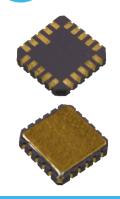
Surface Mount Quad PNP Transistor

2N6987U (TX, TXV)

Electronics


OPTEK Technology, Inc.

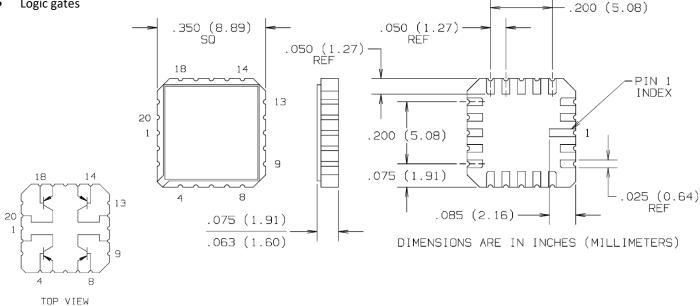
1645 Wallace Drive, Carrollton, TX 75006 Ph: +1 972 323 2200

www.optekinc.com | www.ttelectronics.com

Features:

- Ceramic 20 pin surface mount package
- Small package to minimize circuit board area
- Electrical performance similar to a 2N2907
- Hermetically sealed
- Processed per MIL-PRF-19500/558

Description:


The 2N6987U (TX, TXV) is a hermetically sealed, ceramic surface-mount device, consisting of 4 silicon PNP transistors. The 20 pin ceramic package is ideal for designs where board space and device weight are important design considerations.

Typical screening and lot acceptance test are per MIL-PRF-19500/558. The burn-in condition is V_{CB} = 30 V, P_D = 250 mW each transistor, T_A =25° C. Refer to MIL-PRF-19500/558 for complete requirements.

When ordering parts without processing, do not use the TX or TXV suffix.

Applications:

- General switching
- Amplification
- Signal processing
- Radio transmission
- Logic gates

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Issue C 07/2019 Page 1

Surface Mount Quad PNP Transistor

2N6987U (TX, TXV)

Electrical Specifications

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)					
60 V					
60 V					
5 V					
600 mA					
-65° C to +200 °C					
0.5 W					
1 W ⁽¹⁾					
500 V					

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
OFF CHAR	ACTERISTICS				
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	60		V	Ι _C = 10 μΑ
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage	60		V	$I_C = 10 \ \mu A^{(2)}$
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	5		V	Ι _Ε = 10 μΑ
I _{CBO2}	Collector-Base Cutoff Current		10	nA	V _{CB} = 50 V
I _{CBO3}	Emitter-Base Cutoff Current		10	μΑ	V _{EB} = 50 V, TA = 150° C
I _{EBO}	Emitter-Base Cutoff Current		50	nA	V _{EB} = 4 V
ON CHAR	ACTERISTICS				
h _{FE 1}	Forward-Current Transfer Ratio	75		-	$V_{CE} = 10 \text{ V}, I_{C} = 0.1 \text{ mA}$
h _{FE 2}	Forward-Current Transfer Ratio	100	450	-	$V_{CE} = 10 \text{ V}, I_{C} = 1.0 \text{ mA}$
h _{FE 3}	Forward-Current Transfer Ratio	100		-	$V_{CE} = 10 \text{ V, } I_{C} = 10 \text{ mA}^{(2)}$
h _{FE 4}	Forward-Current Transfer Ratio	100	300	-	$V_{CE} = 10 \text{ V, } I_{C} = 150 \text{ mA}^{(2)}$
h _{FE 5}	Forward-Current Transfer Ratio	50		-	$V_{CE} = 10 \text{ V, } I_{C} = 500 \text{ mA}^{(2)}$
h _{FE 6}	Forward-Current Transfer Ratio	50		-	$V_{CF} = 10 \text{ V}, I_{C} = 1 \text{ mA}, T_{A} = -55^{\circ} \text{ C}$

Note

- 1. Derate linearly 8.57 mW/°C above $T_A = 25$ °C
- 2. Pulse Width = 300 μ s ±50, 1-2% Duty Cycle

Surface Mount Quad PNP Transistor

2N6987U (TX, TXV)

Electrical Characteristics (T _A = 25° C unless otherwise noted)								
SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS			
ON CHARA	ACTERISTICS							
V _{CE (SAT)} 1	Collector-Emitter Saturation Voltage		0.4	V	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}^{(2)}$			
V _{CE (SAT)2}	Collector-Emitter Saturation Voltage		1.6	V	I _C = 500 mA, I _B = 50 mA ⁽²⁾			
V _{BE(SAT) 1}	Base-Emitter Saturation Voltage		1.3	V	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}^{(2)}$			
V _{BE(SAT) 2}	Base-Emitter Saturation Voltage		2.6	V	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}^{(2)}$			
SMALL-SIG	GNAL CHARACTERISTICS							
h _{fe}	Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio	2	8	-	V _{CE} = 20 V, I _C = 50 mA, f = 100 MHz			
h _{fe}	Small Signal Short Circuit Forward Current Transfer Ratio	100		-	V _{CE} = 10 V, I _C = 1 mA, f = 1 kHz			
C_obo	Open Circuit Output Capacitance		8	pF	$V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1 \text{ MHZ}$			
C_{ibo}	Input Capacitance (Output Open)		30	pF	$V_{EB} = 2 \text{ V, } I_C = 0, 100 \text{ kHz} \le f \le 1 \text{ MHZ}$			
SWITCHIN	IG CHARACTERISTICS							
t_{on}	Turn-On Time		45	ns	$V_{CC} = 30 \text{ V}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$			
t_{off}	Turn-Off Time		300	ns	$V_{CC} = 30 \text{ V}, I_C = 150 \text{ mA}, I_{B1} = I_{B2} = 15 \text{ mA}$			
TRANSIST	OR TO TRANSISTOR ISOLATION							
R _{t-t}	Isolation Resistance		10k	МΩ	V _{t-t} = 500 V			

Note

^{1.} Derate linearly 8.57 mW/°C above $T_A = 25$ °C

^{2.} Pulse Width = 300 μ s ±50, 1-2% Duty Cycle