

STP16DPPS05

Low voltage 16-bit constant current LED sink driver with output error detection and auto power-saving

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial data IN/parallel data OUT
- Auto power-saving
- 3.3 V MCU-driving capability
- Output current: 3 to 40 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection: 2 kV HBM, 200 V MM

Description

The STP16DPPS05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The device features a 16-

bit serial-in, parallel-out shift register that feeds a 16-bit D-type storage register. In the output stage, sixteen regulated current sources are designed to provide 3 to 40 mA of constant current to drive the LEDs. The STP16DPPS05 features open and short LED detection on the outputs. The detection circuit checks for 3 different conditions that can occur on the output line: short to GND, short to Vo or open line. The data detection results are loaded in the shift registers and shifted out via the serial line output. The detection functionality is implemented without increasing the pin count, through a secondary function of the output enable and latch pin (DM1 and DM2 respectively). A dedicated logic sequence allows the device to enter or exit from detection mode. The STP16DPPS05 output current can be adjusted through an external resistor to control the light intensity of the LEDs. LED brightness is adjustable from 0% to 100% via the OE/DM2 pin.

The auto power-shutdown and auto power-ON feature allows the device to save power with no external intervention. The STP16DPPS05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high 30 MHz clock frequency makes the device suitable for high data rate transmission. The 3.3 V supply is well suited for applications which interface a 3.3 V MCU. Compared to a standard TSSOP package, the TSSOP with exposed pad increases heat dissipation capability by a factor of 2.5.

Table 1: Device summary

Order code	Package	Packing
STP16DPPS05MTR	SO-24 (tape and reel)	1000 parts per reel
STP16DPPS05TTR	TSSOP24 (tape and reel)	2500 parts per reel
STP16DPPS05XTTR	TSSOP24 exposed pad (tape and reel)	2500 parts per reel
STP16DPPS05PTR	QSOP-24	2500 parts per reel

April 2017 DocID15817 Rev 4 1/36

This is information on a product in full production.

www.st.com

Contents

1	Summa	ry description	3
	1.1	Pin connection and description	3
2	Electric	al ratings	4
	2.1	Absolute maximum ratings	4
	2.2	Thermal data	4
	2.3	Recommended operating conditions	5
3	Electric	al characteristics	6
4	Equival	ent circuit and outputs	8
5	Timing	diagrams	11
6	Typical	characteristics	14
7	Error de	etection mode functionality	18
	7.1	Phase one: entering error detection mode	
	7.2	Phase two: error detection	19
	7.3	Phase three: resuming normal mode	21
	7.4	Error detection conditions	21
	7.5	Auto power-saving	23
8	Packag	e information	25
	8.1	QSOP-24 package information	26
	8.2	SO-24 package information	28
	8.3	TSSOP24 package information	29
	8.4	TSSOP exposed pad package information	31
	8.5	TSSOP24, TSSOP24 exposed pad and	
		SO-24 packing information	33
a	Ravisio	n history	35

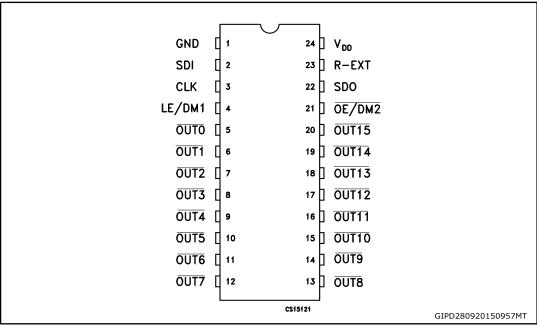

1 Summary description

Table 2: Typical current accuracy

Output voltage	Current a	Current accuracy		V	Temperature	
Output voltage	Between bits	Between ICs	Output current	V _{DD}	remperature	
≥ 1.3 V	± 1%	± 2%	5 to 40 mA	3.3 V to 5 V	25 °C	

1.1 Pin connection and description

Figure 1: Pin connection

The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3: Pin description

Pin n°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE/DM1	Latch input terminal - detect mode 1 (see operation principle)
5-20	OUT 0-15	Output terminal
21	OE/DM2	Input terminal of output enable (active low) - detect mode 1 (see operation principle)
22	SDO	Serial data out terminal
23	R-EXT	Input terminal for an external resistor for constant current programming
24	V_{DD}	Supply voltage terminal

Electrical ratings STP16DPPS05

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the ratings listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other condition above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
lo	Output current	50	mA
Vı	Input voltage	-0.4 to V _{DD}	V
Ignd	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz
TJ	Junction temperature range (1)	-40 to + 170	°C

Notes:

2.2 Thermal data

Table 5: Thermal data

Symbol	Parameter		Value	Unit
TA	Operating free-air temperature range		-40 to +125	°C
T _{J-OPR}	Operating thermal junction temperature ra	nge	-40 to +150	
T _{STG}	Storage temperature range	-55 to +150	°C	
		SO-24	42.7	°C/W
	Thermal resistance junction-ambient (1)	TSSOP24	55	°C/W
R_{thJA}		TSSOP24 (2)	37.5	°C/W
		exposed pad	37.5	C/VV
		QSOP-24	55	°C/W

Notes:

⁽¹⁾ Such absolute value is based on the thermal shutdown protection.

⁽¹⁾ According with JEDEC standard 51-7B.

⁽²⁾ The exposed pad should be soldered directly to the PCB to obtain the thermal benefits.

STP16DPPS05 Electrical ratings

2.3 Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage		3.0	-	5.5	V
Vo	Output voltage			-	20	V
lo	Output current	OUTn	3	-	40	mA
Іон	Output current	SERIAL-OUT		-	+1	mA
loL	Output current	SERIAL-OUT		-	-1	mA
V_{IH}	Input voltage		$0.7~V_{DD}$	-	V_{DD}	V
VIL	Input voltage		-0.3	-	0.3 V _{DD}	V
t_{wLAT}	LE/DM1 pulse width		20	-		ns
twclk	CLK pulse width		10	-		ns
twen	OE/DM2 pulse width	V _{DD} = 3.0 V to 5.0 V	100	-		ns
tsetup(D)	Setup time for DATA		8	-		ns
thold(d)	Hold time for DATA		5	-		ns
t _{SETUP(L)}	Setup time for LATCH		8	-		ns
fclk	Clock frequency	Cascade operation (1)		-	30	MHz

Notes:

 $^{^{(1)}}$ If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

3 Electrical characteristics

 $V_{DD} = 3.3 \text{ V}$ to 5 V, $T_A = 25 \,^{\circ}\text{C}$, unless otherwise specified.

Table 7: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IH}	Input voltage high level		0.7 V _{DD}		V_{DD}	V
VIL	Input voltage low level		GND		0.3 V _{DD}	V
I _{OH}	Output leakage current	V _{OH} = 20 V			1	μA
Vol	Output voltage (serial-OUT)	I _{OL} = 1 mA			0.4	V
Vон	Output voltage (serial-OUT)	I _{OH} = -1 mA	V _{DD} -0.4 V			V
I _{OL1}		$V_O = 0.3 \text{ V}, R_{ext} = 4 \text{ k}\Omega$	4.75	5	5.25	
I _{OL2}	Output current	$V_0 = 0.3 \text{ V}, R_{\text{ext}} = 1 \text{ k}\Omega$	19	20	21	
I _{OL3}		$V_{O} = 1.3 \text{ V}, R_{ext} = 497 \Omega$	38	40	42	mA
∆l _{OL1}		$V_O = 0.3 \text{ V, } I_O = 5 \text{ mA}$ $R_{EXT} = 4 \text{ k}\Omega$		± 1	± 5	
ΔI_{OL2}	Output current error between bit (all output ON)	$V_0 = 0.3 \text{ V}, I_0 = 20 \text{ mA}$ $R_{\text{EXT}} = 980 \Omega$		± 0.5	± 3	%
Δl _{OL3}		$V_0 = 1.3 \text{ V}, I_0 = 40 \text{ mA}$ $R_{EXT} = 490 \Omega$		± 0.5	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	kΩ
Rsin(down)	Pull-down resistor		100	200	400	kΩ
I _{DD(OFF1)}	Construct (OFF)	REXT = 1 kΩ, I _{OUT} = 20 mA, OUT 0 to 15 = OFF		5.4	7.5	mA
I _{DD(OFF2)}	- Supply current (OFF)	R_{EXT} = 497 Ω , I_{OUT} = 40 mA OUT 0 to 15 = OFF		8.0	9.5	
IDD(ON1)	Supply gurrent (ONI)	$R_{EXT} = 1 \text{ k}\Omega,$ $I_{OUT} = 20 \text{ mA},$ $OUT 0 \text{ to } 15 = ON$		5.5	7.5	
I _{DD(ON2)}	Supply current (ON)	$R_{EXT} = 497 \Omega,$ $I_{OUT} = 40 \text{ mA}$ $OUT 0 \text{ to } 15 = ON$		8.1	9.5	
Thermal	Thermal protection			170		°C

6/36 DocID15817 Rev 4

 $V_{\text{DD}} = 3.3 \; \text{V}$ to 5 V, $T_{\text{A}} = 25 \; ^{\circ}\text{C},$ unless otherwise specified.

Table 8: Switching characteristics

Symbol	Parameter		Test condition		Min.	Тур.	Max.	Unit
	Propagation delay time,			V _{DD} = 3.3 V		53.5	86.5	
t _{PLH1}	CLK-OUTn, $LE/DM1 = H$, $OE/DM2 = L$			V _{DD} = 5 V		32	46.5	ns
	Propagation delay time,			V _{DD} = 3.3 V		48	75.5	
t _{PLH2}	LE/DM1- OUTn , OE/DM2 = L			V _{DD} = 5 V		30	43	ns
	Propagation delay time,			V _{DD} = 3.3 V		71.5	118	
t _{PLH3}	OE/DM2 - OUTn , LE = H			V _{DD} = 5 V		43	62	ns
	Propagation delay time,			V _{DD} = 3.3 V	15	21	31	ns
tplh	CLK-SDO			$V_{DD} = 5 \text{ V}$	11	15	21	
	Propagation delay time,	$V_{IH} = V_{DD}$ $V_{IL} = GND$ $I_{O} = 20 \text{ mA}$	$V_{IL} = GND$ $C_L = 10 pF$ = 20 mA $V_L = 3.0 V$	$V_{DD} = 3.3 \text{ V}$		27.5	39	ns
t PHL1	CLK- OUTn , LE/DM1 = H, OE/DM2 = L			V _{DD} = 5 V		22	30.5	
	Propagation delay time,	$R_{\text{ext}} = 1 \text{ K}\Omega$		V _{DD} = 3.3 V		11.5	17.5	
t PHL2	LE/DM1 -OUTn , OE/DM2 = L			V _{DD} = 5 V		8	11.5	ns
	Propagation delay time,			V _{DD} = 3.3 V		24	33.5	
t _{PHL3}	OE/DM2 - OUTn , LE/DM1 = H			V _{DD} = 5 V		21	28.5	ns
+	Propagation delay time,			V _{DD} = 3.3 V	17.5	24	36	ns
t PHL	CLK-SDO			$V_{DD} = 5 V$	12.5	17	25	115
ton	Output rise time 10~90% of			$V_{DD} = 3.3 \text{ V}$		29	54	ns
ton	voltage waveform			$V_{DD} = 5 V$		10	17	113
toff	Output fall time 90~10% of			$V_{DD} = 3.3 \text{ V}$		4.5	6	ns
	voltage waveform			$V_{DD} = 5 V$		3.5	5	
t _r	CLK rise time (1)						5000	ns
t_f	CLK fall time (1)						5000	ns

Notes:

⁽¹⁾ In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Equivalent circuit and outputs

Figure 2: OE/DM2 terminal

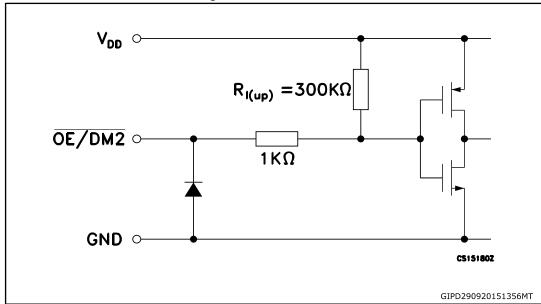
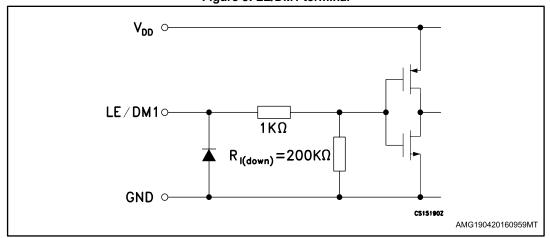



Figure 3: LE/DM1 terminal

57

Figure 4: CLK, SDI terminal

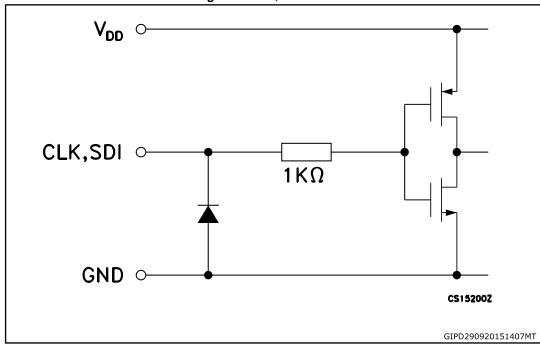
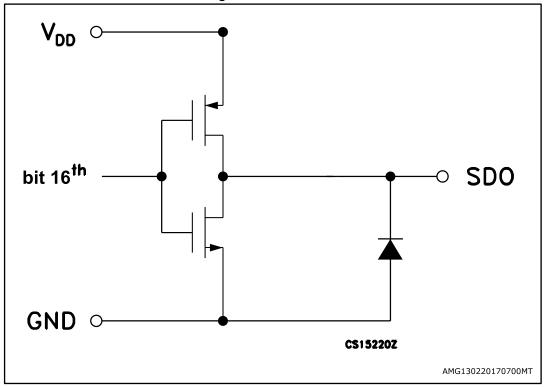
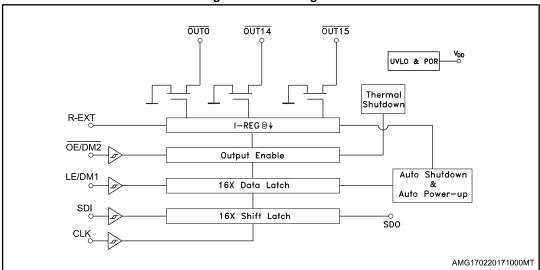




Figure 5: SDO terminal

47/

Figure 6: Block diagram

577

STP16DPPS05 Timing diagrams

5 Timing diagrams


Table 9: Truth table

CLOCK	LE/DM1	OE/DM2	SERIAL-IN	OUT0 OUT7 OUT15	SDO
_ _	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
_ -	L	L	Dn + 1	No change	Dn - 14
_ -	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
- _	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
- _	Х	Н	Dn + 3	OFF	Dn - 13

OUTn = ON when Dn = H OUTn = OFF when Dn = L.

Figure 7: Timing diagram

- 1 Latch and output enable terminals are level-sensitive and are not synchronized with rising or falling edge of LE/DM1 signal.
- 2 When LE/DM1 terminal is low level, the latch circuit holds previous set of data.
- 3 When LE/DM1 terminal is high level, the latch circuit refreshes new set of data from SDI chain.
- 4 When OE/DM2 terminal is at low level, the output terminals Out 0 to Out 15 respond to data in the latch circuits, either '1' for ON or '0' for OFF.
- 5 When OE/DM2 terminal is at high level, all output terminals are switched OFF.

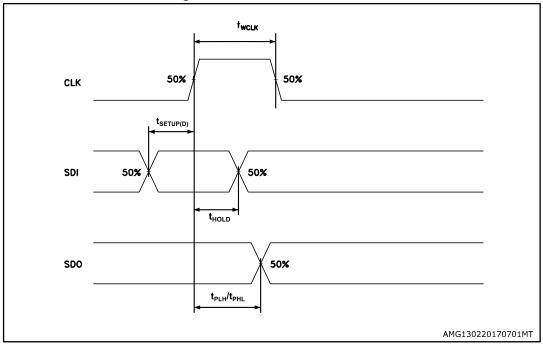
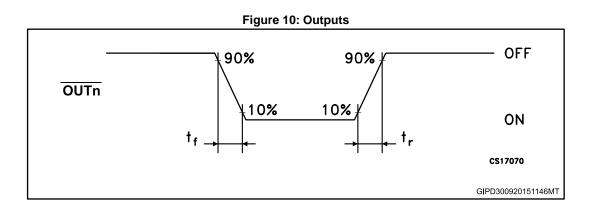

Timing diagrams STP16DPPS05

Table 10: Enable IO: shutdown truth table

CLOCK	LE/DM1	SDI ₀ SDI ₇ SDI ₁₅	SH	Auto power-up	OUTn
_ _	Н	AII = L	Active	Not active (1)	OFF
_ -	L	No change	No change	No change	No change
_ _	Н	One or more = H	Not active	Active	X ⁽²⁾

Notes:

Figure 8: Clock, serial-in, serial-out



 $^{^{\}left(1\right) }$ At power-up, the device starts in shutdown mode.

⁽²⁾ Undefined.

STP16DPPS05 Timing diagrams

Figure 9: Clock, serial-in, latch, enable, outputs 50% CLK SDI $t_{\text{SETUP(LE)}}$ 50% 50% LE/DM1 twena OE/DM2 50% 50% t_{SETUP(DM2)}* OUTn 50% t_{PHL1}/t_{PLH1} $t_{\rm PHL2}/t_{\rm PLH2}$

tehL3/teLH3

* Only for detection feature.

CS17060

AMG130220170702MT

6 Typical characteristics

Figure 11: Output current vs R-EXT resistor

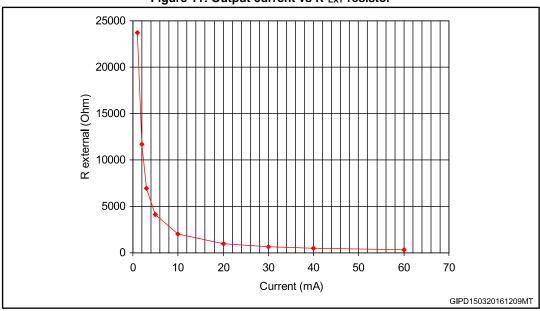


Table 11: Output current vs R-EXT resistor

R- _{EXT} (Ω)	Output current (mA)
23700	1
11730	2
6930	3
4090	5
2025	10
1000	20
667	30
497	40
331	60

14/36 DocID15817 Rev 4

GIPD150320161228MT

Conditions:

 $temperature = 25~^{\circ}C,~V_{DD} = 3.3~V;~5.0~V,~I_{SET} = 3~mA;~5~mA;~10~mA;~20~mA;~50~mA;~60~mA.$

1200
1000
800
400
200
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Current (mA)

Figure 12: I_{SET} vs. dropout voltage (V_{drop})

Table 12: I_{SET} vs dropout voltage (V_{drop})

lout (mA)	Avg (mV) @ 3.3 V	Avg (mV) @ 5.0 V
3	36	37
5	71	72
10	163	163
20	346	347
40	724	726
60	1080	1110

 $T_A = 25 \, ^{\circ}C$, $Vdd = 3.3 \, V$; 5 V.

Figure 13: Output current vs $\pm \Delta I_{OL}(\%)$

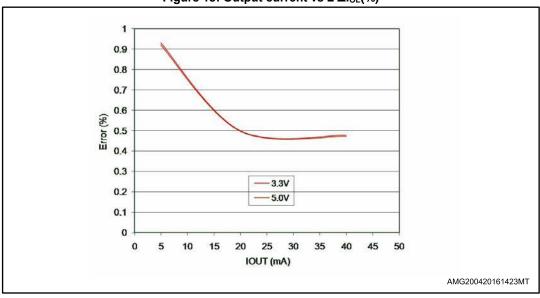
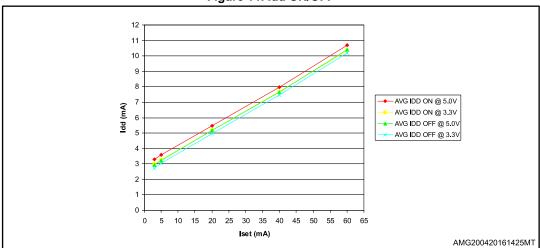
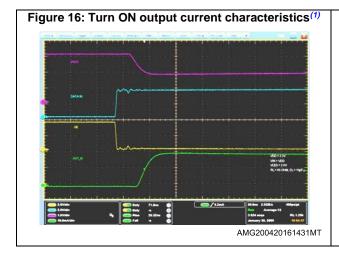



Figure 14: Idd ON/OFF


Downloaded from Arrow.com.

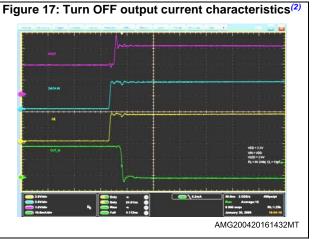

 $P_{D}(W)$ 3.5 3.0 2.5 TSSOP EXP-PAD 2.0 1.5 SOP 1.0 0.5 **TSSOP** 0 75 25 50 100 125 T_P(°C) AMG200420161429MT

Figure 15: Power dissipation vs. package temperature

The exposed pad should be soldered to the PCB to obtain the thermal benefits.

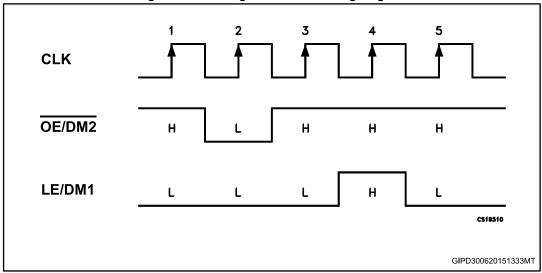
Notes:

- (1) The reference level for the ToN characteristics is 50% of OE/DM2 signal and 90% of output current.
- (2) The reference level for the Toff characteristics is 50% of OE/DM2 signal and 10% of output current.

Electrical conditions:

Vdd =
$$3.3$$
 V, Vin = Vdd, Vled = 3.0 V, RL = 60 Ω , CL = 10 pF

7 Error detection mode functionality


7.1 Phase one: entering error detection mode

From the "normal mode" condition the device can switch to "error mode" by a logic sequence on the $\overline{\text{OE}/\text{DM2}}$ and LE/DM1 pins, as shown in the following table and diagram:

Table 13: Entering error detection mode - truth table

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	Н	L

Figure 18: Entering in detection timing diagram

After these five CLK cycles, the device goes into "error detection mode" and at the rising edge of the 6th CLK cycle, the SDI data are ready for sampling.

18/36 DocID15817 Rev 4

7.2 Phase two: error detection

The 16 data bits must be set to "1" in order for all the outputs to be ON during error detection. The data are latched by LE/DM1, after which the outputs are ready for the detection process. When the microcontroller switches the OE/DM2 to LOW, the device drives the LEDs to analyze if an OPEN or SHORT condition has occurred.

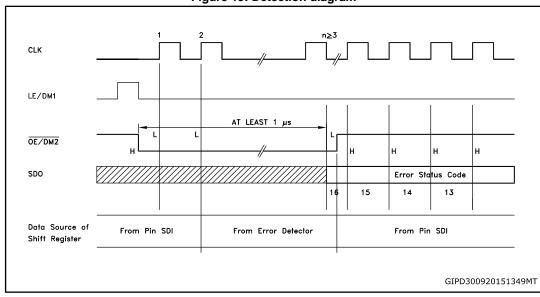


Figure 19: Detection diagram

The status of the LEDs is detected in at least 1 microsecond, and after this period the microcontroller sets $\overline{\text{OE/DM2}}$ to HIGH state and the output data detection result is sent to the microcontroller via SDO. Error detection mode and normal mode both use the same data format. As soon as all the detection data bits are available on the serial line, the device may return to normal mode of operation. To re-detect the status, the device must first return to normal mode and reenter error detection mode.

577

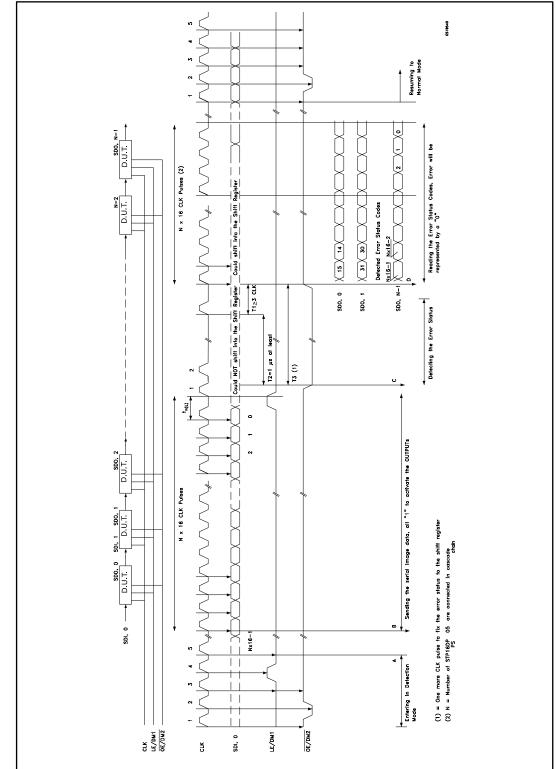


Figure 20: Timing example for open and/or short-circuit detection

577

7.3 Phase three: resuming normal mode

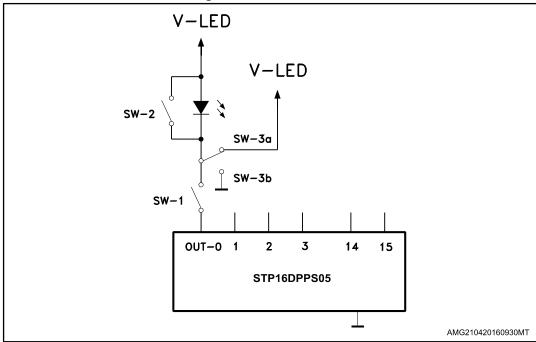
The sequence for reentering normal mode is shown in the following table:

Table 14: Resuming to normal mode timing diagram

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	L	L

For proper device operation, the "entering error detection" sequence must be followed by a "resume mode" sequence, it is not possible to insert consecutive equal sequences.

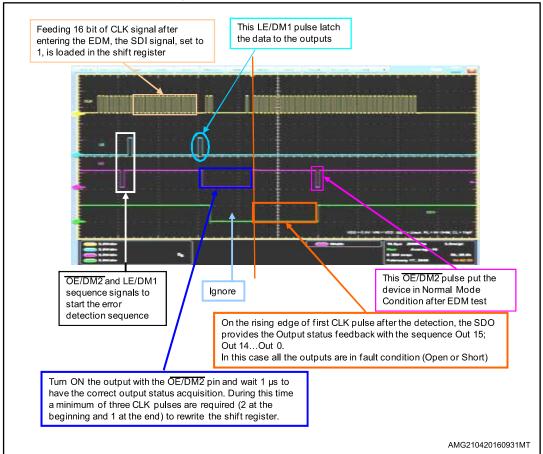
7.4 Error detection conditions


Table 15: Detection conditions

Configuration	Detect mode	Detection results		ts
SW-1 or SW-3b	Open line or output short to GND detected	==> l _{ODEC} ≤ 0.5 x l _O	No error detected	==> l _{ODEC} ≥ 0.5 x l _O
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> Vo ≥ 2.6 V	No error detected	==> Vo ≤ 2.3 V

Where: I_0 = the output current programmed by the R-EXT, I_{ODEC} = the detected output current in detection mode.

Figure 21: Detection circuit



5/

DocID15817 Rev 4

21/36

Figure 22: Error detection sequence

7.5 Auto power-saving

The auto power-saving feature minimizes the quiescent current if no active data is detected on the latches and auto powers-up the device as the first active data is latched.

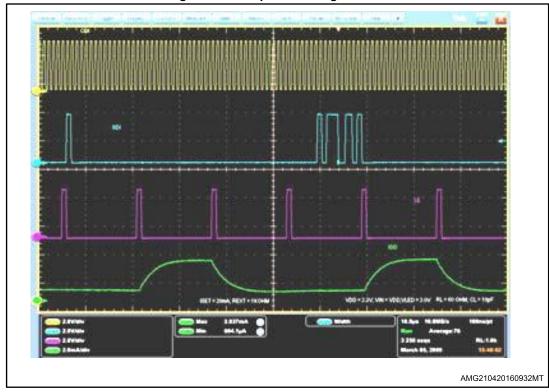


Figure 23: Auto power-saving feature

Conditions:

Temp. = 25 °C, Vdd = 3.3 V, Vin = Vdd, VLed = 3.0 V, Iset = 20 mA

Ch1 (yellow) = CLK, Ch2 (blue) = SDI, Ch3 (purple) = LE/DM1, Ch4 (green) = IDD

Idd consumption:

Idd (normal operation) = 2.93 mA

Idd (shutdown condition) = 170 μ A

AMG210420160933MT

Tright 24. Auto power-saving texture

| Auto | Dec | Specific | Dec | De

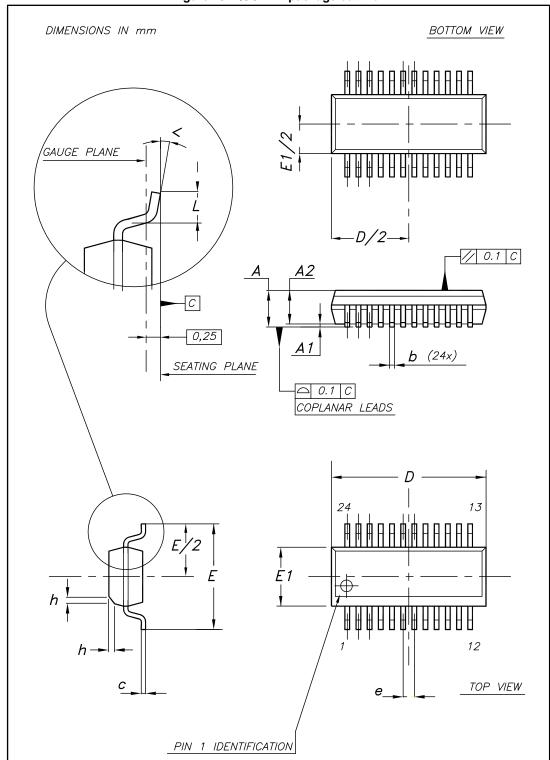
Figure 24: Auto power-saving feature

Conditions:

Temp. = 25 °C, Vdd = 3.3 V, Vin = Vdd, VLed = 3.0 V, Iset = 20 mA Ch1 (yellow) = CLK, Ch2 (blue) = SDI, Ch3 (purple) = LE/DM1, Ch4 (green) = IDD

When the device goes from auto power-saving to normal operating condition, the first output that switches ON shows the T_{ON} condition as seen in the plot above.

8 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

DocID15817 Rev 4 25/36

8.1 QSOP-24 package information

Figure 25: QSOP-24 package outline

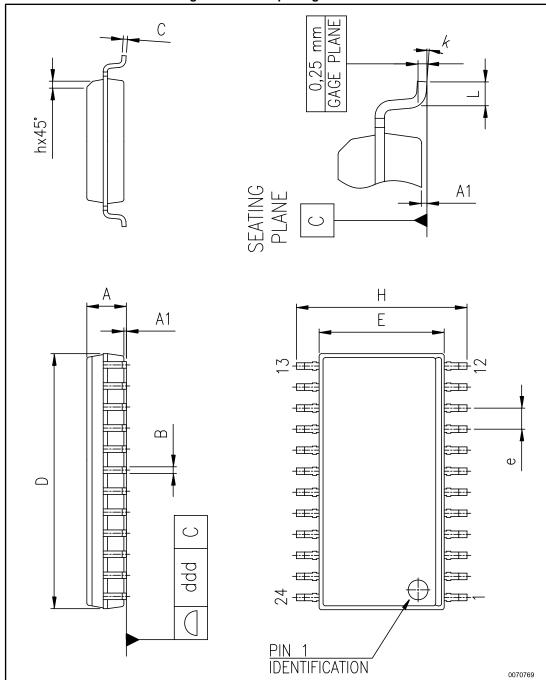

577

Table 16: QSOP-24 mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	1.54	1.62	1.73
A1	0.10	0.15	0.25
A2		1.47	
b	0.20		0.31
С	0.17		0.254
D	8.56	8.66	8.76
Е	5.80	6.00	6.20
E1	3.80	3.91	4.01
е		0.635	
L	0.40	0.635	0.89
h	0.25	0.33	0.41
<	0°		8°

8.2 SO-24 package information

Figure 26: SO-24 package outline

57/

STP16DPPS05 Package information

Table 17: SO-24 mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А	2.35		2.65	
A1	0.10		0.30	
В	0.33		0.51	
С	0.23		0.32	
D	15.20		15.60	
E	7.40		7.60	
е		1.27		
Н	10.00		10.65	
h	0.25		0.75	
L	0.40		1.27	
k	0		8	
ddd			0.10	

8.3 TSSOP24 package information

Figure 27: TSSOP24 package outline

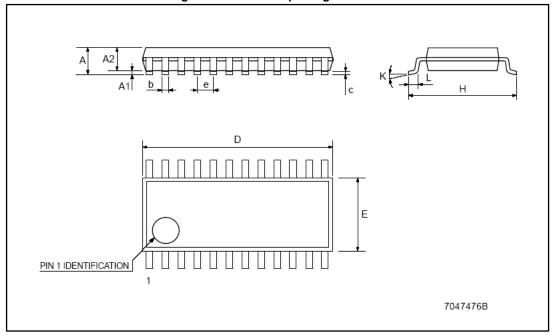
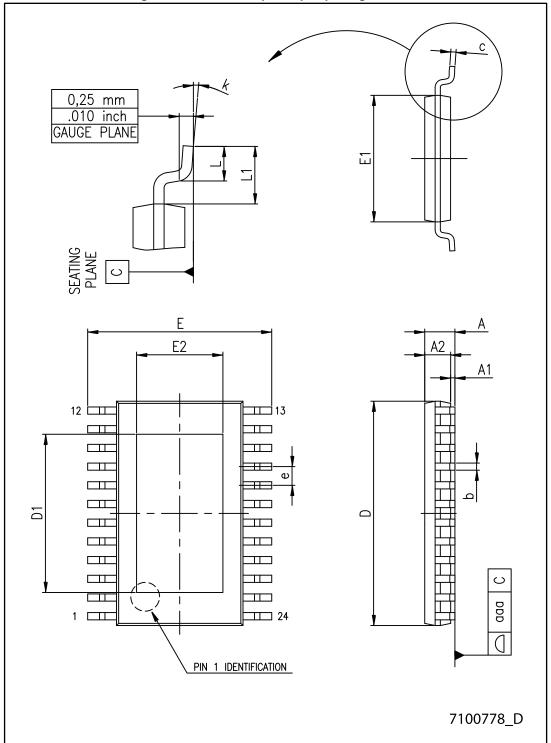


Table 18: TSSOP24 mechanical data


Dim.		mm	
Dim.	Min.	Тур.	Max.
А			1.1
A1	0.05		0.15
A2		0.9	
b	0.19		0.30
С	0.09		0.20
D	7.7		7.9
Е	4.3		4.5
е		0.65 BSC	
Н	6.25		6.5
K	0°		8°
L	0.50		0.70

30/36

STP16DPPS05 Package information

8.4 TSSOP exposed pad package information

Figure 28: TSSOP24 exposed pad package outline

577

Table 19: TSSOP24 exposed pad mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А			1.20
A1			0.15
A2	0.80	1.00	1.05
b	0.19		0.30
С	0.09		0.20
D	7.70	7.80	7.90
D1	4.80	5.00	5.2
Е	6.20	6.40	6.60
E1	4.30	4.40	4.50
E2	3.00	3.20	3.40
е		0.65	
L	0.45	060	075
L1		1.00	
k	0°		8°
aaa			0.10

Downloaded from Arrow.com.

32/36

STP16DPPS05 Package information

8.5 TSSOP24, TSSOP24 exposed pad and SO-24 packing information

Figure 29: TSSOP24, TSSOP24 exposed pad and SO-24 reel outline

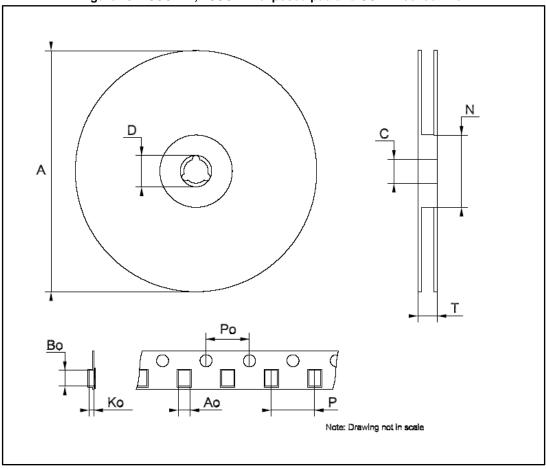


Table 20: TSSOP24 and TSSOP24 exposed pad tape and reel mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А		-	330
С	12.8	-	13.2
D	20.2	-	
N	60	-	
Т		-	22.4
Ao	6.8	-	7
Во	8.2	-	8.4
Ko	1.7	-	1.9
Po	3.9	-	4.1
Р	11.9	-	12.1

Table 21: SO-24 tape and reel mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А		-	330
С	12.8	-	13.2
D	20.2	-	
N	60	-	
Т		-	30.4
Ao	10.8	-	11.0
Во	15.7	-	15.9
Ко	2.9	-	3.1
Po	3.9	-	4.1
Р	11.9	-	12.1

STP16DPPS05 Revision history

9 Revision history

Table 22: Document revision history

Date	Revision	Changes
05-Jun-2009	1	First release.
23-Oct-2009	2	Updated document status from preliminary status to final and Note: on page 3
17-Jun-2014	3	Updated Section 8: Package mechanical data. Added Section 9: Packaging mechanical data. Minor text changes.
12-Apr-2017	4	Updated Figure 5: "SDO terminal", Figure 8: "Clock, serial-in, serial-out", Figure 9: "Clock, serial-in, latch, enable, outputs" and Section 8.1: "QSOP-24 package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

