

NPN SILICON GERMANIUM RF TRANSISTOR NESG2021M05

NPN SIGE RF TRANSISTOR FOR LOW NOISE, HIGH-GAIN AMPLIFICATION FLAT-LEAD 4-PIN THIN-TYPE SUPER MINIMOLD (M05)

FEATURES

- The device is an ideal choice for low noise, high-gain at low current amplifications
 NF = 0.9 dB TYP., Ga = 18.0 dB TYP. @ VcE = 2 V, Ic = 3 mA, f = 2 GHz
 NF = 1.3 dB TYP., Ga = 10.0 dB TYP. @ VcE = 2 V, Ic = 3 mA, f = 5.2 GHz
- Maximum stable power gain: MSG = 22.5 dB TYP. @ VcE = 3 V, Ic = 10 mA, f = 2 GHz
- High breakdown voltage technology for SiGe Tr. adopted: VcEo (absolute maximum ratings) = 5.0 V
- Flat-lead 4-pin thin-type super minimold (M05) package

ORDERING INFORMATION

Part Number	Quantity	Supplying Form	
NESG2021M05-A	50 pcs (Non reel)	• 8 mm w ide embossed taping	
NESG2021M05-T1-A	3 kpcs/reel	Pin 3 (Collector), Pin 4 (Emitter) face the perforation side of the tape	

Remark To order evaluation samples, contact your nearby sales office.

Unit sample quantity is 50 pcs.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Collector to Base Voltage	Vcво	13.0	V
Collector to Emitter Voltage	Vceo	5.0	V
Emitter to Base Voltage	V _{ЕВО}	1.5	V
Collector Current	lc	35	mA
Total Pow er Dissipation	Ptot Note	175	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 to +150	°C

Note Mounted on 1.08 cm² × 1.0 mm (t) glass epoxy PCB

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

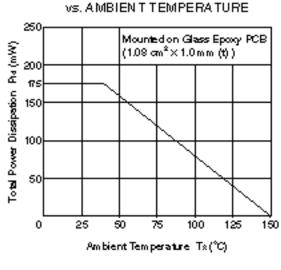
Document No. PU10188EJ02V0DS (2nd edition) Date Published March 2003 CP(K) The mark ★ shows major revised

ELECTRICAL CHARACTERISTICS (TA = +25°C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit		
DC Characteristics								
Collector Cut-off Current ICBO		VcB = 5 V, le = 0 mA	_	_	100	nA		
Emitter Cut-off Current	Ево	V _{EB} = 1 V, lc = 0 mA	-	-	100	nA		
DC Current Gain	hfe Note 1	VcE = 2 V, lc = 5 mA	130	190	260	-		
RF Characteristics								
Gain Bandw idth Product	fτ	VcE = 3 V, lc = 10 mA, f = 2 GHz	20	25	_	GHz		
Insertion Pow er Gain	S _{21e} 2	VcE = 3 V, lc = 10 mA, f = 2 GHz	17.0	19.0	_	dB		
Noise Figure (1)	NF	$\begin{split} &\text{Vce} = 2 \text{ V}, \text{ lc} = 3 \text{ mA}, \text{ f} = 2 \text{ GHz}, \\ &\text{Zs} = Z_{\text{Sopt}}, \text{ ZL} = Z_{\text{Lopt}} \end{split}$	_	0.9	1.2	dB		
Noise Figure (2)	NF	$\begin{split} &\text{Vce} = 2 \text{ V, lc} = 3 \text{ mA, f} = 5.2 \text{ GHz}, \\ &\text{Zs} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$	_	1.3	_	dB		
Associated Gain (1)	Ga	$\begin{split} &V_{CE}=2~V,~lc=3~mA,~f=2~GHz,\\ &Z_{S}=Z_{Sopt},~Z_{L}=Z_{Lopt} \end{split}$	15.0	18.0	-	dB		
Associated Gain (2)	Ga	$\begin{split} &\text{Vce} = 2 \text{ V, lc} = 3 \text{ mA, f} = 5.2 \text{ GHz}, \\ &\text{Zs} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$	_	10.0	_	dB		
Reverse Transfer Capacitance	Cre Note 2	VcB = 2 V, IE = 0 mA, f = 1 MHz	_	0.1	0.2	pF		
Maximum Stable Pow er Gain	MSG Note	VcE = 3 V, lc = 10 mA, f = 2 GHz	20.0	22.5	-	dB		
Gain 1 dB Compression Output Pow er	Po (1 dB)	$\label{eq:Vce} \begin{split} &\text{Vce} = 3 \text{ V, lc} = 12 \text{ mA, f} = 2 \text{ GHz,} \\ &\text{Zs} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$	-	9.0	-	dBm		
3rd Order Intermodulation Distortion Output Intercept Point	OIP ₃	$\begin{split} &\text{VcE} = 3 \text{ V, lc} = 12 \text{ mA, f} = 2 \text{ GHz,} \\ &\text{Zs} = Z \text{sopt, } Z \text{L} = Z \text{Lopt} \end{split}$	-	17.0	-	dBm		

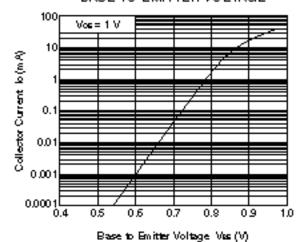
Notes 1. Pulse measurement: PW \leq 350 μ s, Duty Cycle \leq 2%

2. Collector to base capacitance when the emitter grounded

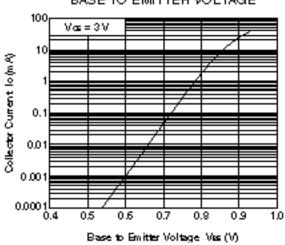

3. MSG =
$$\frac{S_{21}}{S_{12}}$$

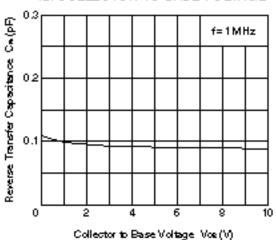
hfe CLASSIFICATION

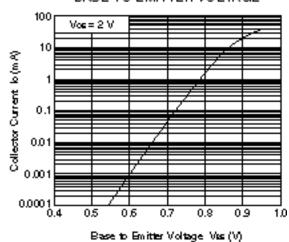
Rank	FB		
Marking	T1G		
hre Value	130 to 260		

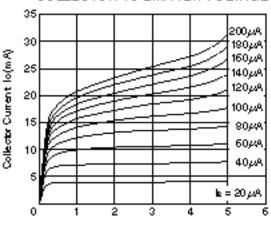

TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

TOTAL POWER DISSIPATION

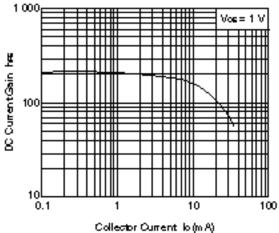


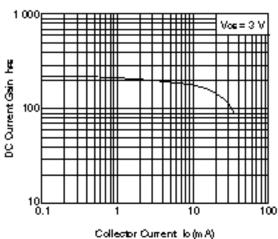

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

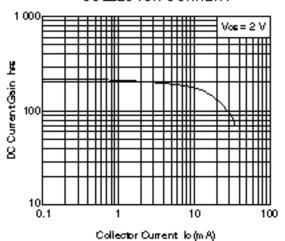

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

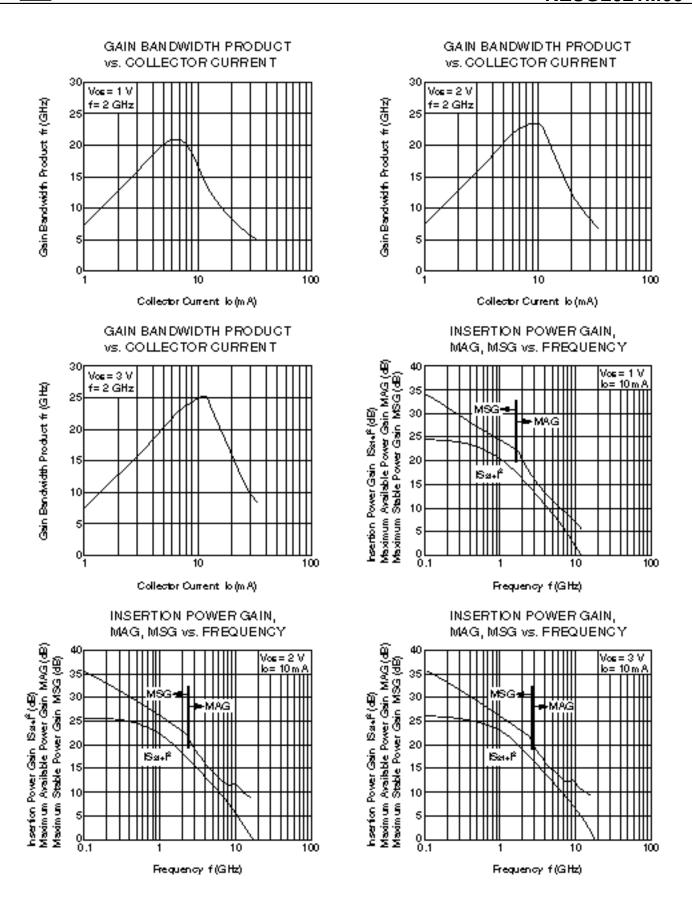

REVERSE TRANSFER GAPACITANGE vs. COLLECTOR TO BASE VOLTAGE

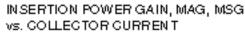
COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

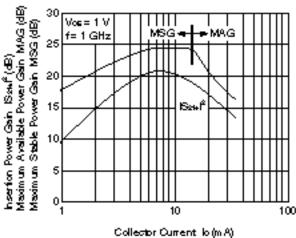

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE


Collector to Emitter Voltage Vos (V)

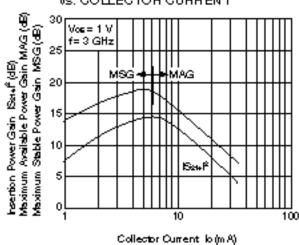

DC GURRENT GAIN vs.

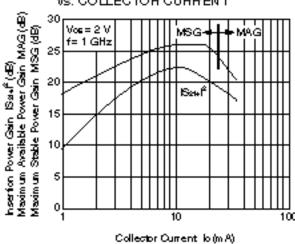


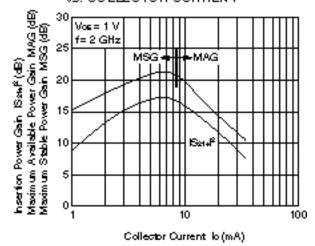

DC GURRENT GAIN vs. GOLLECTOR GURRENT

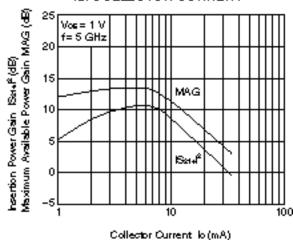


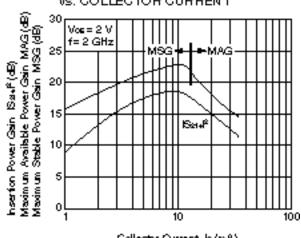
DC GURRENT GAIN vs. COLLECTOR CURRENT

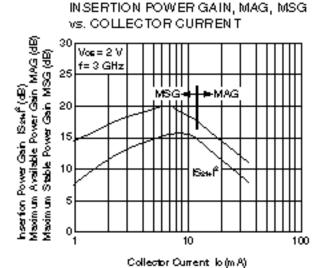


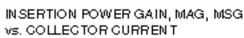


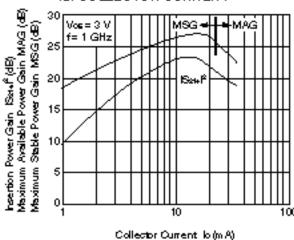

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

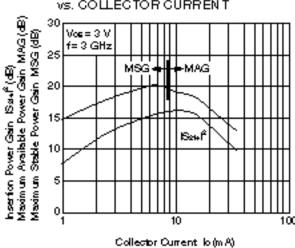

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR GURRENT

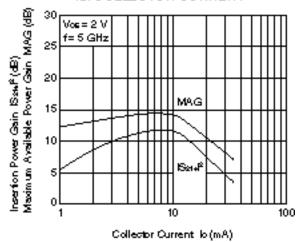

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

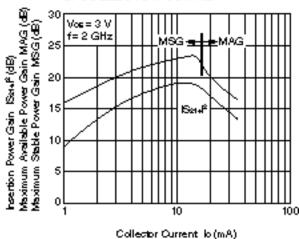

INSERTION POWER GAIN, MAG vs. COLLECTOR CURRENT

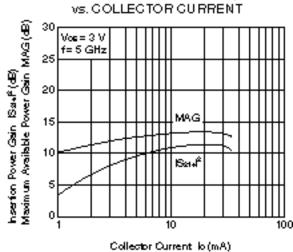


