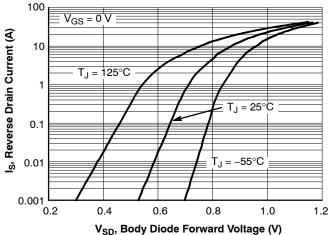



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

#### TYPICAL CHARACTERISTICS (continued)

(T<sub>J</sub> = 25°C unless otherwise noted)

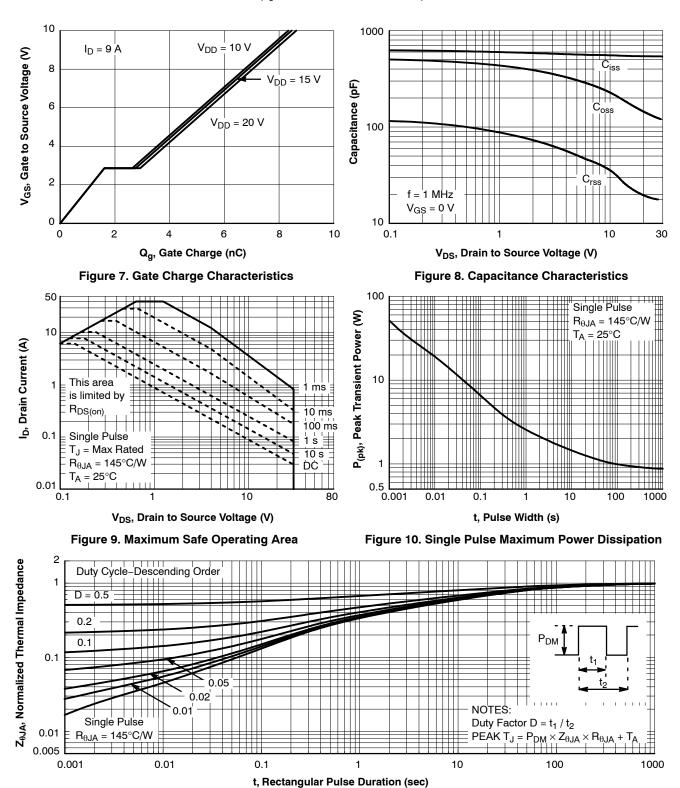
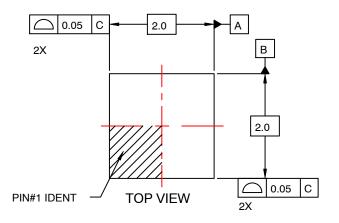


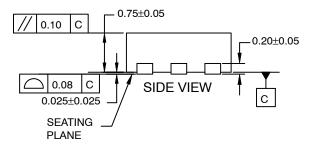

Figure 11. Transient Thermal Response Curve

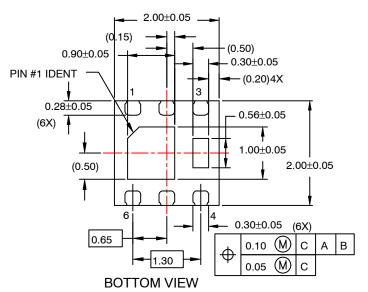
Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

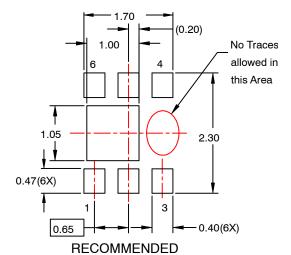
#### **ORDERING INFORMATION**

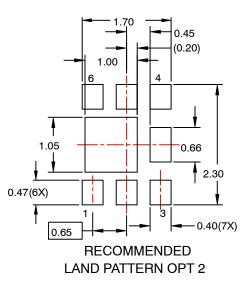
| Device Order Number | Package Type                   | Pin 1 Orientation in Tape Cavity | Shipping <sup>†</sup> |
|---------------------|--------------------------------|----------------------------------|-----------------------|
| FDMA8878            | WDFN6<br>(Pb-Free/Halide Free) | Top Left                         | 3000 / Tape & Reel    |
| FDMA8878-F130       | WDFN6<br>(Pb-Free/Halide Free) | Top Right                        | 3000 / Tape & Reel    |


<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <a href="https://example.com/BRD8011/D">BRD8011/D</a>.


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.





#### WDFN6 2x2, 0.65P CASE 511CZ ISSUE O


**DATE 31 JUL 2016** 











LAND PATTERN OPT 1

# NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC MO-229 REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

| DOCUMENT NUMBER: | 98AON13614G      | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | WDFN6 2X2, 0.65P |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales