

FRED Pt® Gen 5 Ultrafast Single Phase Bridge, 600 V, 30 A

SOT-227

PRIMARY CHARACTERISTICS						
V _{RRM}	600 V					
I _O at T _C = 131 °C	30 A					
V _F (typical) at 30 A, per diode	1.6 V					
t _{rr} (typical) at 30 A, per diode	63 ns					
Type	Modules - Bridge, Hyperfast					
Package	SOT-227					
Circuit configuration	Single phase bridge					

FEATURES

- Ultrafast and optimized Q_{rr}
- Best in class forward voltage drop and switching losses trade off

- · Optimized for high speed operation
- 175 °C maximum operating junction temperature
- · Electrically isolated base plate
- Large creepage distance between terminal
- · Simplified mechanical designs, rapid assembly
- · Designed and qualified for industrial level
- UL approved file E78996
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

Featuring a unique combination of low conduction and switching losses, the VS-U5FH30BA60 is the right choice for high frequency converters, both soft switched / resonant. The semiconductor in the SOT-227 package is isolated from the copper base plate, allowing for common heatsinks and compact assemblies to be built.

These modules are specifically designed to improve efficiency of PFC and output rectification stages of EV / HEV battery charging stations, booster stage of solar inverters, and UPS applications, these devices are perfectly matched to operate with MOSFETs or high speed IGBTs.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
1	180° rect. conduction angle	30	Α				
IO	T _C	131	°C				
1	50 Hz	290	Δ.				
IFSM	60 Hz	305	A				
I ² t	50 Hz	424	A ² s				
1-1	60 Hz	387	A-5				
V _{RRM}		650	V				
TJ		-55 to +175	°C				

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V				
VS-UFH30BA60	60	600	600				

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	MBOL TEST CONDITIONS		TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V_{BR}	I _R = 100 μA	600	-	-		
Forward voltage	V	I _F = 30 A	-	1.6	2.1	V	
Forward voltage V _{FM}		I _F = 30 A, T _J = 150 °C	-	1.26	-		
		V _R = 600 V	-	0.1	30		
Reverse leakage current	I _{RM}	T _J = 125 °C, V _R = 600 V	-	14	-	μΑ	
		T _J = 150 °C, V _R = 600 V	-	53	-		
RMS isolation voltage base plate	V _{ISOL}	f = 50 Hz, any terminal to case, t = 1 min	2500	-	=	V	

FORWARD CONDUCTION											
PARAMETER	SYMBOL	L TEST CONDITIONS			VALUES	UNITS					
Maximum DC output current	,	Resistive or ind	uctive load		30	Α					
at case temperature	lo				131	°C					
		t = 10 ms	No voltage		291						
Maximum peak, one-cycle	,	t = 8.3 ms	reapplied		305	A					
non-repetitive forward current	I _{FSM}	t = 10 ms	100 % V _{RRM}	Latital T. OF 90	245						
	t =	t = 8.3 ms	reapplied		256						
	l ² t	t = 10 ms	No voltage	Initial $T_J = 25 ^{\circ}\text{C}$	424						
Maximum I ² t for fusing		12+	12+	12+	12+	12+	t = 8.3 ms	reapplied		387	A ² s
iviaximum i-t for fusing		t = 10 ms	100 % V _{RRM}		300	A-5					
		t = 8.3 ms	reapplied		274						
Maximum I ² √t for fusing	I ² √t	I^2t for time $t_x = I_2\sqrt{t} \times \sqrt{t_x}$; $0.1 \le t_x \le 10$ ms, $V_{RRM} = 0$ V			4244	kA²√s					
Low level of threshold voltage, per leg	V _{F(T0)1}	(16.7.0/ x = x				V					
Low level value of forward slope resistance	r _{f1}	$110.770 \times 1.0 \times 10^{-1} $				mΩ					
High level of threshold voltage, per leg	V _{F(T0)2}	70)2 (1 > 7 × 1 -) T = T movimum			V						
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$ 23.71 m				mΩ					

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST	TEST CONDITIONS		TYP.	MAX.	UNITS	
Deverage recovery time		T _J = 25 °C		-	57	-		
Reverse recovery time	t _{rr}	T _J = 125 °C		-	62	-	ns	
Dook roomsons ourront	_	T _J = 25 °C	$I_F = 30 \text{ A},$ $di_F/dt = 1000 \text{ A/}\mu\text{s},$ $V_R = 400 \text{ V}$	-	12	-	А	
Peak recovery current	I _{RRM}	T _J = 125 °C		-	25	-		
Deviates resources aboves	0	T _J = 25 °C	''	-	0.3	-		
Reverse recovery charge	Q_{rr}	T _J = 125 °C		-	0.9	-	μC	
Junction capacitance	C _T	V _R = 600 V, f = 1 MHz		-	29	-	pF	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Single phase bridge - Thermal resistance junction to case, per diode	R _{thJC}		-	-	1.39	°C/W
Thermal resistance case to heatsink, per module	R _{thCS}	Flat, greased, surface	-	0.05	-	C/VV
Weight			-	30	-	g
Mounting torque		Torque per diode	-	-	1.1 (9.7)	Nm (lbf.in)
iviounting torque		Torque to heatsink	-	-	1.8 (15.9)	Nm (lbf.in)
Case style				SC	OT-227	