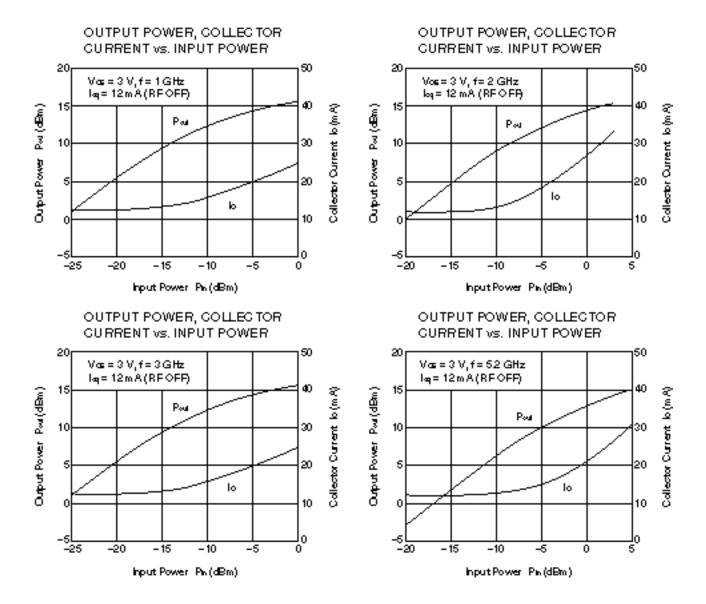

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR GURRENT

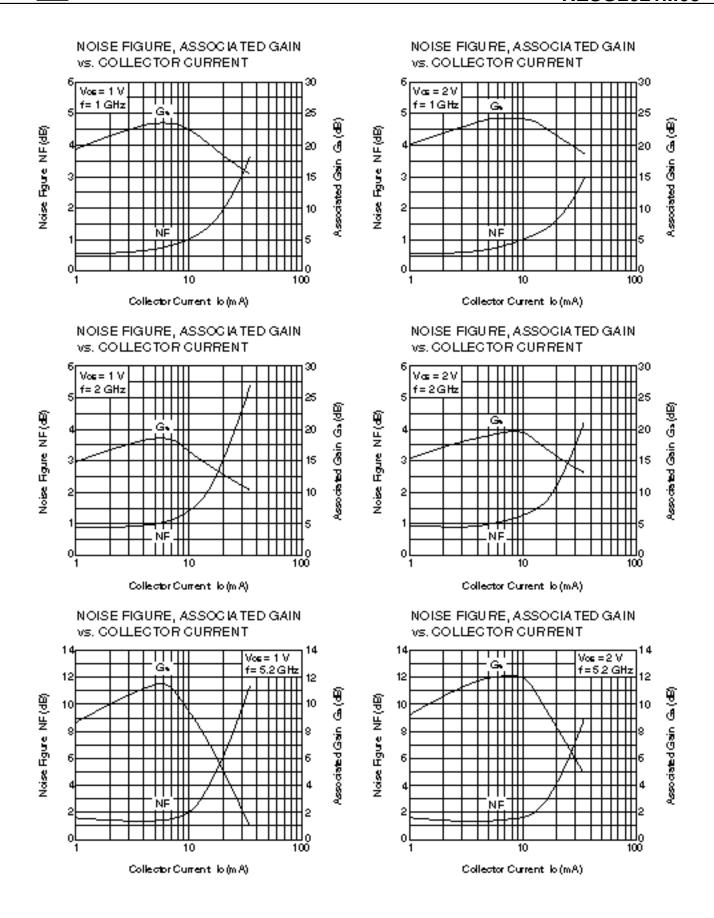

Collector Current lo (mA)

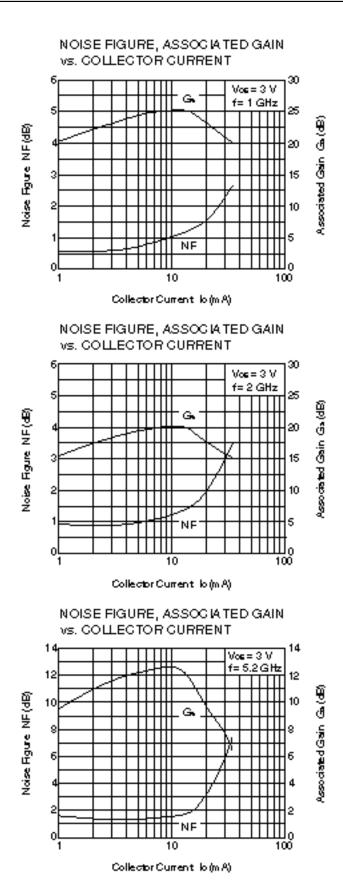



INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

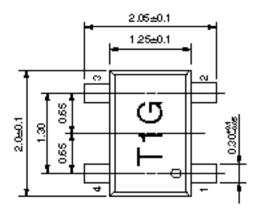

INSERTION POWER GAIN, MAG vs. COLLECTOR CURRENT

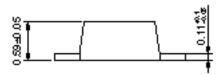



INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT



INSERTION POWER GAIN, MAG


Remark The graphs indicate nominal characteristics.


S-PARAMETERS

- S-parameters and noise parameters are provided on our Web site in a format (S2P) that enables the direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.
- · Click here to download S-parameters.
- [RF and Microwave] ® [Device Parameters]
- URL http://www.necel.com/microwave/en/

PACKAGE DIMENSIONS

FLAT-LEAD 4-PIN THIN-TYPE SUPER MINIMOLD (M05) (UNIT: mm)

PIN CONNECTIONS

- 1. Base
- 2. Emitter
- 3. Collector
- 4. Emitter