

Enterprise Storage Backplane Management Processor

- EEC1005 Family Members: **-UB1** and **-UB2**
 - **UB1**: Original device, formerly ordered as simply “EEC1005”.
 - **UB2**: Device with enhanced features.
- Complete Universal Storage Backplane Management Processor Family
 - **UB1** supports SFF-TA-1005 Revision 1.3 Universal Backplane Management (UBM) over I₂C
 - **UB2** supports SFF-TA-1005 Revisions 1.3 and 1.4 Universal Backplane Management (UBM) over I₂C
 - Provides SFF-8654 compliant Host Facing Connector (HFC) communication support over I₂C
 - HFC connection responds to all standard UBM commands from the host
 - Integrates the UBM FRU non-volatile memory on the UBM FRU I₂C Address
 - Provides SFF-8639 compliant U.2 Drive Facing Connector (DFC) Support
 - Provides SFF-TA-1001 compliant U.3 Drive Facing Connector (DFC) Support
 - Support for SES over UBM
- Supports I₂C communication to Baseboard Management Controller
- Up to 8 I₂C ports for UBM and BMC host interfaces
- SFF-8485 Support
 - Implements up to 4 Hardware Accelerated SGPIO Legacy Interfaces for SAS/SATA backplane implementations
- Secure Boot
 - EEC1005 code is authenticated by a secure boot loader prior to loading from internal flash
 - Hardware accelerated crypto blocks provide fast secure boot using ECC P-256
 - Secure Firmware update
 - Key revocation, single level
- Supports Storage LED Management as per SFF-8489 IBPI specifications by default
- Custom LED patterns can be configured
- Scalable Solution for up to 16 Hard Drives on a Single Device
 - SGPIO Host Interfaces support up to 16 drives (SAS/SATA drive types)
 - UBM Host Interfaces support up to 12 drives
- (NVMe drive types)
 - Up to 6 HFCs
- Supports multiple backplanes on a single chassis
- Support for NVME Hot plug and Power Disable for drives
- Integrated NV Memory for:
 - UBM FRU (Field Replaceable Unit) for every HFC
 - General Purpose FRU
 - Configuration FRU
- Supports UBM and FRU commands tunneled through the BMC.
- Configurable Interfaces using a single analog Configuration pin:
 - Up to 21 Configurations Available (**UB2**)
 - Up to 13 Configurations Available (**UB1**)
 - Host interface (SGPIO vs UBM)
 - Number of HFCs and Drive Facing Connectors (DFCs)
 - Other supported features
- Monitors system PERST
 - One pin per DFC for PERST support
- Monitors for drive insertion from IFDET and PRSNT signals
 - IFDET2 support (for SFF-TA-1001)
- EEC1005 **UB2** Family Member adds:
 - SFF-TA-1005 Revision 1.4 Support as well as Revision 1.3
 - Intel VPP Support
 - EDSFF Drive Type Support
 - IBPI 3-LED as well as 2-LED Support
 - LED Test Mode
 - NVME Drive x2 and x1 U.3 Support as well as x4. Subset of x2 and x1 U.3 also made available in the smaller 84-pin package.
 - SATA/SAS/NVME 12-Drive x1 U.3 Support.
- Package Options
 - 144 pin WFBGA RoHS Compliant package
 - 84 pin WFBGA RoHS Compliant package

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

<http://www.microchip.com>

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; <http://www.microchip.com>
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Table of Contents

1.0 General Description	4
2.0 UBM Backplane Architecture	5
3.0 Configurations	10
4.0 Configuration FRU	15
5.0 Generic FRU	23
6.0 UBM FRU	24
7.0 UBM Controller Commands	26
8.0 LED Specifications	30
9.0 Multiple Chassis Configuration	33
10.0 UB2 Enhancements	35
11.0 Pin Configuration	40
12.0 Electrical Specifications	59
13.0 Package Information	64

1.0 GENERAL DESCRIPTION

EEC1005 is a family of generic, easily configurable, True Universal Backplane Management (UBM) devices that can be used on hard drive backplanes to provide complete storage enclosure management and reporting to computing host systems using industry standard communication protocols.

Family members are identified with a suffix of **UB1** or **UB2** in their ordering number, where **UB1** represents the part originally ordered as simply EEC1005. **UB2** devices incorporate enhancements in their functionality. In this document, "**UB2 Only**" will distinguish features that are only available from a device ordered with the **UB2** suffix. For a list of added UB2 features, see [Section 10.0, "UB2 Enhancements," on page 35](#). **UB2** devices are downward compatible to systems currently using **UB1** devices.

EEC1005 supports a variety of host interfaces to accommodate SAS/SATS/NVMe backplane. The SFF-8654 slimline connector (Host facing Connector) can be used to route SAS signals in which case the HBA will manage SAS/SATA drives, the same connector protocol (physically a different connector) can be used to route PCIe signals in which case the HBA will manage NVME drives. In both cases UBM will be used as management protocol with support of SGPIO as well on SAS Slimline (Configuration dependent). The device supports using U.2 and U.3 Drive facing Connectors. EEC1005 also supports Multiple Backplanes on a single chassis.

EEC1005 supports 2 or 3 LED IBPI blinking patterns for up to 16 drives. Customized LED blink pattern can also be programmed through the Configuration FRU.

The EEC1005 has a secure boot loader that authenticates and decrypts the Flash boot image (UBM application) using the AES-256, ECDSA P-256, SHA-256 cryptographic hardware accelerators. EEC1005 hardware accelerators support 128-bit and 256-bit AES encryption, ECDSA and EC_KCDSA signing algorithms, 1024-bits to 4096-bits RSA and Elliptic asymmetric public key algorithms, and a True Random Number Generator (TRNG). Additionally, the device offers lockable OTP storage for private keys and IDs.

EEC1005 is available in 84 pin and 144 pin WFBGA packages.

1.1 References

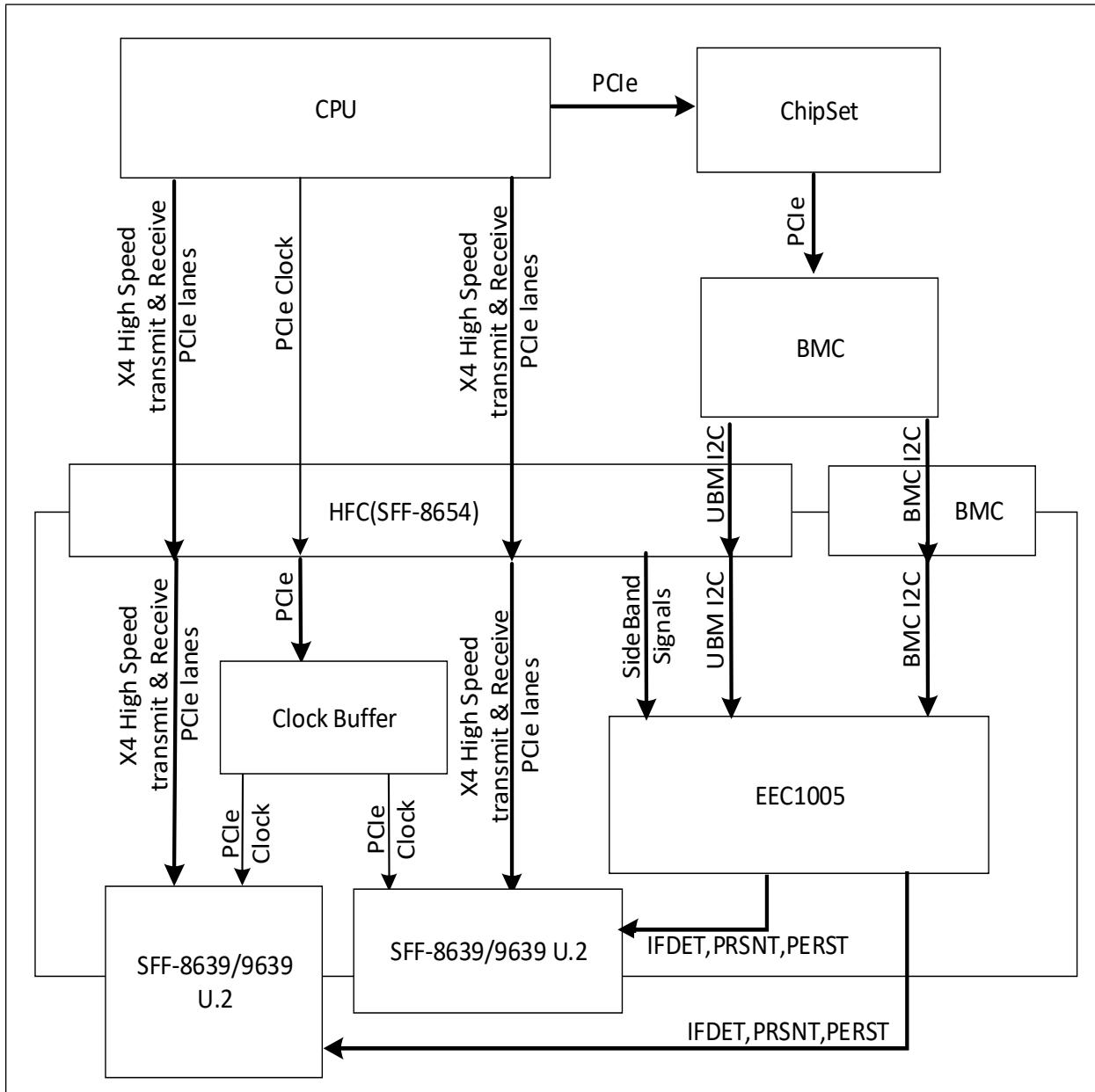
1. SFF-TA-1005 Universal Backplane Management Specification
 - a) Rev. 1.3 supported by EEC1005 family members UB1 and UB2
 - b) Rev. 1.4 supported by EEC1005 family member UB2 only
2. SFF-8485 Serial General-Purpose Input/output (SGPIO) Specification
3. SFF-8448 SAS Sideband Signal Assignment
4. SFF-8489 Serial GPIO IBPI (International Blinking Pattern Interpretation)
5. Enterprise SSD Form Factor Version 1.0a
6. SFF-TA-1001 (U.3 Drive Connector) Specification
7. SFF-8639 (U.2 Drive Connector) Specification
8. SFF-9639 (U.2 Connector Pinout) Specification
9. SFF-8654 Slimline Connector Specification
10. SFF-9402 Multi-Protocol Internal Cables for SAS and/or PCIe (Slimline Connector Pinout) Specification
11. SCSI Enclosure Services -4 Specification
12. Intel Doc. #611488: SPR_EDS_VPP: Integrated I/O and PCI Express Functional Description -- Sapphire Rapids Processor
13. SFF-TA-1009: EDSFF (Enterprise and Datacenter Standard Form Factor) Specification
14. SFF-TA-1002: Protocol Agnostic Multi-Lane High Speed Connector Specification

2.0 UBM BACKPLANE ARCHITECTURE

EEC1005 on the back plane communicates to the Host through GPIO or I2C interface over the Host facing Connector (Host attach configuration) or dedicated cable (Direct attach configuration). It detects hard drive being installed in the backplane and notifies the host of the insertion/removal/failure of the drive. It also blinks LEDs for each hard drive's status as explained in [Section 8.0, "LED Specifications"](#).

There are different types of Backplanes based on:

1. Number of drives the back plane supports
2. Type of host communication (For eg. I2C or GPIO)
3. Type of Drive slots (For eg. U.2 or U.3)

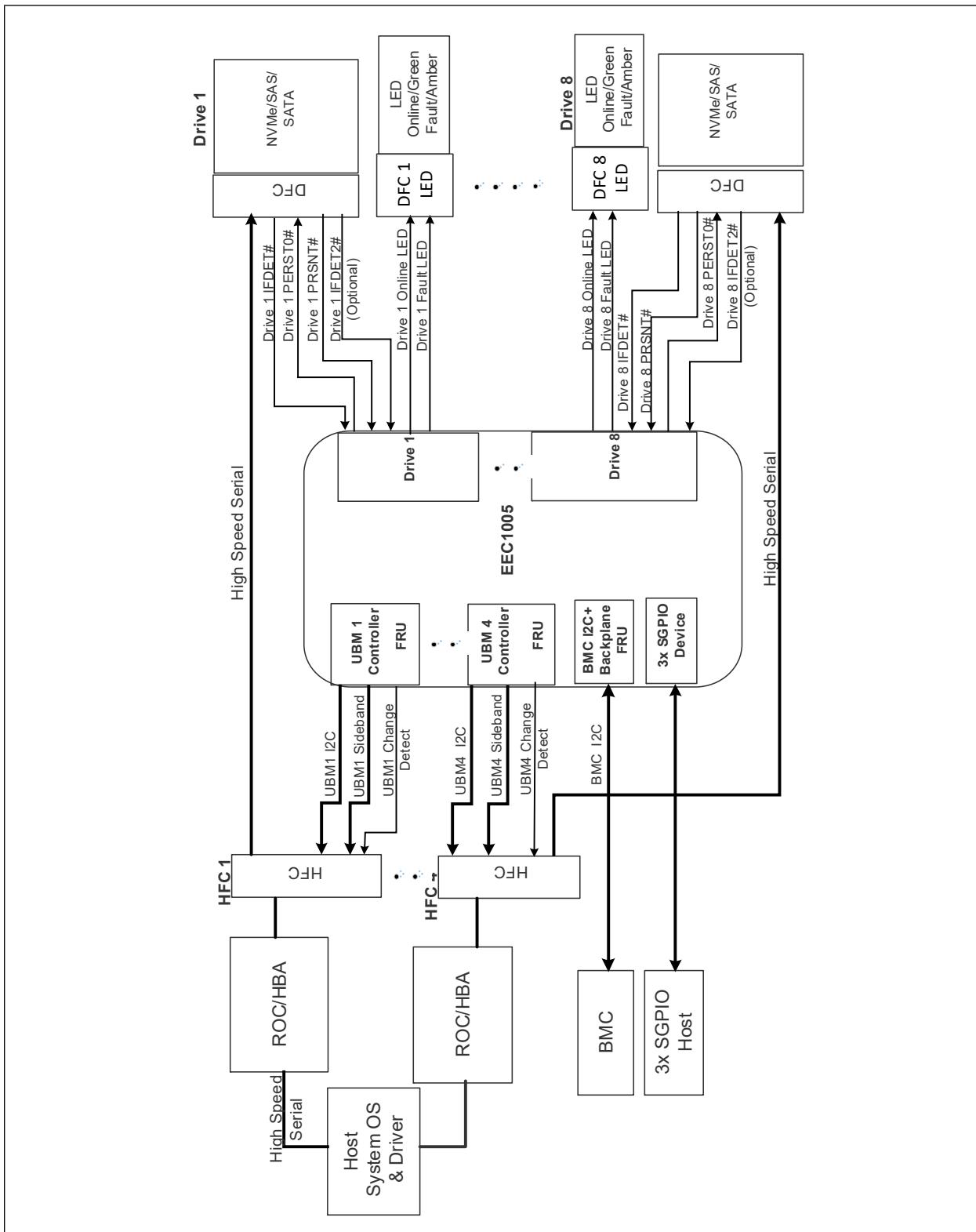

The different configurations of the backplane that EEC1005 supports is covered in [Section 3.0, "Configurations"](#).

2.1 Direct Attach UBM Backplane

A direct attach configuration is enabled when user connects the backplane directly to mother board and the drives are not managed by an HBA. In this case the drives are managed either by BMC or PCIe Switch/Expander for switch-based configurations. EEC1005 can be used in Direct attach configurations using UBM as the management protocol from BMC (BMC Emulation) or Switch/Expander.

EEC1005 based backplane architectures are capable of supporting Y-cable configurations where the PCIe lanes from a single Host HFC will be split into 2x backplane HFC's, this allows splitting on PCIe clocks using clock buffers as shown in the following diagram.

FIGURE 2-1: DIRECT ATTACH CONFIGURATION


2.2 Host Attach UBM Backplane

A Host attach configuration is enabled when user connects the backplane directly to SMARTROC/HBA and the drives are managed by an HBA. EEC1005 can be used in Host attach configuration as in [FIGURE 2-2: “Host Attach Configuration”](#). Each HFC is connected to a Host through a cable to communicate with EEC1005.

EEC1005 based backplane architecture supports NVME PERST functionality by allowing the Host to directly control the PERST signal. This allows the Host to directly control the reset behavior of NVME drive without adding any latency. The PERST signal will be driven from HFC and then split into 2 signals to control 2 drives from a single signal.

Note: The hardware bifurcation of the PCIe lanes is application dependent. Usually each HFC bifurcates x8 lanes into two x4 connections.

FIGURE 2-2: HOST ATTACH CONFIGURATION

2.3 BMC-Tunneled I2C HFC Emulation

This feature is provided in order to bypass use of I2C connections from HFCs for UBM and FRU traffic, and instead to tunnel this traffic over the BMC's I2C link to the EEC.

The BMC-tunneled emulation is a method to virtualize the control of the supported UBM controllers on a backplane with BMC acting as the mediator between host and EEC. The BMC I2C interface must carry out the routing of the I2C commands supported by the UBM controller as per spec SFF-TA-1005. This section describes a high-level design of the communication interfaces, the message structure format from host to BMC and the routing of the I2C payload to the required UBM controller.

2.3.1 ASSUMPTIONS AND DEPENDENCIES

The message format between host and BMC is designed as per requirement need. This assumes that there is no specific standard defined for the message structure between host and BMC when communicating over I2C channel.

This assumes that the BMC is utilized only for routing the SFF-TA-1005 I2C commands to the required UBM controller. The I2C payload requested by host shall be for reading the UBM FRU's, controlling UBM controller and BMC FRU access alone.

2.3.2 SYSTEM DESIGN

The I2C payload transferred from host can address any of the devices listed below, by using their virtual addresses:

1. UBMx FRUs

The virtual base address for UBM FRU access via BMC, in 8-bit format, is **0xAE**. An 'n' UBM FRU must be accessed using the below address byte calculated as:

$0xAE + (\text{HFC number})^2$

The virtual UBM controller FRU addresses for UBM0 – UBM5 controllers are:

UBM0 FRU – 0xAE

UBM1 FRU – 0xB0

UBM2 FRU – 0xB2

UBM3 FRU – 0xB4

UBM4 FRU – 0xB6

UBM5 FRU – 0xB8

2. UBMx Controllers

The virtual base address for UBM access via BMC, in 8-bit format, is **0xD0**. An 'n' UBM controller must be accessed using the below address calculated as:

$0xD0 + (\text{HFC number})^2$

The virtual UBM controller addresses for UBM0 – UBM5 controllers are:

UBM0 – 0xD0

UBM1 – 0xD2

UBM2 – 0xD4

UBM3 – 0xD6

UBM4 – 0xD8

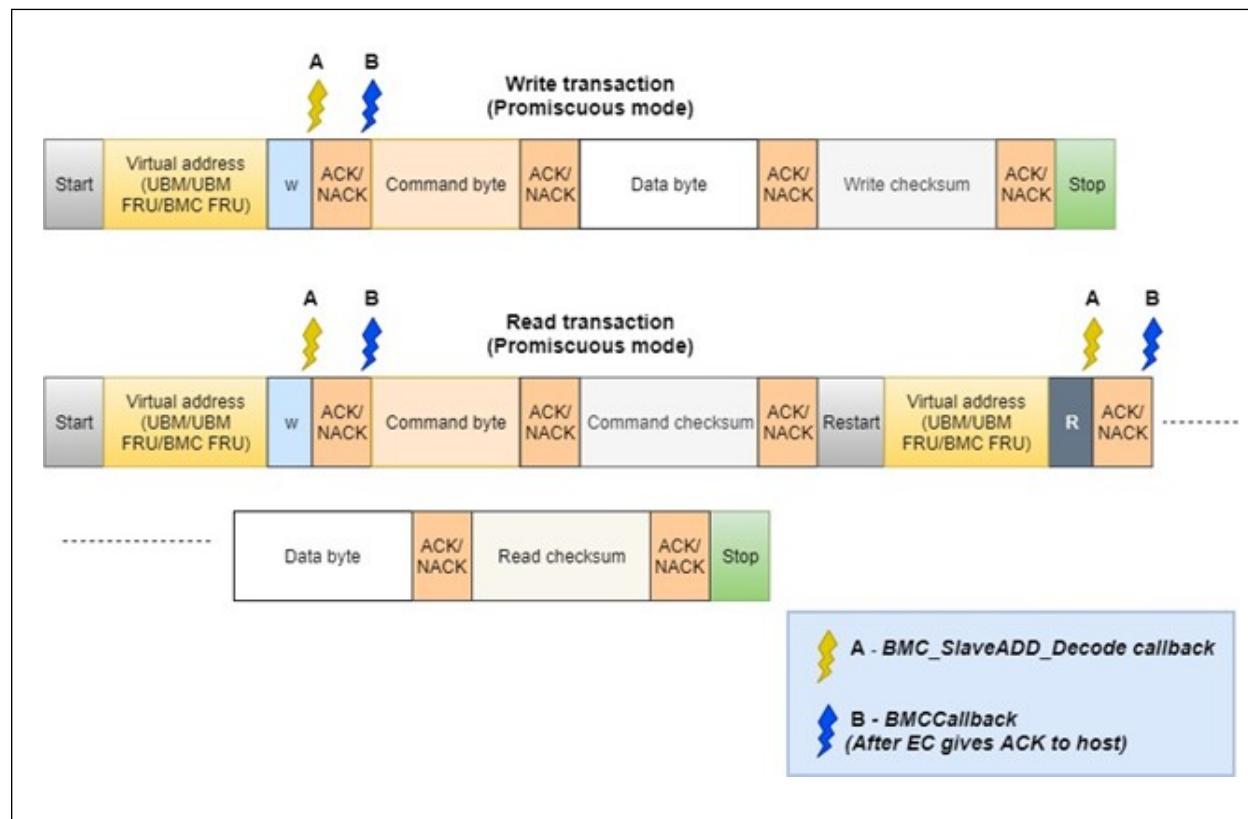
UBM5 – 0xDA

3. Configuration FRU

The Configuration FRU access address, in 8-bit format, is **0xAA**. This memory device can be used by host to determine the number of HFC's as well.

There is only one instance of this device, and it is accessed this way through the BMC regardless of BMC-Tunneled capability. It is included here for completeness only.

4. Generic FRU


The Generic FRU access address, in 8-bit format, is **0xA8**. This FRU is optionally used by Host, EEC doesn't apply this FRU.

There is only one instance of this device, and it is accessed this way through the BMC regardless of BMC-Tunneled capability. It is included here for completeness only.

2.3.3 MESSAGE FORMAT OF BMC-TUNNELED COMMANDS

The I2C payload from host to BMC shall have the following format, in **FIGURE 2-3: “BMC-Tunneled I2C Payload Format”**.

FIGURE 2-3: BMC-TUNNELED I2C PAYLOAD FORMAT

3.0 CONFIGURATIONS

Multiple Backplane architectures are supported using EEC1005 that are configured by firmware based on an analog value sampled at one of EEC1005 input ADC pin (Config Pin) at startup. [Table 3-1, “EEC1005 Configuration Select”](#) provides the complete list of Configurations selectable based on the analog value on CONFIG_PIN. The analog value can be set by a resistor divider network as in [Figure 3-1](#), the values of the resistors are user defined. The configuration is fixed for a Backplane and is not runtime modified. The recommendations on the resistor values are provided in [Table 3-2, “Recommended Resistor Values,” on page 13](#).

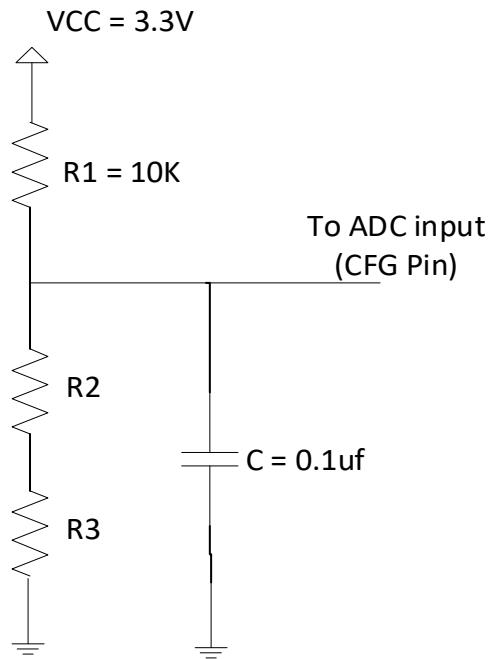
Note: Configuration IDs 0x0F through 0x17 below are supported only by the **UB2** family member device.

TABLE 3-1: EEC1005 CONFIGURATION SELECT

EEC1005 Config ^a	Pin Count	ID	Config (V)	Pinout	HFC Total ^b	HFC SAS	HFC PCIe	DFC Total	DFC SAS/SATA	DFC PCIe	DFC/HFC PCIe
4 Drive GPIO	84	0x01	0.1	Table 11-4, “GPIO Controller - 84 Pin Package”	1	1	0	4	4	0	0
8 Drive GPIO	84	0x02	0.2	Table 11-4, “GPIO Controller - 84 Pin Package”	1	1	0	8	8	0	0
12 Drive GPIO	144	0x03	0.3	Table 11-2, “GPIO Controller - 144 Pin Package”	2	2	0	12	12	0	0
16 Drive GPIO	144	0x04	0.4	Table 11-2, “GPIO Controller - 144 Pin Package”	2	2	0	16	16	0	0
4 Drive UBM U.2	84	0x05	0.5	Table 11-5, “UBM Controller - 84 Pin Package”	3	1	2	4	4	4	2
8 Drive UBM U.2	84	0x06	0.6	Table 11-5, “UBM Controller - 84 Pin Package”	5	1	4	8	8	8	2
8 Drive UBM U.2 (Full Feature), Split Cable PCIe	144	0x07	0.7	Table 11-7, “UBM Controller - 144 Pin ALT Package”	5	1	4	8	8	8	4
8 Drive UBM U.3 (Min. Feature)	84	0x08	0.8	Table 11-5, “UBM Controller - 84 Pin Package”	4	4	4	8	8	8	2
8 Drive UBM U.3 (Full Feature)	144	0x09	0.9	Table 11-3, “UBM Controller - 144 Pin Package”	4	4	4	8	8	8	2
12 Drive UBM U.2 PCIe Only (Full Featured)	144	0x0A	1.0	Table 11-3, “UBM Controller - 144 Pin Package”	6	0	6	12	0	12	2
12 Drive UBM U.3 PCIe Only (Full Featured)	144	0x0B	1.1	Table 11-3, “UBM Controller - 144 Pin Package”	6	0	6	12	0	12	2
RESERVED Do not select.	N/A	N/A	1.2	N/A - Not for Customer designs.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
8 Drive UBM+GPIO U.2	144	0x0D	1.3	Table 11-6, “UBM_GPIO Controller - 144 Pin Package”	5	1	4	8	8	8	2

TABLE 3-1: EEC1005 CONFIGURATION SELECT

8 Drive UBM U.2 (Full Feature)	144	0x0E	1.4	Table 11-3, "UBM Controller - 144 Pin Package"	5	1	4	8	8	8	2
10 Drive UBM U.2 PCIE Only UB2 Only	144	0x0F	1.5	Table 11-3, "UBM Controller - 144 Pin Package"	3	0	2	10	0	10	5
8 Drive UBM U.3 (Full Feature) x2 Lanes UB2 Only	144	0x10	1.6	Table 11-3, "UBM Controller - 144 Pin Package"	2	2	2	8	8	8	4
8 Drive UBM U.3 (Full Feature) x1 Lanes UB2 Only	144	0x11	1.7	Table 11-3, "UBM Controller - 144 Pin Package"	1	1	1	8	8	8	8
RESERVED Do not select	N/A	N/A	1.8	N/A - Not for Customer designs.	N/A						
8 Drive UBM U.3 (Min. Feature) x2 Lanes UB2 Only	84	0x13	1.9	Table 11-5, "UBM Controller - 84 Pin Package"	2	2	2	8	8	8	4
8 Drive UBM U.3 (Min. Feature) x1 Lanes UB2 Only	84	0x14	2.0	Table 11-5, "UBM Controller - 84 Pin Package"	1	1	1	8	8	8	8
12 Drive UBM U.3 (Full Feature) x1 Lanes UB2 Only	144	0x15	2.1	Table 11-3, "UBM Controller - 144 Pin Package"	2	2	2	12	12	12	6
10 Drive UBM U.2 (Full Feature) PCIE Only UB2 Only	144	0x16	2.2	Table 11-3, "UBM Controller - 144 Pin Package"	2	0	2	10	0	10	5
8 Drive UBM U.2 (Full Feature) Split Cable PCIe UB2 Only	144	0x17	2.3	Table 11-7, "UBM Controller - 144 Pin ALT Package"	3	1	2	8	8	8	4


a. Configurations not mentioned in the above table, or marked RESERVED, are not supported by EEC1005, and will result in undefined operation if selected.

b. HFC Total is the number of host facing connectors required for a particular configuration.

Min. Feature Set consists of the following differences:

1. No signal HFC_xx_2WIRE_RESET
2. No signal DFC_xx_IFDET_2_N
3. No signal DFC_xx_PWR_DISABLE

FIGURE 3-1: VOLTAGE DIVIDER AT ADC INPUT

TABLE 3-2: RECOMMENDED RESISTOR VALUES

EEC1005 Config	Config (V)	Pinout	R2 (in Ohms)	R3(in Ohms)
4 Drive GPIO	0.1	Table 11-4, "GPIO Controller - 84 Pin Package"	301	11.5
8 Drive GPIO	0.2	Table 11-4, "GPIO Controller - 84 Pin Package"	634	11
12 Drive GPIO	0.3	Table 11-2, "GPIO Controller - 144 Pin Package"	1000	0
16 Drive GPIO	0.4	Table 11-2, "GPIO Controller - 144 Pin Package"	1370	9.31
4 Drive UBM U.2	0.5	Table 11-5, "UBM Controller - 84 Pin Package"	1780	5.76
8 Drive UBM U.2	0.6	Table 11-5, "UBM Controller - 84 Pin Package"	2210	12.1
8 Drive UBM U.2 (Full Feature), Split cable PCIe	0.7	Table 11-7, "UBM Controller - 144 Pin ALT Package"	2610	82.5
8 Drive UBM U.3 (Minimum Feature)	0.8	Table 11-5, "UBM Controller - 84 Pin Package"	3160	40.2
8 Drive UBM U.3 (Full Feature)	0.9	Table 11-3, "UBM Controller - 144 Pin Package"	3740	10
12 Drive UBM U.2 PCIe Only (Full Featured)	1.0	Table 11-3, "UBM Controller - 144 Pin Package"	4320	28
12 Drive UBM U.3 PCIe Only (Full Featured)	1.1	Table 11-3, "UBM Controller - 144 Pin Package"	4990	10
RESERVED Do not select.	1.2	N/A	N/A	N/A
8 Drive UBM+GPIO U.2	1.3	Table 11-6, "UBM_GPIO Controller - 144 Pin Package"	6490	10
8 Drive UBM U.2 (Full Feature)	1.4	Table 11-3, "UBM Controller - 144 Pin Package"	7320	48.7
10 Drive UBM U.2 PCIE Only (Full Feature) UB2 Only	1.5	Table 11-3, "UBM Controller - 144 Pin Package"	7870	464
8 Drive UBM U.3 (Full Feature) x2 Lanes UB2 Only	1.6	Table 11-3, "UBM Controller - 144 Pin Package"	9310	102

EEC1005

TABLE 3-2: RECOMMENDED RESISTOR VALUES (CONTINUED)

EEC1005 Config	Config (V)	Pinout	R2 (in Ohms)	R3(in Ohms)
8 Drive UBM U.3 (Full Feature) x1 Lanes UB2 Only	1.7	Table 11-3, "UBM Controller - 144 Pin Package"	9760	866
RESERVED Do not select.	1.8	N/A	N/A	N/A
8 Drive UBM U.3 (Min. Feature) x2 Lanes UB2 Only	1.9	Table 11-5, "UBM Controller - 84 Pin Package"	10000	3570
8 Drive UBM U.3 (Min. Feature) x1 Lanes UB2 Only	2.0	Table 11-5, "UBM Controller - 84 Pin Package"	15000	383
12 Drive UBM U.3 (Full Feature) x1 Lanes UB2 Only	2.1	Table 11-3, "UBM Controller - 144 Pin Package"	16500	1000
10 Drive UBM U.2 (Full Feature) PCIE Only UB2 Only	2.2	Table 11-3, "UBM Controller - 144 Pin Package"	20000	0
8 Drive UBM U.2 (Full Feature) Split Cable PCIe UB2 Only	2.3	Table 11-7, "UBM Controller - 144 Pin ALT Package"	21500	1500
<p>Note 1: The resistor values suggested are based on the standard value resistors available @1% tolerance.</p> <p>2: It is highly recommended to use 1% tolerant resistors at ADC input.</p> <p>3: The ADC input capacitor should be 0.1uF.</p> <p>4: The resistor R1 should be fixed at 10K.</p> <p>5: Config values not mentioned in the above table, or marked RESERVED, are not supported by EEC1005, and will result in undefined operation if selected.</p>				

4.0 CONFIGURATION FRU

EEC1005 supports a 256-byte FRU (Field Replaceable Unit) that is used to initialize/input the parameters which are client specific. These parameters are read on power up as well as run time to initialize the firmware accordingly. This 256-byte FRU is accessible over BMC I2C segment, if used in an architecture where BMC exists.

TABLE 4-1: CONFIGURATION FRU TABLE

Address	Group	Field Name	Pattern	LED Name	Parameters
0x00	Global	ACTIVITY/2WIRE_RESET OPTION			
0x01	Global	IBPI PATTERN 2/3 LED			
0x02	Global	Backplane HFC Count			
0x03	Global	Backplane DFC Count			
0x04	Global	Backplane Physical Location			
0x05	Global	RSVD			
0x06	Global	RSVD			
0x07	Global	RSVD			
0x08	Global	RSVD			
0x09	Global	RSVD			
0x0A	Global	RSVD			
0x0B	Global	RSVD			
0x0C	Global	RSVD			
0x0D	Global	RSVD			
0x0E	Global	RSVD			
0x0F	Global	RSVD			
0x10	Global	RSVD			
0x11	Global	RSVD			
0x12	Global	RSVD			
0x13	Global	RSVD			
0x14	Global	CHECKSUM			
0x15	HFC0	UBM CONTROLLER DEVICE CODE MSB			
0x16	HFC0	UBM CONTROLLER DEVICE CODE			
0x17	HFC0	UBM CONTROLLER DEVICE CODE			
0x18	HFC0	UBM CONTROLLER DEVICE CODE LSB			
0x19	HFC0	SILICON VENDOR ID VENDOR SPECIFIC 0			
0x1A	HFC0	SILICON VENDOR ID VENDOR SPECIFIC 1			
0x1B	HFC0	HFC IDENTITY			
0x1C	HFC0	CPRSNT# or CHANGE_DETECT#			
0x1D	HFC0	Clock Routing Capability			
0x1E	HFC0	PERST Management Override			
0x1F	HFC0	PERST Support (UB2 Only)			
0x20	HFC0	PWRDIS Support (UB2 Only)			
0x21	HFC0	VPP Address (UB2 Only)			
0x22	HFC0	VPP Interrupt Mode Bit (UB2 Only)			
0x23	HFC0	EDSFF SMBRST# Support (UB2 Only)			
0x24	HFC0	RSVD			
0x25	HFC0	RSVD			

TABLE 4-1: CONFIGURATION FRU TABLE (CONTINUED)

Address	Group	Field Name	Pattern	LED Name	Parameters
0x26	HFC0	RSVD			
0x27	HFC0	RSVD			
0x28	HFC0	RSVD			
0x29	HFC0	RSVD			
0x2A	HFC0	RSVD			
0x2B	HFC0	RSVD			
0x2C	HFC0	CHECKSUM			
0x2D	HFC1	UBM CONTROLLER DEVICE CODE MSB			
0x2E	HFC1	UBM CONTROLLER DEVICE CODE			
0x2F	HFC1	UBM CONTROLLER DEVICE CODE			
0x30	HFC1	UBM CONTROLLER DEVICE CODE LSB			
0x31	HFC1	SILICON VENDOR ID VENDOR SPECIFIC 0			
0x32	HFC1	SILICON VENDOR ID VENDOR SPECIFIC 1			
0x33	HFC1	HFC IDENTITY			
0x34	HFC1	CPRSNT# or CHANGE_DETECT#			
0x35	HFC1	Clock Routing Capability			
0x36	HFC1	PERST Management Override			
0x37	HFC1	PERST Support (UB2 Only)			
0x38	HFC1	PWRDIS Support (UB2 Only)			
0x39	HFC1	VPP Address (UB2 Only)			
0x3A	HFC1	VPP Interrupt Mode Bit (UB2 Only)			
0x3B	HFC1	EDSFF SMBRST# Support (UB2 Only)			
0x3C	HFC1	RSVD			
0x3D	HFC1	RSVD			
0x3E	HFC1	RSVD			
0x3F	HFC1	RSVD			
0x40	HFC1	RSVD			
0x41	HFC1	RSVD			
0x42	HFC1	RSVD			
0x43	HFC1	RSVD			
0x44	HFC1	CHECKSUM			
0x45	HFC2	UBM CONTROLLER DEVICE CODE MSB			
0x46	HFC2	UBM CONTROLLER DEVICE CODE			
0x47	HFC2	UBM CONTROLLER DEVICE CODE			
0x48	HFC2	UBM CONTROLLER DEVICE CODE LSB			
0x49	HFC2	SILICON VENDOR ID VENDOR SPECIFIC 0			
0x4A	HFC2	SILICON VENDOR ID VENDOR SPECIFIC 1			
0x4B	HFC2	HFC IDENTITY			
0x4C	HFC2	CPRSNT# or CHANGE_DETECT#			
0x4D	HFC2	Clock Routing Capability			
0x4E	HFC2	PERST Management Override			

TABLE 4-1: CONFIGURATION FRU TABLE (CONTINUED)

Address	Group	Field Name	Pattern	LED Name	Parameters
0x4F	HFC2	PERST Support (UB2 Only)			
0x50	HFC2	PWRDIS Support (UB2 Only)			
0x51	HFC2	VPP Address (UB2 Only)			
0x52	HFC2	VPP Interrupt Mode Bit (UB2 Only)			
0x53	HFC2	EDSFF SMBRST# Support (UB2 Only)			
0x54	HFC2	RSVD			
0x55	HFC2	RSVD			
0x56	HFC2	RSVD			
0x57	HFC2	RSVD			
0x58	HFC2	RSVD			
0x59	HFC2	RSVD			
0x5A	HFC2	RSVD			
0x5B	HFC2	RSVD			
0x5C	HFC2	CHECKSUM			
0x5D	HFC3	UBM CONTROLLER DEVICE CODE MSB			
0x5E	HFC3	UBM CONTROLLER DEVICE CODE			
0x5F	HFC3	UBM CONTROLLER DEVICE CODE			
0x60	HFC3	UBM CONTROLLER DEVICE CODE LSB			
0x61	HFC3	SILICON VENDOR ID VENDOR SPECIFIC 0			
0x62	HFC3	SILICON VENDOR ID VENDOR SPECIFIC 1			
0x63	HFC3	HFC IDENTITY			
0x64	HFC3	CPRSNT# or CHANGE_DETECT#			
0x65	HFC3	Clock Routing Capability			
0x66	HFC3	PERST Management Override			
0x67	HFC3	PERST Support (UB2 Only)			
0x68	HFC3	PWRDIS Support (UB2 Only)			
0x69	HFC3	VPP Address (UB2 Only)			
0x6A	HFC3	VPP Interrupt Mode Bit (UB2 Only)			
0x6B	HFC3	EDSFF SMBRST# Support (UB2 Only)			
0x6C	HFC3	RSVD			
0x6D	HFC3	RSVD			
0x6E	HFC3	RSVD			
0x6F	HFC3	RSVD			
0x70	HFC3	RSVD			
0x71	HFC3	RSVD			
0x72	HFC3	RSVD			
0x73	HFC3	RSVD			
0x74	HFC3	CHECKSUM			
0x75	HFC4	UBM CONTROLLER DEVICE CODE MSB			
0x76	HFC4	UBM CONTROLLER DEVICE CODE			
0x77	HFC4	UBM CONTROLLER DEVICE CODE			
0x78	HFC4	UBM CONTROLLER DEVICE CODE LSB			

TABLE 4-1: CONFIGURATION FRU TABLE (CONTINUED)

Address	Group	Field Name	Pattern	LED Name	Parameters
0x79	HFC4	SILICON VENDOR ID VENDOR SPECIFIC 0			
0x7A	HFC4	SILICON VENDOR ID VENDOR SPECIFIC 1			
0x7B	HFC4	HFC IDENTITY			
0x7C	HFC4	CPRSNT# or CHANGE_DETECT#			
0x7D	HFC4	Clock Routing Capability			
0x7E	HFC4	PERST Management Override			
0x7F	HFC4	PERST Support (UB2 Only)			
0x80	HFC4	PWRDIS Support (UB2 Only)			
0x81	HFC4	VPP Address (UB2 Only)			
0x82	HFC4	VPP Interrupt Mode Bit (UB2 Only)			
0x83	HFC4	EDSFF SMBRST# Support (UB2 Only)			
0x84	HFC4	RSVD			
0x85	HFC4	RSVD			
0x86	HFC4	RSVD			
0x87	HFC4	RSVD			
0x88	HFC4	RSVD			
0x89	HFC4	RSVD			
0x8A	HFC4	RSVD			
0x8B	HFC4	RSVD			
0x8C	HFC4	CHECKSUM			
0x8D	HFC5	UBM CONTROLLER DEVICE CODE MSB			
0x8E	HFC5	UBM CONTROLLER DEVICE CODE			
0x8F	HFC5	UBM CONTROLLER DEVICE CODE			
0x90	HFC5	UBM CONTROLLER DEVICE CODE LSB			
0x91	HFC5	SILICON VENDOR ID VENDOR SPECIFIC 0			
0x92	HFC5	SILICON VENDOR ID VENDOR SPECIFIC 1			
0x93	HFC5	HFC IDENTITY			
0x94	HFC5	CPRSNT# or CHANGE_DETECT#			
0x95	HFC5	Clock Routing Capability			
0x96	HFC5	PERST Management Override			
0x97	HFC5	PERST Support (UB2 Only)			
0x98	HFC5	PWRDIS Support (UB2 Only)			
0x99	HFC5	VPP Address (UB2 Only)			
0x9A	HFC5	VPP Interrupt Mode Bit (UB2 Only)			
0x9B	HFC5	EDSFF SMBRST# Support (UB2 Only)			
0x9C	HFC5	RSVD			
0x9D	HFC5	RSVD			
0x9E	HFC5	RSVD			
0x9F	HFC5	RSVD			
0xA0	HFC5	RSVD			
0xA1	HFC5	RSVD			

TABLE 4-1: CONFIGURATION FRU TABLE (CONTINUED)

Address	Group	Field Name	Pattern	LED Name	Parameters
0xA2	HFC5	RSVD			
0xA3	HFC5	RSVD			
0xA4	HFC5	CHECKSUM			
0xA5	HFC6	UBM CONTROLLER DEVICE CODE MSB			
0xA6	HFC6	UBM CONTROLLER DEVICE CODE			
0xA7	HFC6	UBM CONTROLLER DEVICE CODE			
0xA8	HFC6	UBM CONTROLLER DEVICE CODE LSB			
0xA9	HFC6	SILICON VENDOR ID VENDOR SPECIFIC 0			
0xAA	HFC6	SILICON VENDOR ID VENDOR SPECIFIC 1			
0xAB	HFC6	HFC IDENTITY			
0xAC	HFC6	CPRSNT# or CHANGE_DETECT#			
0xAD	HFC6	Clock Routing Capability			
0xAE	HFC6	PERST Management Override			
0xAF	HFC6	PERST Support (UB2 Only)			
0xB0	HFC6	PWRDIS Support (UB2 Only)			
0xB1	HFC6	VPP Address (UB2 Only)			
0xB2	HFC6	VPP Interrupt Mode Bit (UB2 Only)			
0xB3	HFC6	EDSFF SMBRST# Support (UB2 Only)			
0xB4	HFC6	RSVD			
0xB5	HFC6	RSVD			
0xB6	HFC6	RSVD			
0xB7	HFC6	RSVD			
0xB8	HFC6	RSVD			
0xB9	HFC6	RSVD			
0xBA	HFC6	RSVD			
0xBB	HFC6	RSVD			
0xBC	HFC6	CHECKSUM			
0xBD	LED PATTERN	NOT_PRES_LED_ACT_BLINKP REP	NOT_PRES	LED_ACT	BLINK-P REP
0xBE	LED PATTERN	NOT_PRES_LED_ACT_PAT_PERIOD	NOT_PRES	LED_ACT	PAT_PERIOD
0xBF	LED PATTERN	NOT_PRES_LED_STAorLOC_BLINKP REP	NOT_PRES	LED_STAorLOC	BLINK-P REP
0xC0	LED PATTERN	NOT_PRES_LED_STAorLOC_PAT_PERIOD	NOT_PRES	LED_STAorLOC	PAT_PERIOD
0xC1	LED PATTERN	NOT_PRES_LED_FAIL_BLINKP REP	NOT_PRES	LED_FAIL	BLINK-P REP
0xC2	LED PATTERN	NOT_PRES_LED_FAIL_PAT_PERIOD	NOT_PRES	LED_FAIL	PAT_PERIOD
0xC3	LED PATTERN	PRES_NO_ACT_LED_ACT_BLINKP REP	PRES_NO_ACT	LED_ACT	BLINK-P REP
0xC4	LED PATTERN	PRES_NO_ACT_LED_ACT_PAT_PERIOD	PRES_NO_ACT	LED_ACT	PAT_PERIOD
0xC5	LED PATTERN	PRES_NO_ACT_LED_STAorLOC_BLINKP REP	PRES_NO_ACT	LED_STAorLOC	BLINK-P REP

TABLE 4-1: CONFIGURATION FRU TABLE (CONTINUED)

Address	Group	Field Name	Pattern	LED Name	Parameters
0xC6	LED PAT-TERN	PRES_NO_ACT_LED_STAor-LOC_PAT_PERIOD	PRES_NO_AC-T	LED_STAor-LOC	PAT_PE-RIOD
0xC7	LED PAT-TERN	PRES_NO_ACT_LED_FAIL_BLINKP REP	PRES_NO_AC-T	LED_FAIL	BLINK-P REP
0xC8	LED PAT-TERN	PRES_NO_ACT_LED_FAIL_PAT_PE-RIOD	PRES_NO_AC-T	LED_FAIL	PAT_PE-RIOD
0xC9	LED PAT-TERN	PRES_ACT_LED_ACT_BLINKP REP	PRES_ACT	LED_ACT	BLINK-P REP
0xCA	LED PAT-TERN	PRES_ACT_LED_ACT_PAT_PERIOD	PRES_ACT	LED_ACT	PAT_PE-RIOD
0xCB	LED PAT-TERN	PRES_ACT_LED_STAorLOC_BLINK-P REP	PRES_ACT	LED_STAor-LOC	BLINK-P REP
0xCC	LED PAT-TERN	PRES_ACT_LED_STAorLOC_PAT_PE-RIOD	PRES_ACT	LED_STAor-LOC	PAT_PE-RIOD
0xCD	LED PAT-TERN	PRES_ACT_LED_FAIL_BLINKP REP	PRES_ACT	LED_FAIL	BLINK-P REP
0xCE	LED PAT-TERN	PRES_ACT_LED_FAIL_PAT_PERIOD	PRES_ACT	LED_FAIL	PAT_PE-RIOD
0xCF	LED PAT-TERN	LOCATE_LED_ACT_BLINKP REP	LOCATE	LED_ACT	BLINK-P REP
0xD0	LED PAT-TERN	LOCATE_LED_ACT_PAT_PERIOD	LOCATE	LED_ACT	PAT_PE-RIOD
0xD1	LED PAT-TERN	LOCATE_LED_STAorLOC_BLINKP REP	LOCATE	LED_STAor-LOC	BLINK-P REP
0xD2	LED PAT-TERN	LOCATE_LED_STAorLOC_PAT_PERIOD	LOCATE	LED_STAor-LOC	PAT_PE-RIOD
0xD3	LED PAT-TERN	LOCATE_LED_FAIL_BLINKP REP	LOCATE	LED_FAIL	BLINK-P REP
0xD4	LED PAT-TERN	LOCATE_LED_FAIL_PAT_PERIOD	LOCATE	LED_FAIL	PAT_PE-RIOD
0xD5	LED PAT-TERN	FAIL_LED_ACT_BLINKP REP	FAIL	LED_ACT	BLINK-P REP
0xD6	LED PAT-TERN	FAIL_LED_ACT_PAT_PERIOD	FAIL	LED_ACT	PAT_PE-RIOD
0xD7	LED PAT-TERN	FAIL_LED_STAorLOC_BLINKP REP	FAIL	LED_STAor-LOC	BLINK-P REP
0xD8	LED PAT-TERN	FAIL_LED_STAorLOC_PAT_PERIOD	FAIL	LED_STAor-LOC	PAT_PE-RIOD
0xD9	LED PAT-TERN	FAIL_LED_FAIL_BLINKP REP	FAIL	LED_FAIL	BLINK-P REP
0xDA	LED PAT-TERN	FAIL_LED_FAIL_PAT_PERIOD	FAIL	LED_FAIL	PAT_PE-RIOD
0xDB	LED PAT-TERN	REBUILD_LED_ACT_BLINKP REP	REBUILD	LED_ACT	BLINK-P REP
0xDC	LED PAT-TERN	REBUILD_LED_ACT_PAT_PERIOD	REBUILD	LED_ACT	PAT_PE-RIOD
0xDD	LED PAT-TERN	REBUILD_LED_STAorLOC_BLINKP REP	REBUILD	LED_STAor-LOC	BLINK-P REP
0xDE	LED PAT-TERN	REBUILD_LED_STAorLOC_PAT_PERIOD	REBUILD	LED_STAor-LOC	PAT_PE-RIOD

TABLE 4-1: CONFIGURATION FRU TABLE (CONTINUED)

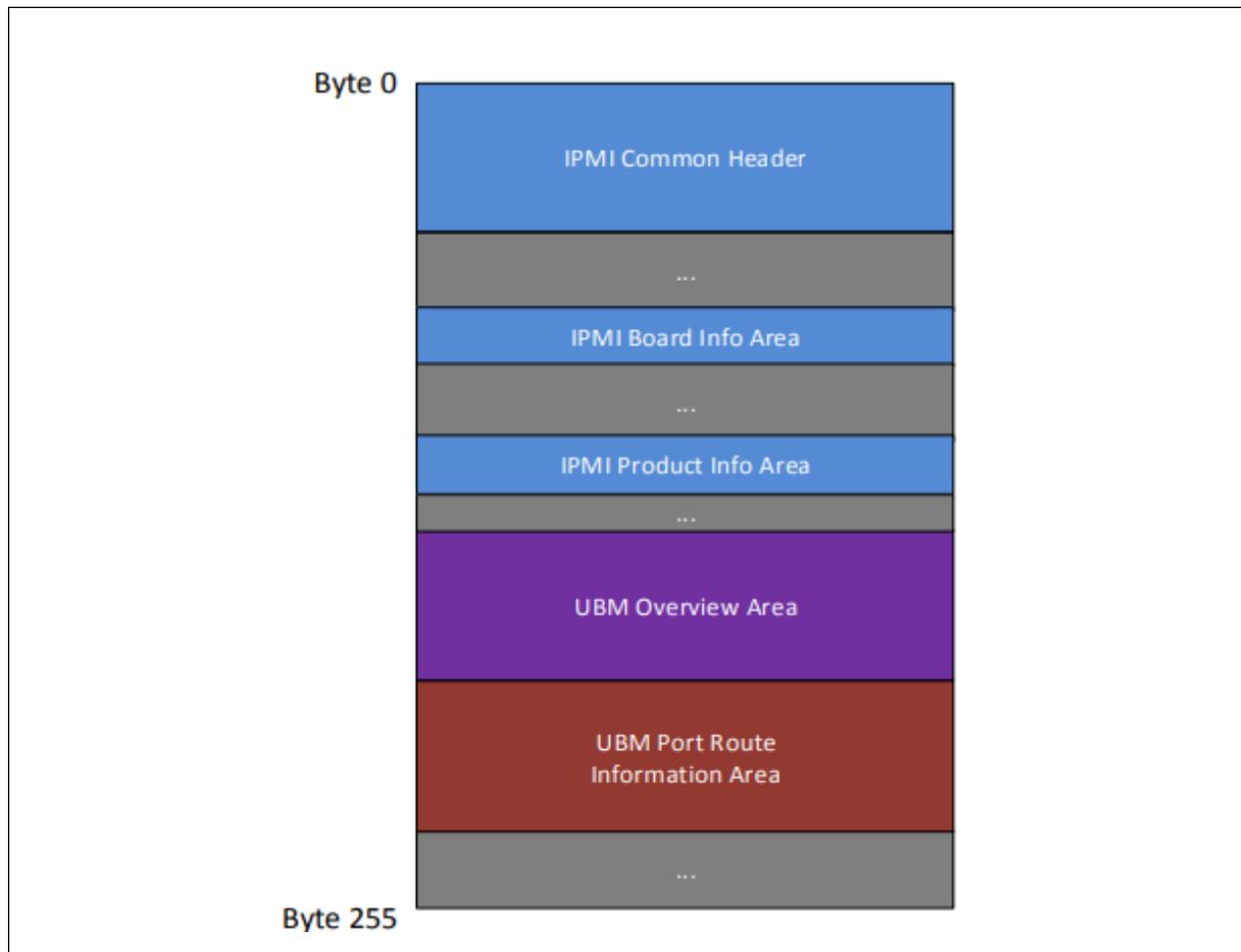
Address	Group	Field Name	Pattern	LED Name	Parameters
0xDF	LED PAT-TERN	REBUILD_LED_FAIL_BLINKP REP	REBUILD	LED_FAIL	BLINK-P REP
0xE0	LED PAT-TERN	REBUILD_LED_FAIL_PAT_PERIOD	REBUILD	LED_FAIL	PAT_PE-RIOD
0xE1	LED PAT-TERN	PFA_LED_ACT_BLINKP REP	PFA	LED_ACT	BLINK-P REP
0xE2	LED PAT-TERN	PFA_LED_ACT_PAT_PERIOD	PFA	LED_ACT	PAT_PE-RIOD
0xE3	LED PAT-TERN	PFA_LED_STAorLOC_BLINKP REP	PFA	LED_STAor-LOC	BLINK-P REP
0xE4	LED PAT-TERN	PFA_LED_STAorLOC_PAT_PERIOD	PFA	LED_STAor-LOC	PAT_PE-RIOD
0xE5	LED PAT-TERN	PFA_LED_FAIL_BLINKP REP	PFA	LED_FAIL	BLINK-P REP
0xE6	LED PAT-TERN	PFA_LED_FAIL_PAT_PERIOD	PFA	LED_FAIL	PAT_PE-RIOD
0xE7	LED PAT-TERN	TEST_MODE_LED_ACT_BLINKP REP (UB2 Only)	TEST MODE	LED_ACT	BLINK-P REP
0xE8	LED PAT-TERN	TEST_MODE_LED_ACT_PAT_PERIOD (UB2 Only)	TEST MODE	LED_ACT	PAT_PE-RIOD
0xE9	LED PAT-TERN	TEST_MODE_LED_STAorLOC_BLINKP REP (UB2 Only)	TEST MODE	LED_STAor-LOC	BLINK-P REP
0xEA	LED PAT-TERN	TEST_MODE_LED_STAorLOC_PAT_PE-RIOD (UB2 Only)	TEST MODE	LED_STAor-LOC	PAT_PE-RIOD
0xEB	LED PAT-TERN	TEST_MODE_LED_FAIL_BLINKP REP (UB2 Only)	TEST MODE	LED_FAIL	BLINK-P REP
0xEC	LED PAT-TERN	TEST_MODE_LED_FAIL_PAT_PERIOD (UB2 Only)	TEST MODE	LED_FAIL	PAT_PE-RIOD
0xED	LED PAT-TERN	RSVD			
0xEE	LED PAT-TERN	RSVD			
0xEF	LED PAT-TERN	RSVD			
0xF0	LED PAT-TERN	RSVD			
0xF1	LED PAT-TERN	RSVD			
0xF2	LED PAT-TERN	RSVD			
0xF3	LED PAT-TERN	RSVD			
0xF4	LED PAT-TERN	RSVD			
0xF5	LED PAT-TERN	RSVD			
0xF6	LED PAT-TERN	RSVD			
0xF7	LED PAT-TERN	RSVD			

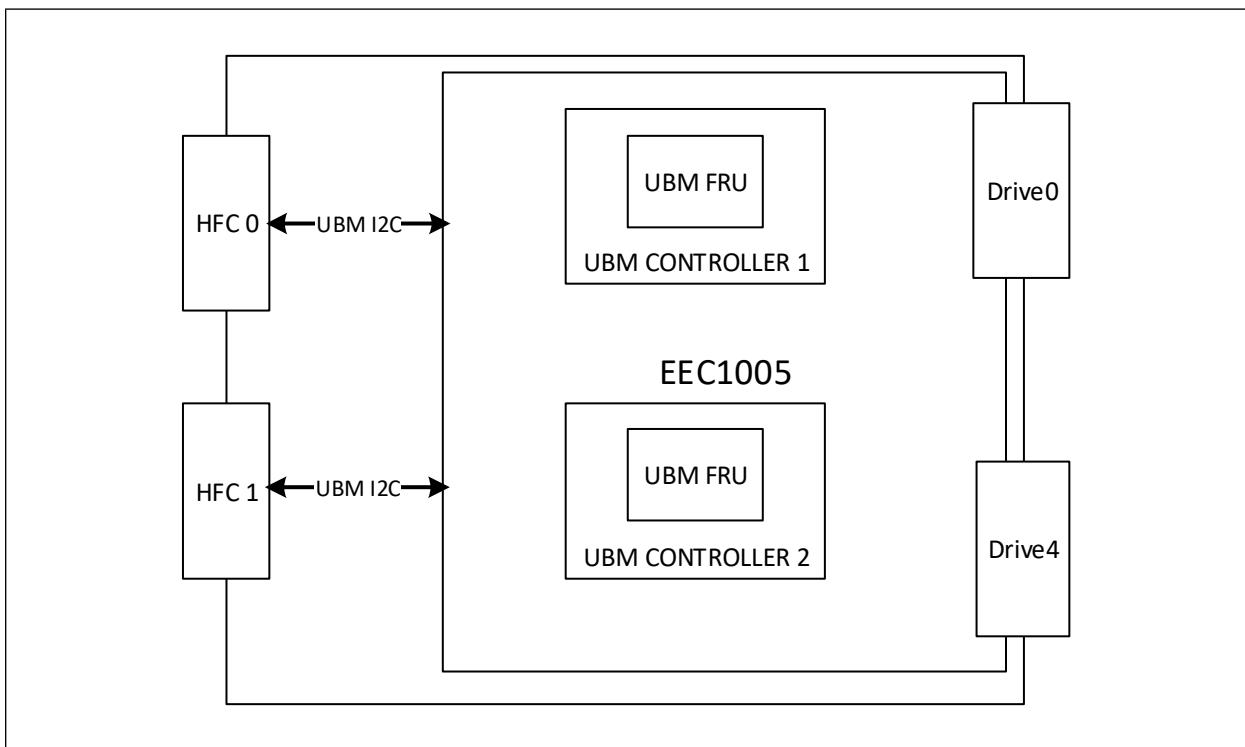
TABLE 4-1: CONFIGURATION FRU TABLE (CONTINUED)

Address	Group	Field Name	Pattern	LED Name	Parameters
0xF8	LED PAT-TERN	RSVD			
0xF9	LED PAT-TERN	RSVD			
0xFA	LED PAT-TERN	RSVD			
0xFB	LED PAT-TERN	RSVD			
0xFC	LED PAT-TERN	RSVD			
0xFD	LED PAT-TERN	RSVD			
0xFE	LED PAT-TERN	RSVD			
0xFF	LED PAT-TERN	CHECKSUM			

Note 1: For Solid State ON, PAT_PERIOD = 0x00 and BLINKP REP = 0x01
2: For Solid State OFF, PAT_PERIOD = 0x00 and BLINKP REP = 0x00
3: PAT_PERIOD = 0x28 means Not Solid State
4: BLINKP REP = 0x54 means 1Hz
5: Each count of registers increments in 25mS Intervals
6: PAT_PERIOD defines the total period of the blink pattern. After it expires the pattern will repeat itself
7: BLINKP REP defines the period in which the LED will be ON/OFF
8: IBPI PATTERN 2/3 (Address 0x01) selects: 0x00 = 2-LED configuration, 0x01 = 3-LED configuration.

5.0 GENERIC FRU


EEC1005 has a Generic FRU space which customer can use as non volatile storage. 256 bytes are allocated for this Customer defined Generic FRU. This memory emulates AT24C02 256 byte I2C EEPROM. Read and write of data to this FRU space can be done by host over the same physical I2C interface connected to BMC at I2C target address 0xA8 in 8-bit format (0x54 in 7-bit format).


6.0 UBM FRU

The SFF-TA-1005 (UBM) Specification calls out for an external Field Replaceable Unit (FRU) per every UBM Controller. EEC1005 incorporates a UBM FRU for every UBM Controller as per the spec requirement within EEC1005 Memory space. This saves board space and cost.

The UBM FRU on backplane is a 256 byte read-only NVRAM with IPMI FRU formatted content and is responsible for reporting static backplane information.

FIGURE 6-1: UBM FRU FORMAT

FIGURE 6-2: UBM FRU

The UBM FRU is addressed as specified by SFF-TA-1005, over Target Address 0xAE (8-bit format).

7.0 UBM CONTROLLER COMMANDS

The UBM Controller manages the Host facing Connector sideband I/O signaling, the Drive facing connector I/O signaling and the LED states for the DFC. It provides backplane implementation features and options for the initialization of the devices. These features are selected for the device through the CONFIG_PIN (Section 11.3, "Pin List") as explained in Section 3.0, "Configurations".

Below is listed the UBM command set as taken from SFF-TA-1005. There are variables in UBM that are client specific; for example, the "Vendor Specific" bytes of the Silicon Identity and Revision Command. The EEC1005 allows clients to initialize those variables from FRU, and the UBM registers are initialized to these values on power up.

TABLE 7-1: SUMMARY OF UBM COMMANDS

Command Code	Direction	SFF-TA-1005 Command Name	Notes for EEC1005
0x00	Read Only	Operational State	Fully Implemented
0x01	Read Only	Last Command Status	Fully Implemented
0x02	Read Only	Silicon Identity and Version	See Section 7.1 "Silicon Identity and Version (0x02)"
0x03	Read Only	Programming Update Mode Capabilities	See Section 7.2 "Programming Update Mode Capabilities (0x03)"
0x04--0x1F	--	None (Reserved)	
0x20	Read/Write	Enter Programmable Update Mode	Fully Implemented
0x21	Read/Write	Programmable Mode Data Transfer	Fully Implemented
0x22	Read/Write	Exit Programmable Update Mode	Fully Implemented
0x23--0x2F	--	None (Reserved)	
0x30	Read Only	Host Facing Connector Info	See Section 7.3 "Host Facing Connector Info (0x30)"
0x31	Read Only	Backplane Info	See Section 7.4 "Backplane Info (0x31)"
0x32	Read Only	Starting Slot	See Section 7.5 "Starting Slot (0x32)"
0x33	Read Only	Capabilities	See Section 7.6 "Capabilities (0x33)"
0x34	Read/Write	Features	See Section 7.7 "Features (0x34)"
0x35	Read/Write	Change Count	Fully Implemented
0x36	Read/Write	DFC Status and Control Descriptor Index	Fully Implemented
0x37--0x3F	--	None (Reserved)	
0x40	Read/Write	DFC Status and Control Descriptor	Fully Implemented
0x41--0x4F	--	None (Reserved)	
0x50--0x9F	--	None (Reserved)	
0xA0--0xAF	--	None (Vendor Specific)	
0xB0--0xFF	--	None (Reserved)	

The **UB1** device can declare only UBM Spec Version 1.3 below. The **UB2** device can declare Version 1.3 or 1.4. Version 1.4 adds a declaration for DFC SMBus Reset Control Support, in the Capabilities word (0x33 below), and a bit for DFC SMBus Reset Control in the Features word (0x34 below).

7.1 Silicon Identity and Version (0x02)

Byte/Bit	7	6	5	4	3	2	1	0
0	UBM Spec Major Version = 1				UBM Spec Minor Version = 3 (UB1) UBM Spec Minor Version = 3 or 4 (UB2)			
1				PCIE Vendor ID (LSB) = 0x54				
2				PCIE Vendor ID (MSB) = 0x00				
3					RESERVED = 0x00			
4				UBM Controller Device Code (LSB) = Configuration FRU				
5				UBM Controller Device Code = Configuration FRU				
6								
7				UBM Controller Device Code (MSB) = Configuration FRU				
8					RESERVED = 0x0000			
9								
10				UBM Controller Image Version Minor = Backplane FW Minor Version				
11				UBM Controller Image Version Major = Backplane FW Major Version				
12				Vendor Specific = Configuration FRU				
13								

7.2 Programming Update Mode Capabilities (0x03)

Byte/Bit	7	6	5	4	3	2	1	0
0	RSVD						Update Mode = 0x01	

Update Mode: The update mode will be set to 0x01 to indicate that update is supported while the device remains online. In order to support the non-destructive status of NVME drives while the update is being performed the GPIOs status will remain consistent across a firmware reset.

7.3 Host Facing Connector Info (0x30)

Byte/Bit	7	6	5	4	3	2	1	0
0	Port Type = 1 (PCIe) = 0 (SAS)	RSVD = 0x0			Host Facing Connector Identity = Configuration FRU			

Host Facing Connector ID will start from 0 and will report SAS HFC first followed by NVME HFC

PORT TYPE: HFCs that are SAS/SATA shall report Port Type = 0. HFCs that are PCIe shall report Port Type = 1.

7.4 Backplane Info (0x31)

Byte/Bit	7	6	5	4	3	2	1	0
0	Backplane Type		RSVD = 0		Backplane Number = Configuration FRU			

The Backplane Type will represent the Configuration selected from Config Pin. The Backplane Number will be read from Configuration FRU or configured based on input voltage on CONFIG_BPNUM_PIN.

7.5 Starting Slot (0x32)

Byte/Bit	7	6		5	4	3	2	1	0
0					Starting Slot = 0x00				

Starting Slot is fixed to 0x0.

7.6 Capabilities (0x33)

Byte/Bit	7	6	5	4	3	2	1	0
0	DFC Change Count = 1	Change Detect Int = 1	2-Wire Reset = 2h	Dual Port = 0b	PCIe Reset Control =1	Slot Power Control = 1	Clock Routing = Configuration FRU	
1	RSVD = 0x0		DFC SMBus Reset Control Support = 0 (UB1) =1 (UB2) for EDSFF	DFC PERST# Management Override support =1	IFDET2 = 0 or 1*	IFDET1 = 1 P4	PRSNT = 1 P10	

CLOCK ROUTING: Set to 0 for SAS HFCS. Set to 1 for PCIe HFCs.

SLOT POWER CONTROL: Set to 1. DFCs with SAS drives will support Slot Power Control if a backplane configuration supports Power Disable Pin

PCIE RESET CONTROL: Set to 1.

DUAL PORT: Set to 0. Single ported only.

2-WIRE RESET: Set to 2h. 2-wire reset is supported. UBM FRU and UBM Controller is supported; 2Wire Mux is not supported.

CHANGE DETECT: Set to 1. One Change Detect interrupt supported per backplane HFC.

DFC CHANGE COUNT : Set to 1. Indicates if a change count is maintained per an individual DFC Status and Control Command Descriptor.

PRSNT: Set to 1. Indicates that the DFCs connected to this HFC support the PRSNT signal.

IFDET1: Set to 1. Indicates that the DFCs connected to this HFC support the IFDET1 signal.

IFDET2: This bit will be set to 1 if it is a U.3 backplane and to 0 if it is a U.2 backplane

DFC PERST# MANAGEMENT OVERRIDE : Set to 1, Override supported

DFC SMBus Reset Control Support: Presented as 0 by **UB1** parts. Feature is recognized only by **UB2** parts, but is declared here as 1 only for EDSFF drive control. The pin LED_ACT_N is used to present the SMBRST# signal in this case.

7.7 Features (0x34)

Byte/Bit	7	6	5	4	3	2	1	0
0	DFC PERST# Management Override	Operational State Mask = 1b	Drive Type Change Mask = 1b	PCIe Reset Change Mask = 1b	CPRSTN = Configuration FRU	Write Checksum = 1b	Read Checksum = 1b	
1	RSVD = 0x0						DFC SMBus Reset Control	

READ CHECKSUM: Set to 1.

WRITE CHECKSUM CHECKING: Set to 1.

CPRSTN LEGACY MODE: Set to 0.

PCIE RESET CHANGE MASK: Set to 1.

DRIVE TYPE INSTALLED CHANGE COUNT MASK: Set to 1

OPERATIONAL STATE CHANGE COUNT MASK: Set to 1.

DFC PERST# MANAGEMENT OVERRIDE : Indicates the DFC_PERST# behaviour when a drive has been installed

0 = No override

1 = DFC PERST# Managed upon install

2 = DFC PERST# Automatically released upon install

3 = Reserved

DFC SMBUS RESET CONTROL: Present only in UB2 parts, and only in EDSFF drive environment (Capabilities Byte 1 bit[4] = '1'.)

0 = No action taken. (default)

1 = SMBRST# signal is presented low for 1 ms min, on the LED_ACT_N pin. Bit returns to '0' when finished.

8.0 LED SPECIFICATIONS

The EEC1005 UB1 and UB2 family members both support two LED's per every DFC, on the pins `xxx_LED_ACT_N` (Activity) and `xxx_LED_STA_N` (Status), with IBPI patterns presented for various Drive states as defined in [Section 8.1, "Two-LED Configurations \(UB1 and UB2\)".](#)

In addition, the **UB2** family member can support the Three-LED IBPI standard as follows:

1. Support three LEDs (Activity, Locate and Fail) using the `LED_ACT_N` pin for Activity, and the `LED_STA_N` pin for both Fail and Locate as defined in [Section 8.2, "Three-LED Configurations \(UB2 Only\)".](#)
2. Support two of the three LEDs in EDSFF environments (Fail/Amber and Locate/Blue), using only the `LED_STA_N` pin as defined in [Section 8.2.1, "Three-LED Configurations For EDSFF".](#)

These can be controlled directly from the Host or from the EEC1005, as selected using the Configuration FRU (Address 0x01):

- 0x00 in this byte selects Two-LED configuration, and
- 0x01 (recognized only in **UB2** parts) selects Three-LED configuration.

Three-LED configuration must be explicitly selected for EDSFF designs, because this setting is not automatically assumed or imposed by the selection of EDSFF support elsewhere.

Configurable LED blink frequency/duty cycle are also supported via the Configuration FRU in order to support blink patterns that are outside the IBPI standard.

In order to prevent any current leakage, the LED pins will remain tri-stated until the backplane is initialized, and the default state for all the LED's will be Off on power up after initialization is complete.

8.1 Two-LED Configurations (UB1 and UB2)

The table below summarizes the Two-LED patterns as per the IBPI standard. These are implemented in configurations where there are two backplane LEDs, controlled by pins `xxx_LED_ACT_N` (Activity) and `xxx_LED_STA_N` (Status). These configurations are supported by both UB1 and UB2 family members.

TABLE 8-1: IBPI TWO-LED BLINK PATTERN

Drive State	Activity LED	Status LED
Drive Not Present	OFF	x
Drive Present, No Activity	ON	x
Drive Present, Activity	4Hz	x
Locate (Identify)	4Hz	4Hz
Fail	x	ON
Rebuild	x	1Hz
Predicted Failure (PFA)	x	2 Fast Blinks at 4Hz & Pause for 0.5sec
Hot spare	x	x
In A Critical Array	x	x
In a Failed Array	x	x
Note: x is Don't Care, not defined in SFF-8489.		

If a Host sets multiple drive states at the same time, then a priority is followed as defined below.

TABLE 8-2: LED PRIORITY

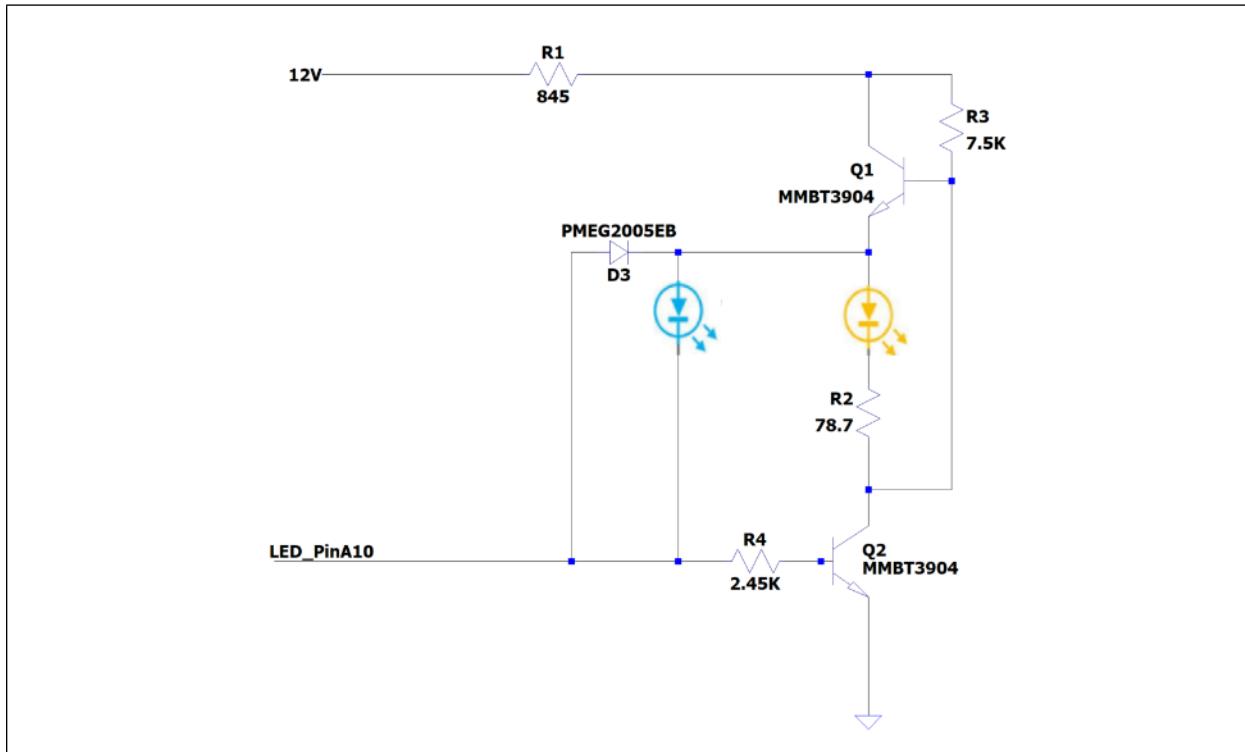
Drive State	Priority
Locate (Identify)	1
Fail	2
Predicted Failure	3
Drive Present, Activity	4
Drive Present, No Activity	5

8.2 Three-LED Configurations (UB2 Only)

Three-LED Configuration mode is available in the UB2 part only. For general use, it is enough to select this mode in Configuration FRU Address 0x01 (see above).

The LED_STA_N pin drives two of the three LEDs: When actively driven High, the pin lights the Fail LED. When driven Low, it lights the Locate LED. While it is not driven (high impedance), neither LED is lighted.

The LED_ACT_N pin is also available as a low-active control for the Activity LED, except in an EDSFF system, where the pin is only available as the DFC's SMBRST# signal instead ([Section 8.2.2](#)).


TABLE 8-3: IBPI THREE-LED BLINK PATTERN (UB2 ONLY)

Drive State	Activity LED (EDSFF Green)	Locate LED (EDSFF Blue)	Fail LED (EDSFF Amber)
Drive Not Present	OFF	x	x
Drive Present, No Activity	ON	x	x
Drive Present, Activity	4Hz	x	x
Locate (Identify)	x	4Hz	OFF
Fail	x	OFF	ON
Rebuild	x	OFF	1Hz
Predicted Failure (PFA)	x	x	2 Fast Blinks at 4Hz & Pause for 0.5sec
Hot spare	x	x	x
In A Critical Array	x	x	x
In a Failed Array	x	x	x
Note:	x is Don't Care, not defined in SFF-8489.		

[Figure 8-1](#), taken from SFF-TA-1009, shows the circuit equivalent, as driven by the LED_STA_N pin (called "A10" there for its connector position).

The Fail LED is defined as operational regardless of the drive's power state, and will take current from the LED_STA_N signal directly (or a suitably buffered version). The Locate LED is expected to be dependent on power being applied to the drive. See [Figure 8-1](#) for a model of this circuitry.

FIGURE 8-1: THREE-LED EQUIVALENT LOCATE/FAIL (BLUE/AMBER) LED CIRCUIT

8.2.1 THREE-LED CONFIGURATIONS FOR EDSFF

The EDSFF standard (SFF-TA-1009) assigns colors to the three LEDs: Green for Activity, Blue for Locate, and Amber for Fail.

Three-LED Configuration is to be selected when an EDSFF interface is used. All three LEDs are within the drive itself. The drive controls the Activity (Green) LED itself, without any connection to the EEC1005, and the LED_ACT_N pin is available instead as the SMBRST# pin ([Section 8.2.2](#)).

The `LED_STA_N` pin drives two of the three LEDs: When actively driven High, the pin lights the Amber LED (Fail). When driven Low, it lights the Blue LED (Locate). While it is not driven (high impedance), neither LED is lighted.

Figure 8-1 shows the equivalent circuit. The Fail (Amber) LED is defined as operational regardless of the drive's power state, and will take current from the LED_STA_N signal directly (or a suitably buffered version). The Locate (Blue) LED is expected to be dependent on power being applied to the drive.

8.2.2 EDSFF SMBRST# PRESENTATION

In supporting EDSFF drives, the drive itself is controlling the Activity (Green) LED, and the LED_ACT_N pin will not be used for this purpose. The patterns in [Table 8-3](#) for the Activity LED still apply.

The unused LED_ACT_N pin is re-assigned to present the EDSFF SMBRST# function instead, and it is never driven as an LED output.

Because the LED_ACT_N pin is not an LED Control, the LED Test Mode ([Section 10.2](#)) will not exercise it in EDSFF configuration.

9.0 MULTIPLE CHASSIS CONFIGURATION

When multiple Backplanes are used in a single system, the Backplane Number in the [Backplane Info \(0x31\) UBM register](#) is used by host to determine the physical backplane location of a given backplane.

The Backplane Number is populated with the values of [Table 9-1, “Backplane number vs Resistor select”](#) as a function of the voltage on pin CONFIG_BPNUM_PIN. This voltage can be provided by a fixed voltage divider on the backplane or by mating with the backplane power cable. Alternatively, the [Configuration FRU](#) can be used to overwrite the Backplane Number value. This is done by writing a value different than 0xFF to offset 0x04 of the [Configuration FRU, Backplane Physical Location](#).

FIGURE 9-1: MULTIPLE CHASSIS CONFIGURATION

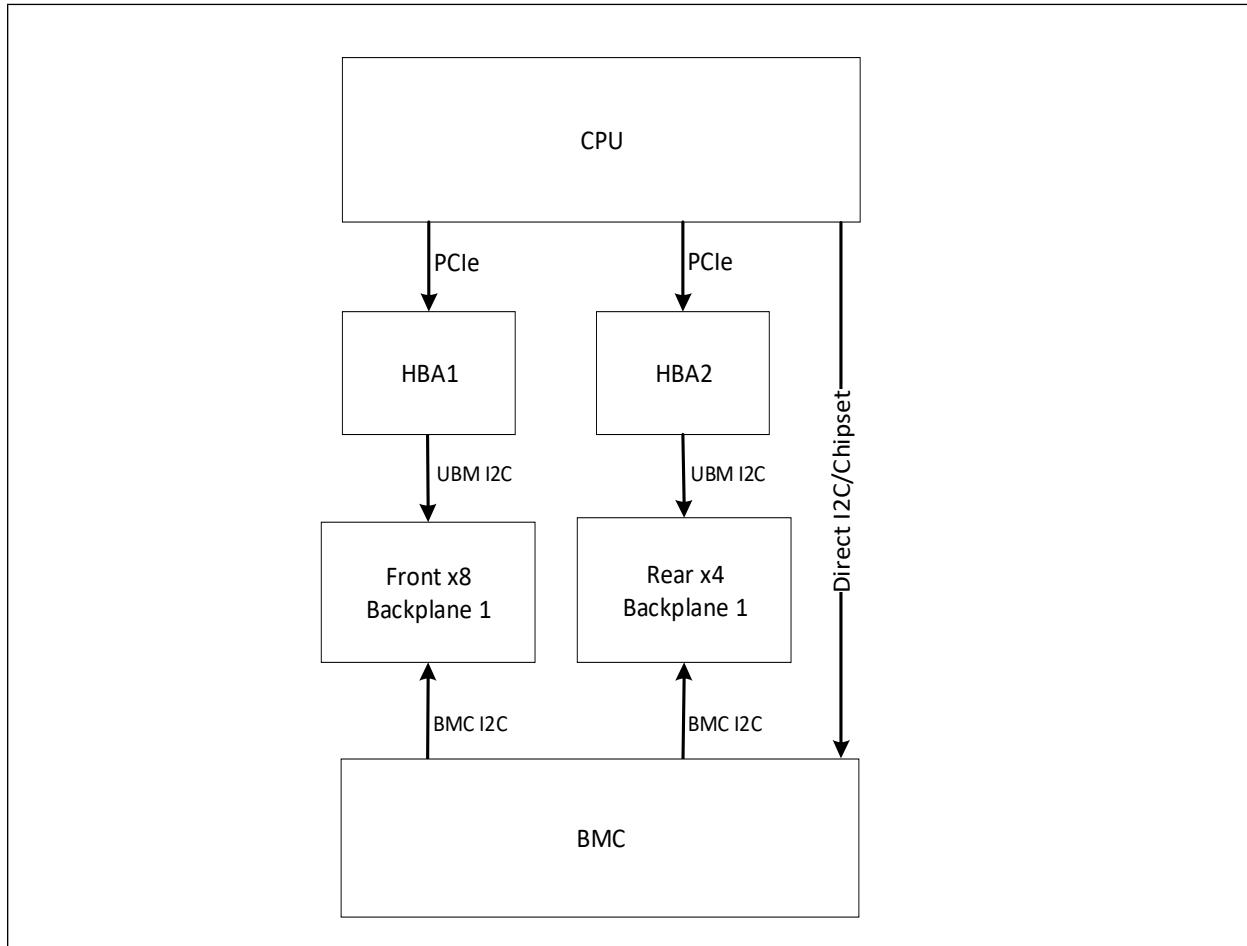


FIGURE 9-2: BACKPLANE NUMBER SELECT ADC INPUT

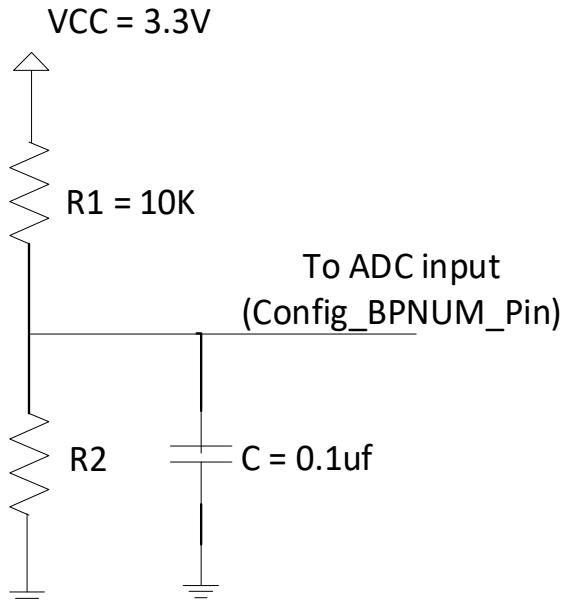


TABLE 9-1: BACKPLANE NUMBER VS RESISTOR SELECT

Backplane Number	Pull Down Resistor (R2) in Ohms	Voltage at the Config_BPNUM_Pin
0	0	0.000
1	470	0.148
2	820	0.250
3	1200	0.354
4	1800	0.503
5	2700	0.702
6	3600	0.874
7	4700	1.055
8	5600	1.185
9	6800	1.336
10	8200	1.487
11	10000	1.650
12	12000	1.800
13	15000	1.980
14	18000	2.121
15	22000	2.269

Note 1: The resistor values suggested are based on the standard value resistors available @1% tolerance
2: It is highly recommended to use 1% tolerant resistors at ADC input
3: The ADC input capacitor should be 0.1uF
4: The resistor R1 should be fixed at 10K
5: The Backplane Number values not mentioned in the above table is not supported by EEC1005

10.0 UB2 ENHANCEMENTS

The original EEC1005 part is now ordered as “**UB1**” in the Part Number. For the following features in this chapter, the “**UB2**” Part Number must be specified. See the Product Information System page for details of ordering.

Pinout remains backward compatible between UB1 and UB2 family members. Configuration IDs of 0x01 through 0x0E are supported identically in both. See [Table 3-1, “EEC1005 Configuration Select,” on page 10](#).

10.1 Intel VPP Support

10.1.1 BACKGROUND

VPP is an alternative command protocol which is Intel chipset specific, and is implemented in a Direct Attach configuration. See [FIGURE 2-1: Direct attach configuration on page 6](#).

VPP uses SMBus over I2C to manipulate an emulated serial to parallel I/O port that accepts the Phillips PCA9555 command set. Each emulated PCA9555 supports 16 virtual GPIOs structured as two 8-bit ports, with each GPIO configurable as an input or an output. Reading or writing is done with a specific PCA9555 command.

The SMBus interface is using the UBM I2C interface, but not through an EEC BMC. Simultaneous support of UBM, FRU and VPP mode is provided.

10.1.2 PROTOCOL

One HFC port supports one VPP target address, and each target address emulates a single PCA9555 2x8bit IO expander, and so is able to control 2 NVME-type drives.

TABLE 10-1: VPP BITS USED BY ENCLOSURE MANAGEMENT

Bit	Direction	PCIe Signal Name	VPP Signal Name
0	Output	ATNLED	FAULT *
1	Output	PWRLED	LOCATE *
2	Output	PWREN#	PERST
3	Input	BUTTON#	Not Used, Debug Only
4	Input	PRSNT#	PRSNT_N
5	Input	PWRFLT#	Not Used, Debug Only
6	Input	MRL#/EMILS	Not Used, Debug Only
7	Output	EMIL	Not Used, Debug Only

* FAULT=1 and LOCATE=1 together is REBUILD, which blinks both LEDs together at 1Hz.

As shown in [Table 10-1](#), only bits 0, 1, 2 and 4 are valid for VPP. These are replicated for each of two drives, such that the low-numbered 8-bit port of the expander controls NVME drive number 0 and the high-numbered 8-bit port controls NVME drive number 1.

Instead of mapping to EEC device pins, writing the bits FAULT and LOCATE have the same effect as sending the SES-4 command Array Device Slot Control Element, where

- FAULT maps to the RQST FAULT bit of the SES-4 command, which is Bit[5] of Byte 3.
- LOCATE maps to the RQST IDENT bit of the SES-4 command, which is bit[1] of Byte 2.

The PERST bit issues a PERST to the DFC. Setting PERST = 1 is equivalent to executing the Initiate PCIe Reset sequence in AUTO mode. PERST = 0 has no effect.

The PRSNT# / PRSNT_N bit is an input, which has the same effect for PCIe and VPP configurations.

10.1.3 VPP TARGET ADDRESSING

VPP Targets may have independent SMBus links (Data, Clock and Alert pin) per socket, so that the same I/O Expander address can be used for each. See Figure 10-1, "VPP SMBus Architecture With I/O Mux" below.

Alternatively, a single SMBus link may be used for all Targets, in which case each I/O Expander address is unique. See Figure 10-2, "VPP SMBus Architecture Without I/O Mux" below for the four addresses that are supported for this.

FIGURE 10-1: VPP SMBUS ARCHITECTURE WITH I/O MUX

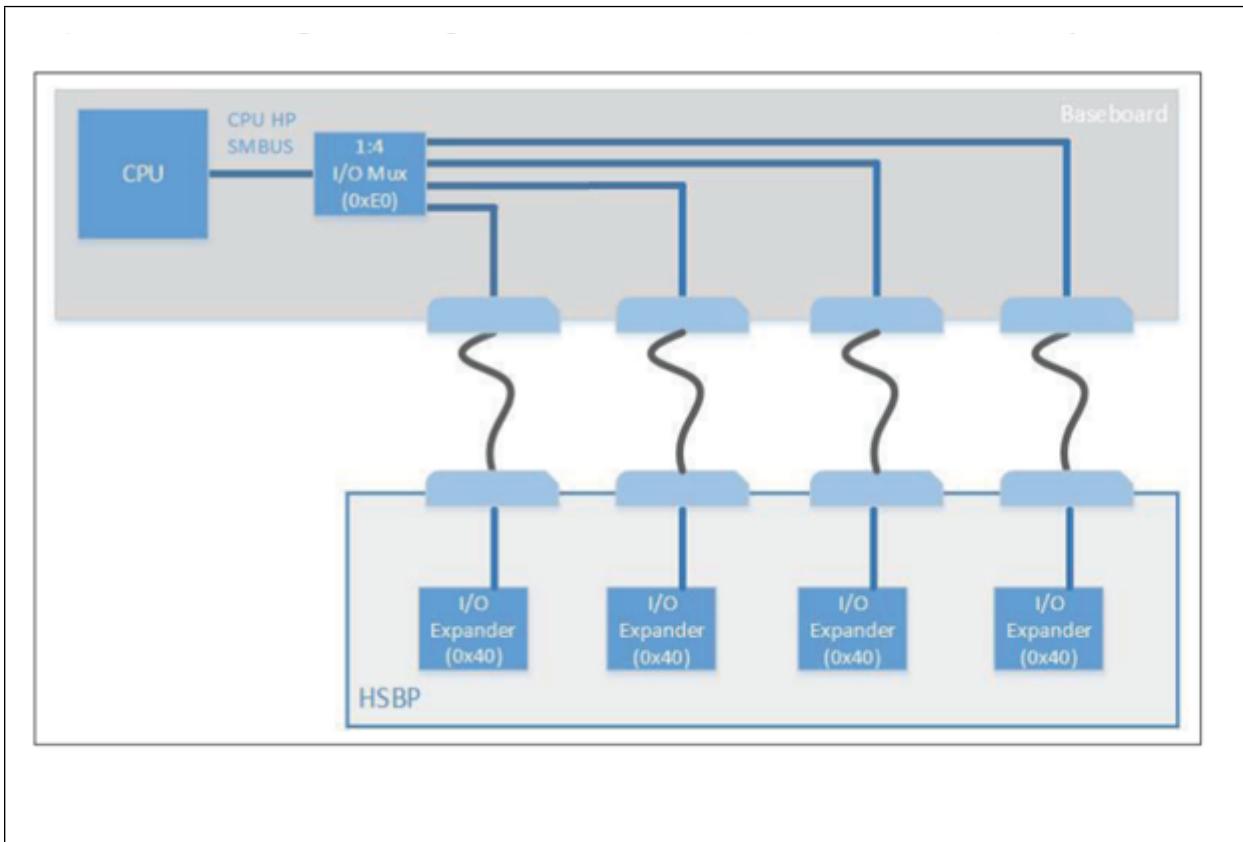
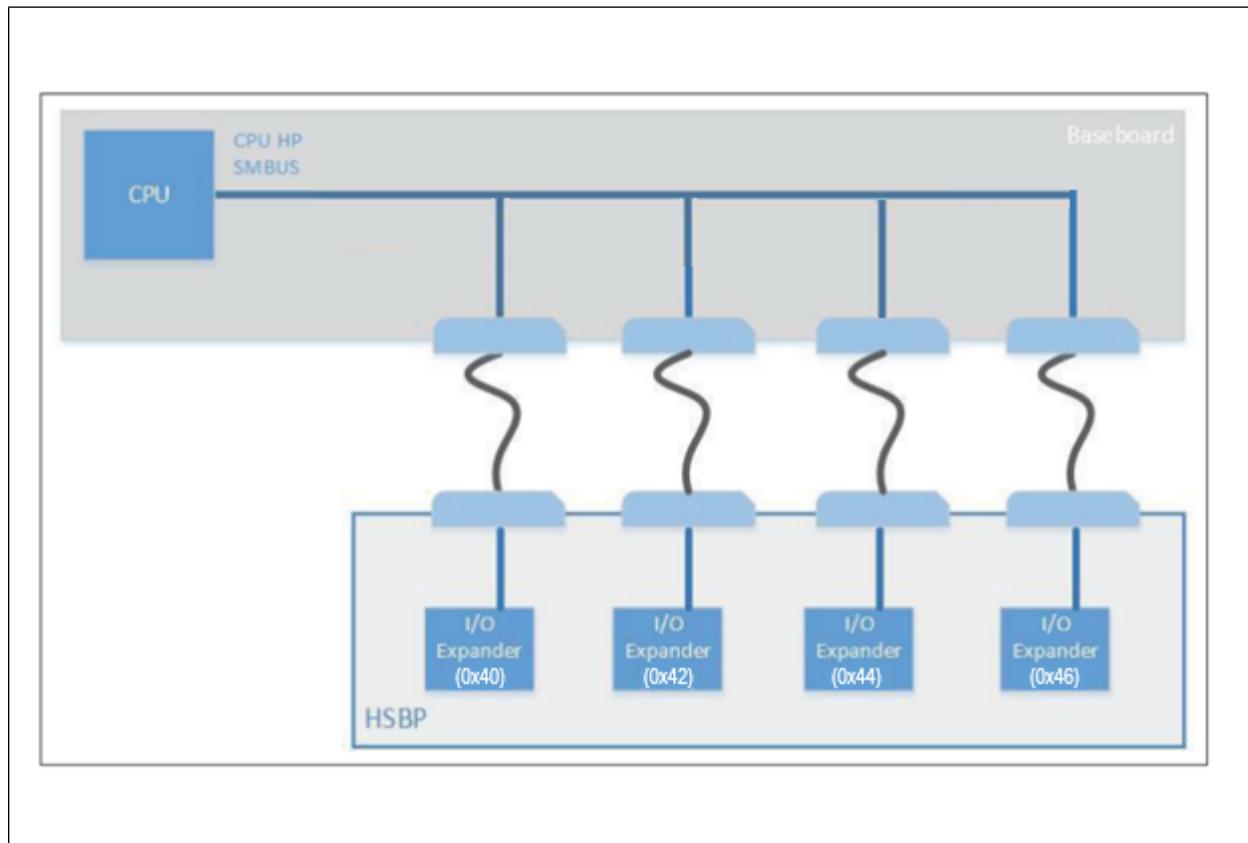



FIGURE 10-2: VPP SMBUS ARCHITECTURE WITHOUT I/O MUX

10.2 LED Test Mode

This mode is intended for use in the board manufacturing process, to validate board trace connections, but is not intended for any practical application in a production system.

Basic functionality is as follows:

- The pin BMC_I2C_SCL (see [Table 11-1 on page 40](#)) is applied low as a strap pin, to select LED Test mode. In production systems, this pin will be pulled high instead as an I2C pin. Note that the I2C functionality is not exercised in LED Test mode, but, depending on the test environment it may be desirable to use a jumper to isolate the pin.
- Pinout is selected by the Configuration setting, and does not change. But no functionality is provided for the system.

The LED test pattern is applied as follows, simultaneously on all DFCs in the selected configuration. Initially, the ACT pins and the STA pins are all set to their OFF (High) condition. Then, the following four-step sequence repeats, interpreted here as in a Two-LED system:

- LED_ACT_N Low (Activity LED ON) with LED_STA_N High (Status LED OFF), for 250ms.
- LED_ACT_N High (Activity LED OFF) with LED_STA_N High (Status LED OFF), for 250ms.
- LED_ACT_N High (Activity LED OFF) with LED_STA_N Low (Status LED ON), for 250ms.
- LED_ACT_N High (Activity LED OFF) with LED_STA_N High (Status LED OFF), for 250ms.

For generic Three-LED configurations (other than EDSFF), the same pin pattern is driven, with the following effect:

- LED_ACT_N Low (Activity LED ON) with LED_STA_N High (Fail LED ON / Locate LED OFF), for 250ms.
- LED_ACT_N High (Activity LED OFF) with LED_STA_N High (Fail LED ON / Locate LED OFF), for 250ms.
- LED_ACT_N High (Activity LED OFF) with LED_STA_N ON (Fail LED OFF / Locate LED ON), for 250ms.
- LED_ACT_N High (Activity LED OFF) with LED_STA_N High (Fail LED ON / Locate LED OFF), for 250ms.

For Three-LED configurations in EDSFF designs ([Section 8.0](#)), the same pin pattern is driven, but exercising only the LED_STA_N pin. If a drive is attached, its LEDs are expected to respond as listed here:

- LED_STA_N High, for 250ms: Amber LED ON, Blue LED OFF.
- LED_STA_N High, for 250ms: Amber LED ON, Blue LED OFF.
- LED_STA_N Low, for 250ms: Amber LED OFF, Blue LED ON if drive powered, OFF if drive not powered.
- LED_STA_N High, for 250ms: Amber LED ON, Blue LED OFF.

10.3 NVME 8-Drive x2 Lane, x1 Lane U.3 Support

The following Configurations are added. A subset of U.3 capabilities is provided for use in the smaller 84-pin package. See [Table 3-1 on page 10](#).

- 8 Drive UBM U.3 (Full Feature) -x2 Lanes: 144 pin package, Configuration ID 0x10.
- 8 Drive UBM U.3 (Full Feature) -x1 Lanes: 144 pin package, Configuration ID 0x11.
- 8 Drive UBM U.3 (Min. Feature) -x2 Lanes: 84 pin package, Configuration ID 0x13.
- 8 Drive UBM U.3 (Min. Feature) -x1 Lanes: 84 pin package, Configuration ID 0x14.

10.4 NVME 12-Drive x1 Lane U.3 Support

The following Configuration adds capability for up to 12 NVME drives. See [Table 3-1 on page 10](#).

- 12 Drive UBM U.3 (Full Feature) x1 Lane: 144 pin package, Configuration ID 0x15.

10.5 10-Drive x1 U.2 Support

10.5.1 NON-CONTIGUOUS HFC NUMBERING

Configuration 0x0F is added to allow for 10 DFCs for NVME drives, 5 per HFC.

- Each DFC port is only supported in x1 PCIe lanes, for NVME device drives.
- Each HFC manages 5 DFC ports and is routed in 5 PCIe lanes over Microchip DCS Smart RAID card.
- There are 2 HFC ports implemented on HFC0 and HFC2 to manage the 10 DFC ports in each UBM board.

10.5.2 CONTIGUOUS HFC NUMBERING

Configuration 0x16 is added to allow for 10 DFCs for NVME drives, 5 per HFC. This recommended for new designs because there is no gap in HFC numbering.

- Each DFC port is only supported in x1 PCIe lanes, for NVME device drives.
- Each HFC manages 5 DFC ports and is routed in 5 PCIe lanes over Microchip DCS Smart RAID card.
- There are 2 HFC ports implemented on HFC0 and HFC1 to manage the 10 DFC ports in each UBM board.

10.6 8-Drive x1 U.2 Support, Contiguous HFC Numbers

Configuration 0x17 is added, and recommended for new designs as a general-market version of Configuration 0x07. In this configuration, HFC numbering goes from HFC0 through HFC2, without custom numbering gaps that are present in Configuration 0x07.

10.7 UBM Specification Rev. 1.4 Support

The **UB2** device allows migration from the SFF-TA-1005 Revision 1.3 specification to Revision 1.4. In systems under Revision 1.4, the following changes occur:

10.7.1 UPDATES SPECIFICATION REVISION NUMBER

See [Section 7.0, "UBM Controller Commands," on page 26](#), and in particular [Section 7.1, Silicon Identity and Version \(0x02\)](#) there.

10.7.2 ADDS DFC SMBUS RESET CONTROL

A new feature "DFC SMBus Reset Control" is added. See [Section 7.6, "Capabilities \(0x33\)," on page 28](#) and [Section 7.7, "Features \(0x34\)," on page 28](#). The feature is declared Not Present in **UB1** parts. In **UB2** parts, it is only declared present and supported if an EDSFF Drive Device Type is present (see [Section 10.7.3](#)) and the Three-LED configuration is selected ([Section 8.0, "LED Specifications," on page 30](#)).

When present, this feature uses the LED_ACT_N pin as SMBRST#, to present a 1ms pulse on command.

10.7.3 ADDS EDSFF DRIVE TYPE TO UBM PORT ROUTE DESCRIPTOR SUPPORTED TYPES

The Device Type of "Other / e.g. SFF-TA-1002", from the Rev. 1.4 SFF-TA-1005 specification, supports the EDSFF DFC definition when declared as shown in the excerpt below. When bit[0] of this byte is set to '1', the DFC is configured to support an EDSFF drive and nothing else.

It is also required, for EDSFF drive support, to select Three-LED operation in the Configuration FRU, as described in [Section 8.0, "LED Specifications," on page 30](#). Together, these enable SMBus Reset control ([Section 10.7.2](#)).

TABLE 10-2: RECOGNITION OF DRIVE DEVICE TYPE "OTHER" AS EDSFF

Excerpt From SFF-TA-1005 Rev. 1.4, Table 6-15, "Port Route Information: Data Byte 2 Definition"				
IFDET2#	IFDET	PRSNT#	Support Bit Position	Device Type
0	0	0	0	Other; e.g. SFF-TA-1002 EDSFF
0	0	1	1	SFF-TA-1001 PCIe
0	1	0	2	Reserved
0	1	1	3	Gen-Z
1	0	0	4	SAS/SATA
1	0	1	5	Quad PCIe
1	1	0	6	Reserved
1	1	1	7	DFC Empty

10.8 Disable JTAG interface in Production Release

In Production versions of the UB2 family member, the JTAG interface is disabled for all purposes except Boundary Scan.

10.9 Support of Unconfigured CFG ID for Flash Update

Even if an unsupported Configuration ID is detected, the UB2 family member will configure the following I2C channels:

- The BMC I2C channel on pins BMC_I2C_SDA and BMC_I2C_SCL.
- The UBM 0 I2C channel on pins HFC_00_SDA and HFC_00_SCL.

This is done in order to support Firmware updates over I2C, outside of a full system environment.

11.0 PIN CONFIGURATION

11.1 Description

Section 11.0 “Pin Configuration” consists of the Pin Lists and Package Drawings.

11.2 Strap pins

TABLE 11-1: EEC1005 STRAP PINS

Pin Number		Strap name	Strap definition and values
144 Pin			
F9	F8	JTAG_STRAP	1= Boundary Scan The JTAG Port is used to access the Boundary scan TAP controller 0= Normal Operation The JTAG port is used to access the ARM TAP Controller
E11	E9	VTR2_STRAP	Voltage Level strap is used to determine if selected GPIOs must be configured for 3.3V or 1.8V operation 1= 3.3V Operation 0= 1.8V Operation Should be set to 1.
A3	A5	LED_TEST_N	Available in UB2 devices only. Strap to enter LED Test Mode. In normal operation, as BMC_I2C_SCL pin, it will be pulled high by a pull-up resistor. By pulling it low as a strap, all functions except LEDs are disabled, and test patterns are placed on the LED output pins that are identified by the Configuration setting.

11.3 Pin List

TABLE 11-2: SGPIO CONTROLLER - 144 PIN PACKAGE

Ball Number	Function
A1	DFC_00_PWR_DISABLE
A2	BMC_I2C_SDA
A3	BMC_I2C_SCL
A4	DFC_14_IFDET_N
A5	DFC_13_IFDET_N
A6	RSVD
A7	NC
A8	SGPIO_03_DATAOUT
A9	DFC_07_IFDET_N
A10	DFC_13_ACTIVITY_N
A11	DFC_08_PWR_DISABLE

TABLE 11-2: SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
A12	DFC_02_LED_STA_N
B1	DFC_06_ACTIVITY_N
B2	SGPIO_00_CLOCK
B3	DFC_05_LED_STA_N
B4	DFC_01_IFDET_N
B5	DFC_12_IFDET_N
B6	NC
B7	DFC_09_PRSNT_N
B8	DFC_07_PRSNT_N
B9	DFC_05_PWR_DISABLE
B10	DFC_04_PWR_DISABLE
B11	DFC_14_ACTIVITY_N
B12	SGPIO_03_CTRL_TYPE
C1	DFC_01_PWR_DISABLE
C2	SGPIO_03_CLOCK
C3	SGPIO_01_CLOCK
C4	SGPIO_02_CLOCK
C5	DFC_13_PRSNT_N
C6	RSVD
C7	DFC_10_PRSNT_N
C8	DFC_07_LED_STA_N
C9	DFC_02_ACTIVITY_N
C10	DFC_10_ACTIVITY_N
C11	DFC_07_PWR_DISABLE
C12	DFC_03_ACTIVITY_N
D1	VCC
D2	DFC_07_ACTIVITY_N
D3	DFC_02_IFDET_N
D4	nRESET_IN
D5	SGPIO_02_LOAD
D6	DFC_12_PWR_DISABLE
D7	NC
D8	DFC_11_PWR_DISABLE
D9	DFC_08_IFDET_N
D10	DFC_11_ACTIVITY_N
D11	DFC_14_PWR_DISABLE
D12	DFC_13_PWR_DISABLE
E1	BMC_2WIRE_RESET
E2	DFC_15_ACTIVITY_N
E3	DFC_02_PWR_DISABLE
E4	SGPIO_00_DATAOUT
E5	VCC
E6	VSS

TABLE 11-2: SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
E7	VCC
E8	VSS
E9	SGPIO_01_DATAOUT
E10	DFC_09_ACTIVITY_N
E11	DFC_00_LED_ACT_N
E12	SGPIO_02_CTRL_TYPE
F1	VR_CAP
F2	DFC_06_PWR_DISABLE
F3	SGPIO_03_DATAIN
F4	SGPIO_01_LOAD
F5	VCC
F6	DFC_06_IFDET_N
F7	DFC_04_LED_STA_N
F8	VSS
F9	DFC_03_PWR_DISABLE
F10	nSTRAP_IN
F11	DFC_08_ACTIVITY_N
F12	DFC_06_LED_STA_N
G1	DFC_15_PWR_DISABLE
G2	VREF_ADC
G3	SGPIO_03_LOAD
G4	DFC_12_ACTIVITY_N
G5	VSS
G6	VSS
G7	DFC_04_ACTIVITY_N
G8	VCC
G9	HEARTBEAT_PIN
G10	DFC_08_LED_STA_N
G11	DFC_03_LED_STA_N
G12	DFC_05_ACTIVITY_N
H1	CONFIG_PIN
H2	DFC_05_IFDET_N
H3	DFC_09_PWR_DISABLE
H4	DFC_01_LED_ACT_N
H5	DFC_10_PWR_DISABLE
H6	VCC
H7	VCC
H8	DFC_00_ACTIVITY_N
H9	DFC_09_LED_STA_N
H10	DFC_10_LED_STA_N
H11	DFC_11_LED_STA_N
H12	DFC_11_LED_ACT_N
J1	DFC_04_IFDET_N

TABLE 11-2: SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
J2	DFC_00_IFDET_N
J3	DFC_03_IFDET_N
J4	DFC_10_IFDET_N
J5	DFC_03_LED_ACT_N
J6	DFC_15_LED_ACT_N
J7	DFC_12_LED_ACT_N
J8	SGPIO_02_DATAIN
J9	NC
J10	DFC_12_PRSNT_N
J11	DFC_11_PRSNT_N
J12	SGPIO_00_CTRL_TYPE
K1	CONFIG_BPNUM_PIN
K2	DFC_00_PRSNT_N
K3	DFC_15_PRSNT_N
K4	DFC_02_LED_ACT_N
K5	DFC_13_LED_ACT_N
K6	DFC_12_LED_STA_N
K7	DFC_06_LED_ACT_N
K8	DFC_07_LED_ACT_N
K9	DFC_09_LED_ACT_N
K10	DFC_08_LED_ACT_N
K11	SGPIO_00_DATAIN
K12	DFC_15_IFDET_N
L1	DFC_01_PRSNT_N
L2	SGPIO_00_LOAD
L3	DFC_14_PRSNT_N
L4	SGPIO_01_DATAIN
L5	DFC_14_LED_ACT_N
L6	DFC_14_LED_STA_N
L7	DFC_05_LED_ACT_N
L8	DFC_04_PRSNT_N
L9	DFC_01_LED_STA_N
L10	SGPIO_01_CTRL_TYPE
L11	DFC_05_PRSNT_N
L12	DFC_10_LED_ACT_N
M1	DFC_09_IFDET_N
M2	DFC_02_PRSNT_N
M3	DFC_11_IFDET_N
M4	DFC_03_PRSNT_N
M5	DFC_08_PRSNT_N
M6	DFC_04_LED_ACT_N
M7	DFC_13_LED_STA_N
M8	DFC_00_LED_STA_N

EEC1005

TABLE 11-2: SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
M9	DFC_15_LED_STA_N
M10	DFC_01_ACTIVITY_N
M11	SGPIO_02_DATAOUT
M12	DFC_06_PRSNT_N

TABLE 11-3: UBM CONTROLLER - 144 PIN PACKAGE

Ball Number	Function
A1	DFC_02_IFDET2_N
A2	BMC_I2C_SDA
A3	BMC_I2C_SCL
A4	HFC_04_SCL
A5	HFC_04_SDA
A6	RSVD
A7	HFC_01_SDA
A8	DFC_06_ACTIVITY_N
A9	DFC_07_IFDET_N
A10	DFC_10_IFDET2_N
A11	DFC_09_IFDET2_N
A12	DFC_02_LED_STA_N
B1	DFC_01_IFDET2_N
B2	HFC_00_SCL
B3	DFC_05_LED_STA_N
B4	DFC_01_IFDET_N
B5	HFC_02_SCL
B6	HFC_02_SDA
B7	DFC_09_PRSNT_N
B8	DFC_07_PRSNT_N
B9	DFC_06_IFDET2_N
B10	DFC_05_IFDET2_N
B11	DFC_11_IFDET2_N
B12	DFC_11_PWR_DISABLE
C1	DFC_03_IFDET2_N
C2	DFC_09_PERST_N
C3	DFC_05_PERST_N
C4	DFC_08_PERST_N
C5	DFC_10_PERST_N
C6	RSVD
C7	DFC_10_PRSNT_N
C8	DFC_07_LED_STA_N
C9	DFC_02_ACTIVITY_N
C10	DFC_10_ACTIVITY_N
C11	DFC_08_IFDET2_N

TABLE 11-3: UBM CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
C12	DFC_08_PWR_DISABLE
D1	VCC
D2	DFC_00_PERST_N
D3	DFC_02_IFDET_N
D4	nRESET_IN
D5	DFC_00_IFDET2_N
D6	HFC_03_CHNG_DET_N
D7	HFC_01_SCL
D8	HFC_01_CHNG_DET_N
D9	DFC_08_IFDET_N
D10	DFC_11_ACTIVITY_N
D11	HFC_05_2WIRE_RESET
D12	HFC_04_2WIRE_RESET
E1	BMC_2WIRE_RESET
E2	DFC_11_PERST_N
E3	DFC_04_IFDET2_N
E4	DFC_03_ACTIVITY_N
E5	VCC
E6	VSS
E7	VCC
E8	VSS
E9	DFC_02_PERST_N
E10	DFC_09_ACTIVITY_N
E11	DFC_00_LED_ACT_N
E12	DFC_10_PWR_DISABLE
F1	VR_CAP
F2	DFC_07_IFDET2_N
F3	DFC_07_ACTIVITY_N
F4	DFC_03_PERST_N
F5	VCC
F6	DFC_06_IFDET_N
F7	DFC_04_LED_STA_N
F8	VSS
F9	DFC_04_PERST_N
F10	nSTRAP_IN
F11	DFC_01_PERST_N
F12	DFC_06_LED_STA_N
G1	HFC_05_CHNG_DET_N
G2	VREF_ADC
G3	DFC_08_ACTIVITY_N
G4	DFC_09_PWR_DISABLE
G5	VSS
G6	VSS

