

100ELT22

5V Dual TTL to Differential PECL Translator

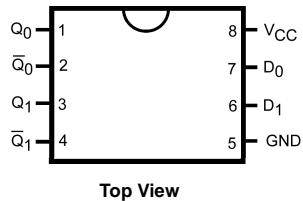
General Description

The 100ELT22 is a TTL to differential PECL translator operating from a single +5V supply.

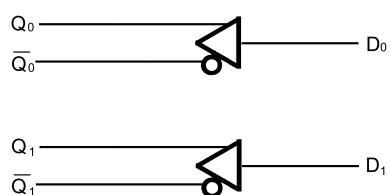
Both outputs of a differential pair should be terminated in 50Ω to V_{CC} - 2.0V even if only one output is being used. If an output pair is unused both outputs can be left open (un-terminated).

The 100 series is temperature compensated.

Features


- Typical propagation delay of 300 ps
- <100 ps between outputs
- Max I_{CC} of 30 mA
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8
- Flow through pinout
- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance:
Human Body Model > 2000V
Machine Model > 200V

Ordering Code:


Order Number	Package Number	Product Code Top Mark	Package Description
100ELT22M	M08A	KLT22	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
100ELT22M8 (Preliminary)	MA08D	KT22	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Logic Diagram

Pin Descriptions

Pin Name	Description
Q_n, \bar{Q}_n	PECL Differential Outputs
D_0, D_1	TTL Inputs
V_{CC}	Positive Supply
GND	Ground

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})	0.0V to +7.0V
Input Voltage (V_I) $V_I \leq V_{CC}$	0.0V to + 7.0V
DC Output Current (I_{OUT})	
Continuous	50 mA
Surge	100 mA
Storage Temperature (T_{STG})	-65°C to + 150°C

Recommended Operating Conditions

Power Supply Operating	$V_{CC} = 4.2V$ to 5.5V
TTL Input Voltage	0.0V to V_{CC}
Free Air Operating Temperature (T_A)	-40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

PECL DC Electrical Characteristics $V_{CC} = 5.0V$; GND = 0.0V (Note 2)

Symbol	Parameter	-40°C			25°C			85°C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
I_{CC}	Power Supply Current			30			30			30	mA
V_{OH}	Output HIGH Voltage (Note 3)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V_{OL}	Output LOW Voltage (Note 3)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV

Note 2: Output parameters vary 1 to 1 with V_{CC} . V_{CC} can vary +0.5V/-0.8V.

Note 3: Outputs are terminated through a 50Ω Resistor to V_{CC} – 2.0V.

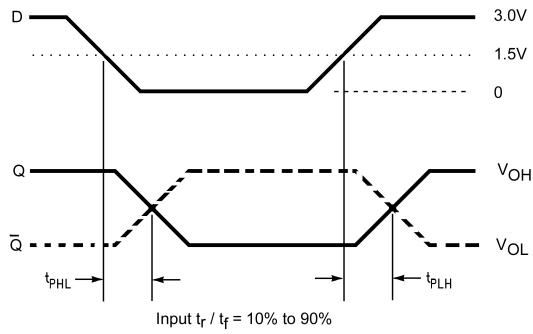
Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

TTL DC Electrical Characteristics $V_{CC} = 5.0V$; GND = 0.0V (Note 4); $T_A = -40°C$ to +85°C

Symbol	Parameter	Min	Typ	Max	Units	Condition
I_{IH}	Input HIGH Current			20 100	µA	$V_{IN} = 2.7V$ $V_{IN} = V_{CC}$
I_{IL}	Input LOW Current			-200	µA	$V_{IN} = 0.5V$
V_{IK}	Clamp Diode Voltage			-1.2	V	$I_{IN} = -18$ mA
V_{IH}	Input HIGH Voltage	2.0			V	
V_{IL}	Input LOW Voltage			0.8	V	

Note 4: V_{CC} can vary +0.5V/-0.8V.

AC Electrical Characteristics $V_{CC} = 5.0V$; GND = 0.0V (Note 5)


Symbol	Parameter	-40°C			25°C			85°C			Units	Figure Number
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
f_{MAX}	Maximum Input Frequency		TBD		TBD		TBD		TBD		MHz	
t_{JITTER}	Cycle-to-Cycle Jitter		TBD		TBD		TBD		TBD		ps	
t_{PLH}, t_{PHL}	Propagation Delay to Output (Note 6)	100	600	100	600	100	600	ps				Figure 1
t_r, t_f	Output Rise Time/Fall Times (20% to 80%)	200	500	200	500	200	500	ns				Figure 2
t_{skpp}	Part to Part Skew		500		500		500	ps				
t_{skew}	Within Device Skew (Note 7)		100		100		100	ps				

Note 5: V_{CC} can vary +0.5V/-0.8V.

Note 6: Specifications for standard TTL input signal (see Figure 1).

Note 7: Within-device skew is defined as identical transitions on similar paths through a device.

Switching Waveforms

Note: V_M varies 1:1 with V_{EE}

FIGURE 1. TTL to Differential PECL Propagation Delay

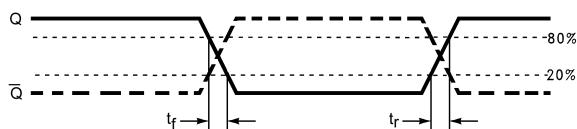
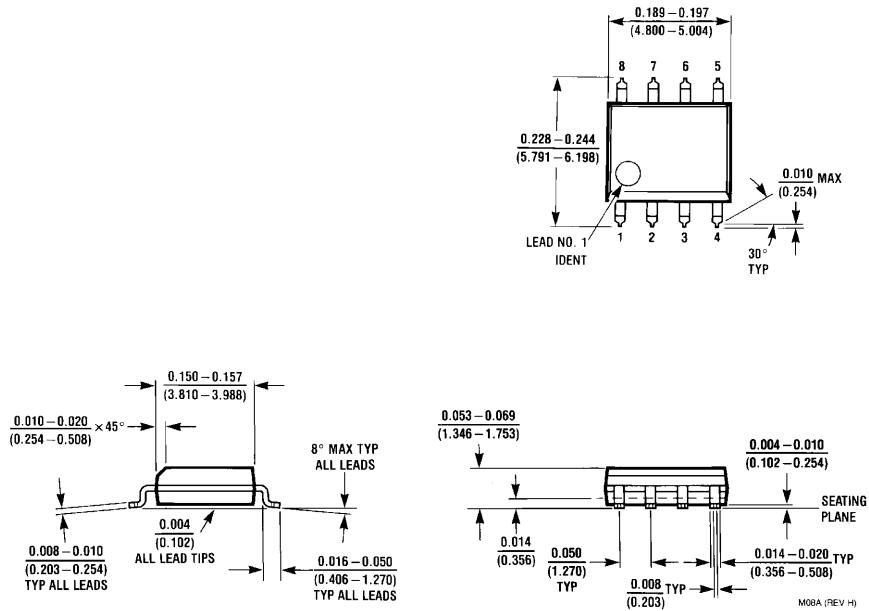
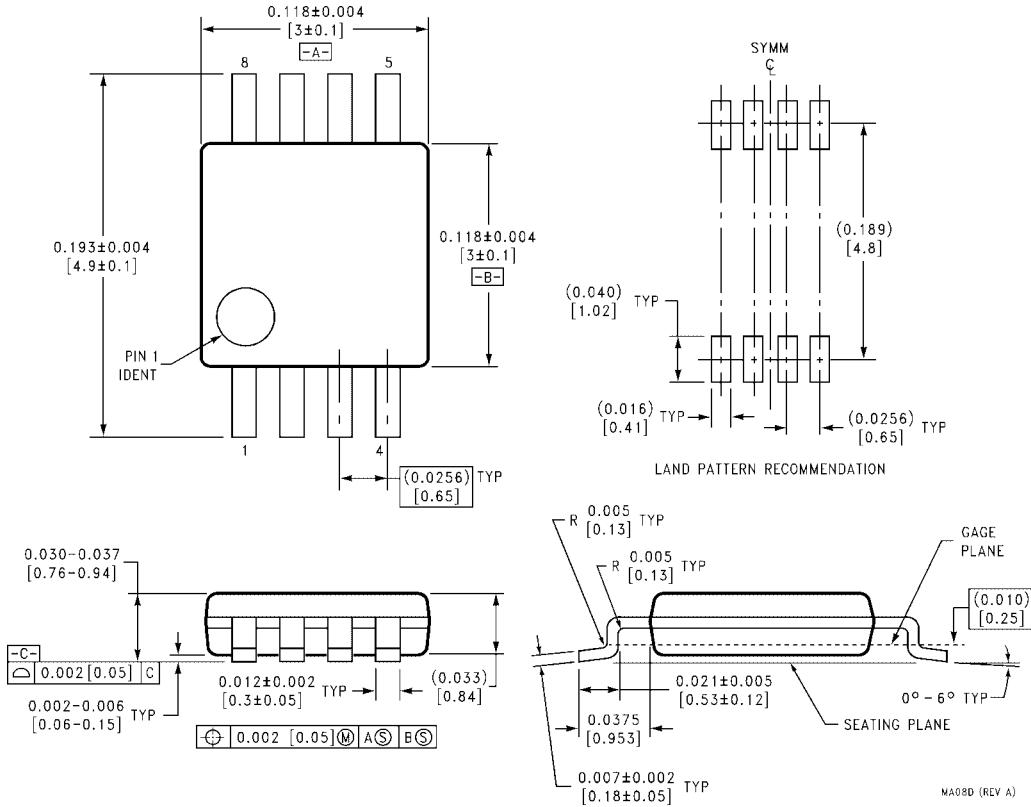




FIGURE 2. Differential Output Edge Rates

Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide
Package Number MA08D

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com