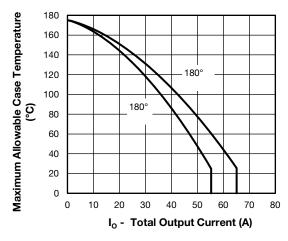


Fig. 1 - Current Rating Characteristics

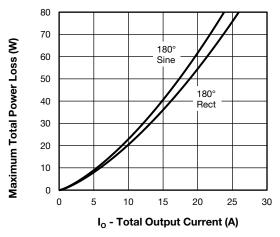


Fig. 2 - Total Power Loss Characteristics

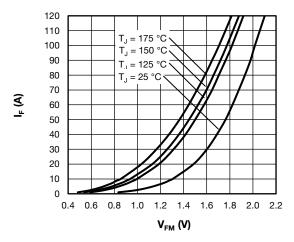


Fig. 3 - Typical Forward Voltage Drop Characteristics

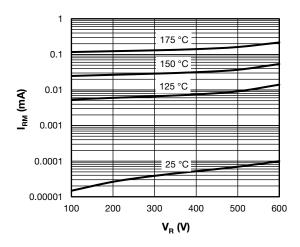
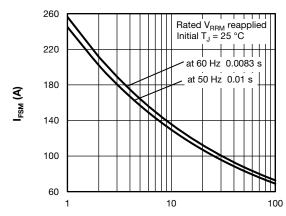



Fig. 4 - Typical Values of Reverse Current

Number of Equal Amplitude Half Cycle Current Pulses (N)

Fig. 5 - Non-Repetitive Peak Forward Surge Current vs. Number Pulses

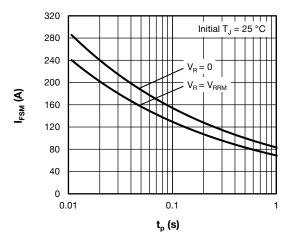


Fig. 6 - Non-Repetitive peak Forward Surge Current vs. Pulse Duration

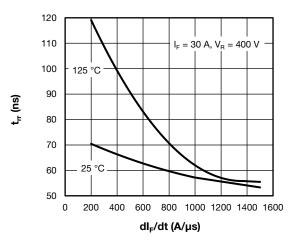
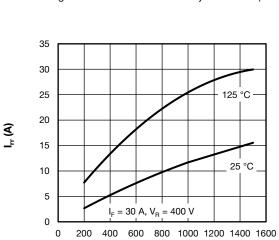



Fig. 7 - Diode Reverse Recovery Time vs. dI_Fdt

0 200

dl_E/dt (A/µs) Fig. 8 - Diode Reverse Recovery Current vs. dl_Fdt

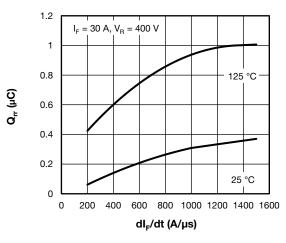


Fig. 9 - Diode Reverse Recovery Charge vs. dl_Fdt

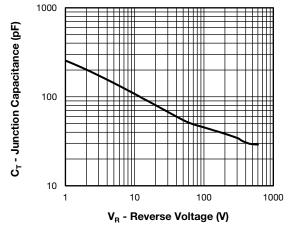


Fig. 10 - Junction Capacitance

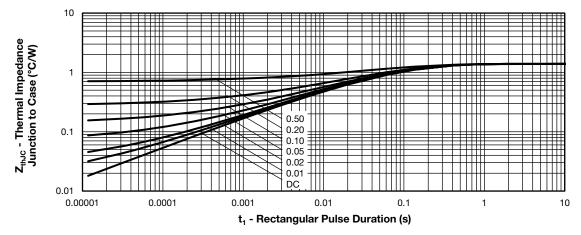
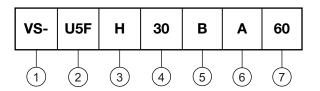



Fig. 11 - Maximum Thermal Impedance Junction to Case

ORDERING INFORMATION TABLE

Device code

Vishay Semiconductors product

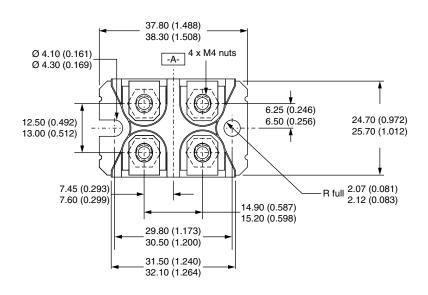
- U5F = Gen 5 FRED Pt® family

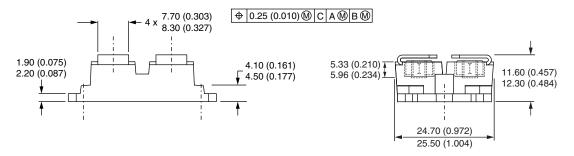
H = Ultrafast FRED Pt[®] diode

- Current rating per module (30 = 30 A)

5 - B = circuit configuration (Single phase bridge)

Package indicator (SOT-227 standard insulated base)


7 - Voltage rating (60 = 600 V)


CIRCUIT CONFIGURATION						
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Single phase bridge	В	4 (AC) 3 (-) Lead Assignment 4 (AC) 2 (AC)				

LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?95423</u>					
Packaging information	www.vishay.com/doc?95425				

SOT-227 Generation 2

DIMENSIONS in millimeters (inches)

Note

· Controlling dimension: millimeter

Revision: 19-May-2020 1 Document Number: 95423

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED