

BeStar Technologies Inc.

Address: 761 N. 17th Street Unit 4, St. Charles, IL 60174
Tel: 847-261-2850 E-mail: sales@bestartech.com Web: www.bestartech.com

Document Number : 0004-95 Revision : A5 **Total Pages** : 5

Prepare by : Loki, Lo

: 29 August, 2013 Date

SoniCrest Brand Acoustic Components

www.jlsonicrest.com

Document Type : Specification

Product Type : Electro-magnetic Sound Generator Component

Part Number : HC0905A

A3 - Updated format and layout by Leo Sin on 29 Dec., 2003	
A4 - Updated RoHS version by Leo Sin on 17 May, 2006	
A5 - Updated section 6 by Loki, Lo on 29 Aug., 2013	

This material is the property of BeStar Technologies Inc. Unauthorized copying or use of this material is prohibited.

1. Purpose and Scope

This document contains both general requirements, qualification requirements, and those specific electrical, mechanical requirements for this part.

2. Description

Ø9.5mm electro-magnetic sound generator, RoHS compliant.

3. Application

Telecommunication Equipment, Computers and Peripherals, Portable Equipment, Automobile Electronics, POS System, etc.

4. Component Requirement

4.1. General Requirement

4.1.1. Operating Temperature Range : -20°C to +60°C

4.1.2. Storage Temperature Range : -30°C to +70°C

4.1.3. Weight : Approx. 1g

4.2. Electrical Requirement

4.2.1. Rated Voltage : 5V

4.2.2. Operating Voltage : 4V to 7V

4.2.3. Rated Current : <=80mA

4.2.4. Coil Resistance : $40 \pm 4 \Omega$

4.2.5. Sound Pressure Level at 10cm :>=85dB

(Applying rated voltage)

4.2.6. Rated Frequency : 3200Hz

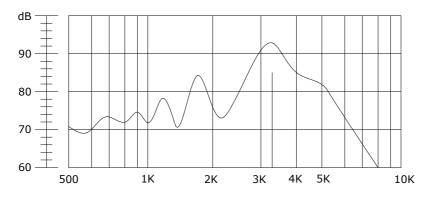


Figure 1. Frequency Response

4.3. Mechanical Requirement

4.3.1. Layout and Dimension

: See Section 6, Figure 3

4.4. Test Setup

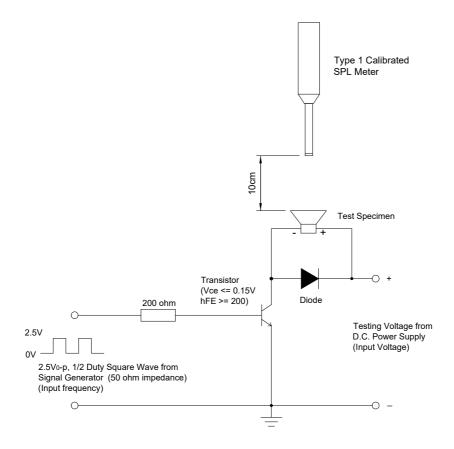


Figure 2. Test Setup

Notes: Apply 2.5Vo-p from Signal Generator, set rated signal from Signal Generator. Measure SPL using a calibrated SPL meter 10cm from the sound port. Sound level meter to be in accordance with IEC651 (1979) Type 1 and/or ANSI S1.4-1983. The meter must be checked on a daily basis using a calibrated acoustic calibrator recommended by the manufacturer. Measurement should be carried out in a free field environment or at least 40cm from any surface.

HC0905A

5. Reliability Test

- **5.1. High Temperature**: Subject samples to $+60 \pm 3$ °C and operate for 96 hours. Components must be fully stabilized at temperature extremes before data is taken, which may require up to a 2 hours soak.
- **5.2.** Low Temperature: Subject samples to -20 ± 3 °C and operate for 96 hours. Components must be fully stabilized at temperature extremes before data is taken, which may require up to a 2 hours soak.
- **5.3. Temperature Shock**: Each temperature cycle shall consist of 1 hour at -20°C followed by 1 hour at +60°C with a 20 seconds maximum transition time between temperature extremes. Test duration is for 32 cycles.
- **5.4. Static Humidity**: Precondition at +25°C for 1 hour. Then expose to +40°C with 90 to 95% relative humidity for 96 hours. Finally dry at room ambient for 2 hours before taking final measurement.
- **5.5. Random Vibration** : Secure samples. Vibrated randomly $10\text{Hz} \sim 50\text{Hz} \sim 10\text{Hz}$ with 0.75mm peak amplitude and $30\text{Hz} \sim 50\text{Hz} \sim 30\text{Hz}$ with 0.15mm peak amplitude. The test duration is 30 minutes per plane.
- **5.6. Mechanical Shock**: Secure samples as required. Then subject samples to half sine wave pules $(100 \text{m/s}^2 \text{ for } 16 \text{ms})$ for a total of 1000 ± 10 shocks.
- **5.7. Drop Test**: Drop samples naturally from the height of 1mm onto a wooden board six times.

HC0905A Page 5 of 5

6. Mechanical Layout

Unit: mm

Tolerance : Linear $XX.X = \pm 0.3$

 $XX.XX = \pm 0.05$

Angular = $\pm 0.25^{\circ}$

(unless otherwise specified)

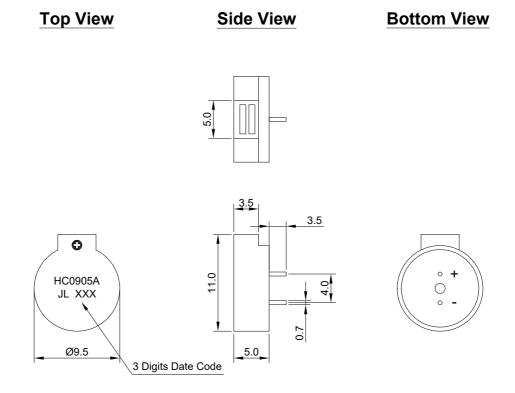


Figure 3. HC0905A Mechanical Layout