TABLE 11-3: UBM CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
G7	DFC_04_ACTIVITY_N
G8	VCC
G9	HEARTBEAT_PIN
G10	DFC_08_LED_STA_N
G11	DFC_03_LED_STA_N
G12	DFC_05_ACTIVITY_N
H1	CONFIG_PIN
H2	DFC_05_IFDET_N
H3	HFC_00_2WIRE_RESET
H4	DFC_01_LED_ACT_N
H5	HFC_01_2WIRE_RESET
H6	VCC
H7	VCC
H8	DFC_00_ACTIVITY_N
H9	DFC_09_LED_STA_N
H10	DFC_10_LED_STA_N
H11	DFC_11_LED_STA_N
H12	DFC_11_LED_ACT_N
J1	DFC_04_IFDET_N
J2	DFC_00_IFDET_N
J3	DFC_03_IFDET_N
J4	DFC_10_IFDET_N
J5	DFC_03_LED_ACT_N
J6	DFC_01_PWR_DISABLE
J7	HFC_02_2WIRE_RESET
J8	DFC_06_PWR_DISABLE
J9	HFC_03_SCL
J10	HFC_05_SCL
J11	DFC_11_PRSNT_N
J12	HFC_03_SDA
K1	CONFIG_BPNUM_PIN
K2	DFC_00_PRSNT_N
K3	DFC_07_PERST_N
K4	DFC_02_LED_ACT_N
K5	HFC_03_2WIRE_RESET
K6	DFC_02_PWR_DISABLE
K7	DFC_06_LED_ACT_N
K8	DFC_07_LED_ACT_N
K9	DFC_09_LED_ACT_N
K10	DFC_08_LED_ACT_N
K11	HFC_00_CHNG_DET_N
K12	HFC_05_SDA
L1	DFC_01_PRSNT_N

TABLE 11-3: UBM CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
L2	HFC_00_SDA
L3	DFC_06_PERST_N
L4	HFC_04_CHNG_DET_N
L5	DFC_00_PWR_DISABLE
L6	DFC_04_PWR_DISABLE
L7	DFC_05_LED_ACT_N
L8	DFC_04_PRSNT_N
L9	DFC_01_LED_STA_N
L10	HFC_02_CHNG_DET_N
L11	DFC_05_PRSNT_N
L12	DFC_10_LED_ACT_N
M1	DFC_09_IFDET_N
M2	DFC_02_PRSNT_N
M3	DFC_11_IFDET_N
M4	DFC_03_PRSNT_N
M5	DFC_08_PRSNT_N
M6	DFC_04_LED_ACT_N
F8	DFC_03_PWR_DISABLE
M8	DFC_00_LED_STA_N
M9	DFC_07_PWR_DISABLE
M10	DFC_01_ACTIVITY_N
M11	DFC_05_PWR_DISABLE
M12	DFC_06_PRSNT_N

TABLE 11-4: SGPIO CONTROLLER - 84 PIN PACKAGE

Ball Number	Function
A1	DFC_07_ACTIVITY_N
A2	DFC_00_IFDET_N
A3	DFC_05_LED_STA_N
A4	BMC_I2C_SDA
A5	BMC_I2C_SCL
A6	DFC_03_ACTIVITY_N
A7	DFC_00_PRSNT_N
A8	RSVD
A9	DFC_06_PWR_DISABLE
A10	DFC_05_PWR_DISABLE
B1	VCC
B2	nRESET_IN
B3	GPIO_01_CLOCK
B4	GPIO_00_CLOCK
B5	DFC_01_IFDET_N
B6	DFC_02_ACTIVITY_N

TABLE 11-4: SGPIO CONTROLLER - 84 PIN PACKAGE (CONTINUED)

Ball Number	Function
B7	NC
B8	DFC_07_LED_STA_N
B9	DFC_07_PRSNT_N
B10	DFC_07_IFDET_N
C1	SGPIO_00_LOAD
C2	SGPIO_00_DATAOUT
C5	DFC_02_PWR_DISABLE
C6	RSVD
C9	DFC_01_PWR_DISABLE
C10	DFC_02_IFDET_N
D1	VR_CAP
D2	SGPIO_01_LOAD
D4	VCC
D5	VCC
D6	VSS
D7	VSS
D9	DFC_06_LED_STA_N
D10	DFC_02_LED_STA_N
E1	CONFIG_PIN
E2	DFC_04_PWR_DISABLE
E3	BMC_2WIRE_RESET
E4	VCC
E7	VSS
E8	SGPIO_01_DATAOUT
E9	DFC_00_LED_ACT_N
E10	nSTRAP_IN
F1	VREF_ADC
F2	DFC_01_LED_ACT_N
F3	DFC_06_IFDET_N
F4	VSS
F7	VSS
F8	DFC_03_PWR_DISABLE
F9	DFC_00_PWR_DISABLE
F10	DFC_04_ACTIVITY_N
G1	DFC_04_IFDET_N
G2	DFC_05_ACTIVITY_N
G4	RSVD
G5	VCC
G6	VCC
G7	VCC
G9	DFC_04_LED_STA_N
G10	DFC_03_LED_STA_N
H1	DFC_05_IFDET_N

TABLE 11-4: SGPIO CONTROLLER - 84 PIN PACKAGE (CONTINUED)

Ball Number	Function
H2	SPARE
H5	DFC_03_LED_ACT_N
H6	DFC_01_ACTIVITY_N
H9	DFC_00_ACTIVITY_N
H10	DFC_07_PWR_DISABLE
J1	DFC_03_IFDET_N
J2	CONFIG_BPNUM_PIN
J3	SGPIO_01_DATAIN
J4	DFC_02_PRSNT_N
J5	DFC_04_LED_ACT_N
J6	DFC_04_PRSNT_N
J7	DFC_00_LED_STA_N
J8	DFC_06_PRSNT_N
J9	SGPIO_00_DATAIN
J10	SGPIO_00_CTRL_TYPE
K1	DFC_06_ACTIVITY_N
K2	DFC_01_PRSNT_N
K3	DFC_02_LED_ACT_N
K4	DFC_03_PRSNT_N
K5	DFC_06_LED_ACT_N
K6	DFC_07_LED_ACT_N
K7	DFC_05_LED_ACT_N
K8	DFC_01_LED_STA_N
K9	SGPIO_01_CTRL_TYPE
K10	DFC_05_PRSNT_N

TABLE 11-5: UBM CONTROLLER - 84 PIN PACKAGE

Ball Number	Function
A1	DFC_00_PERST_N
A2	DFC_02_IFDET_N
A3	DFC_05_LED_STA_N
A4	BMC_I2C_SDA
A5	BMC_I2C_SCL
A6	HFC_04_SCL
A7	HFC_02_SCL
A8	DFC_05_ACTIVITY_N
A9	HFC_01_SDA
A10	HFC_01_SCL
B1	VCC
B2	nRESET_IN
B3	DFC_05_PERST_N
B4	HFC_00_SCL

TABLE 11-5: UBM CONTROLLER - 84 PIN PACKAGE (CONTINUED)

Ball Number	Function
B5	DFC_01_IFDET_N
B6	HFC_04_SDA
B7	HFC_02_SDA
B8	DFC_07_LED_STA_N
B9	DFC_07_PRSNT_N
B10	DFC_07_IFDET_N
C1	HFC_00_SDA
C2	DFC_03_ACTIVITY_N/HFC_03_2WIRE_RESET
C5	HFC_03_CHNG_DET_N
C6	DFC_06_ACTIVITY_N
C9	HFC_01_CHNG_DET_N
C10	DFC_02_ACTIVITY_N/HFC_02_2WIRE_RESET
D1	VR_CAP
D2	DFC_03_PERST_N
D4	VCC
D5	VCC
D6	VSS
D7	VSS
D9	DFC_06_LED_STA_N
D10	DFC_02_LED_STA_N
E1	CONFIG_PIN
E2	DFC_07_ACTIVITY_N
E3	BMC_2WIRE_RESET
E4	VCC
E7	VSS
E8	DFC_02_PERST_N
E9	DFC_00_LED_ACT_N
E10	nSTRAP_IN
F1	VREF_ADC
F2	DFC_01_LED_ACT_N
F3	DFC_06_IFDET_N
F4	VSS
F7	VSS
F8	DFC_04_PERST_N
F9	DFC_01_PERST_N
F10	DFC_04_ACTIVITY_N/HFC_04_2WIRE_RESET
G1	DFC_04_IFDET_N
G2	DFC_07_PERST_N
G4	DFC_00_PRSNT_N
G5	VCC
G6	VCC
G7	VCC
G9	DFC_04_LED_STA_N

TABLE 11-5: UBM CONTROLLER - 84 PIN PACKAGE (CONTINUED)

Ball Number	Function
G10	DFC_03_LED_STA_N
H1	DFC_05_IFDET_N
H2	DFC_00_IFDET_N
H5	DFC_03_LED_ACT_N
H6	DFC_01_ACTIVITY_N/HFC_01_2WIRE_RESET
H9	DFC_00_ACTIVITY_N/HFC_00_2WIRE_RESET
H10	HFC_03_SCL
J1	DFC_03_IFDET_N
J2	CONFIG_BPNUM_PIN
J3	HFC_04_CHNG_DET_N
J4	DFC_02_PRSNT_N
J5	DFC_04_LED_ACT_N
J6	DFC_04_PRSNT_N
J7	DFC_00_LED_STA_N
J8	DFC_06_PRSNT_N
J9	HFC_00_CHNG_DET_N
J10	HFC_03_SDA
K1	DFC_06_PERST_N
K2	DFC_01_PRSNT_N
K3	DFC_02_LED_ACT_N
K4	DFC_03_PRSNT_N
K5	DFC_06_LED_ACT_N
K6	DFC_07_LED_ACT_N
K7	DFC_05_LED_ACT_N
K8	DFC_01_LED_STA_N
K9	HFC_02_CHNG_DET_N
K10	DFC_05_PRSNT_N

TABLE 11-6: UBM_SGPIO CONTROLLER - 144 PIN PACKAGE

Ball Number	Function
A1	DFC_02_IFDET2_N
A2	BMC_I2C_SDA
A3	BMC_I2C_SCL
A4	NC
A5	NC
A6	RSVD
A7	HFC_02_SDA
A8	DFC_06_ACTIVITY_N
A9	DFC_07_IFDET_N
A10	NC
A11	DFC_05_PERST_N
A12	DFC_02_LED_STA_N

TABLE 11-6: UBM_SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
B1	DFC_01_IFDET2_N
B2	SGPIO_00_CLOCK/HFC_00_SCL
B3	DFC_05_LED_STA_N
B4	DFC_01_IFDET_N
B5	HFC_03_SCL
B6	HFC_03_SDA
B7	DFC_03_PERST_N
B8	DFC_07_PRSNT_N
B9	DFC_06_IFDET2_N
B10	DFC_05_IFDET2_N
B11	HFC_04_SDA
B12	HFC_00_CHNG_DET_N
C1	DFC_03_IFDET2_N
C2	NC
C3	SGPIO_01_CLOCK
C4	NC
C5	NC
C6	RSVD
C7	NC
C8	DFC_07_LED_STA_N
C9	DFC_02_ACTIVITY_N
C10	HFC_01_SCL
C11	DFC_03_ACTIVITY_N
C12	HFC_01_CHNG_DET_N
D1	VCC
D2	DFC_00_PERST_N
D3	DFC_02_IFDET_N
D4	nRESET_IN
D5	DFC_00_IFDET2_N
D6	HFC_04_CHNG_DET_N
D7	HFC_02_SCL
D8	HFC_02_CHNG_DET_N
D9	HFC_04_SCL
D10	HFC_01_SDA
D11	NC
D12	HFC_00_2WIRE_RESET
E1	BMC_2WIRE_RESET
E2	NC
E3	DFC_04_IFDET2_N
E4	SGPIO_00_DATAOUT
E5	VCC
E6	VSS
E7	VCC

TABLE 11-6: UBM_SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
E8	VSS
E9	SGPIO_01_DATAOUT
E10	HFC_03_CHNG_DET_N
E11	DFC_00_LED_ACT_N
E12	NC
F1	VR_CAP
F2	DFC_07_IFDET2_N
F3	DFC_07_ACTIVITY_N
F4	SGPIO_01_LOAD
F5	VCC
F6	DFC_06_IFDET_N
F7	DFC_04_LED_STA_N
F8	VSS
F9	DFC_04_PERST_N
F10	nSTRAP_IN
F11	DFC_01_PERST_N
F12	DFC_06_LED_STA_N
G1	NC
G2	VREF_ADC
G3	NC
G4	NC
G5	VSS
G6	VSS
G7	DFC_04_ACTIVITY_N
G8	VCC
G9	HEARTBEAT_PIN
G10	NC
G11	DFC_03_LED_STA_N
G12	DFC_05_ACTIVITY_N
H1	CONFIG_PIN
H2	DFC_05_IFDET_N
H3	HFC_01_2WIRE_RESET
H4	DFC_01_LED_ACT_N
H5	HFC_02_2WIRE_RESET
H6	VCC
H7	VCC
H8	DFC_00_ACTIVITY_N
H9	NC
H10	NC
H11	NC
H12	NC
J1	DFC_04_IFDET_N
J2	DFC_00_IFDET_N

TABLE 11-6: UBM_SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
J3	DFC_03_IFDET_N
J4	NC
J5	DFC_03_LED_ACT_N
J6	DFC_01_PWR_DISABLE
J7	HFC_03_2WIRE_RESET
J8	DFC_06_PWR_DISABLE
J9	NC
J10	NC
J11	NC
J12	SGPIO_00_CTRL_TYPE
K1	CONFIG_BPNUM_PIN
K2	DFC_00_PRSNT_N
K3	DFC_07_PERST_N
K4	DFC_02_LED_ACT_N
K5	HFC_04_2WIRE_RESET
K6	DFC_02_PWR_DISABLE
K7	DFC_06_LED_ACT_N
K8	DFC_07_LED_ACT_N
K9	NC
K10	NC
K11	SGPIO_00_DATAIN
K12	NC
L1	DFC_01_PRSNT_N
L2	SGPIO_00_LOAD/HFC_00_SDA
L3	DFC_06_PERST_N
L4	SGPIO_01_DATAIN
L5	DFC_00_PWR_DISABLE
L6	DFC_04_PWR_DISABLE
L7	DFC_05_LED_ACT_N
L8	DFC_04_PRSNT_N
L9	DFC_01_LED_STA_N
L10	SGPIO_01_CTRL_TYPE
L11	DFC_05_PRSNT_N
L12	NC
M1	DFC_02_PERST_N
M2	DFC_02_PRSNT_N
M3	NC
M4	DFC_03_PRSNT_N
M5	NC
M6	DFC_04_LED_ACT_N
F9	DFC_03_PWR_DISABLE
M8	DFC_00_LED_STA_N
M9	DFC_07_PWR_DISABLE

TABLE 11-6: UBM_SGPIO CONTROLLER - 144 PIN PACKAGE (CONTINUED)

Ball Number	Function
M10	DFC_01_ACTIVITY_N
M11	DFC_05_PWR_DISABLE
M12	DFC_06_PRSNT_N

TABLE 11-7: UBM CONTROLLER - 144 PIN ALT PACKAGE

Ball Number	Function
A1	DFC_02_IFDET2_N
A2	BMC_I2C_SDA
A3	BMC_I2C_SCL
A4	HFC_00_SCL
A5	HFC_00_SDA
A6	RSVD
A7	HFC_02_SDA
A8	DFC_06_ACTIVITY_N
A9	DFC_07_IFDET_N
A10	DFC_10_IFDET2_N
A11	DFC_09_IFDET2_N
A12	DFC_02_LED_STA_N
B1	DFC_01_IFDET2_N
B2	HFC_01_SCL
B3	DFC_05_LED_STA_N
B4	DFC_01_IFDET_N
B5	HFC_03_SCL
B6	HFC_03_SDA
B7	DFC_09_PRSNT_N
B8	DFC_08_IFDET_N
B9	DFC_06_IFDET2_N
B10	DFC_05_IFDET2_N
B11	DFC_11_IFDET2_N
B12	DFC_11_PWR_DISABLE
C1	DFC_03_IFDET2_N
C2	DFC_09_PERST_N
C3	DFC_05_PERST_N
C4	DFC_08_PERST_N
C5	DFC_10_PERST_N
C6	RSVD
C7	DFC_10_PRSNT_N
C8	DFC_07_LED_STA_N
C9	DFC_02_ACTIVITY_N
C10	DFC_10_ACTIVITY_N
C11	DFC_08_IFDET2_N

EEC1005

TABLE 11-7: UBM CONTROLLER - 144 PIN ALT PACKAGE (CONTINUED)

Ball Number	Function
C12	DFC_08_PWR_DISABLE
D1	VCC
D2	DFC_00_PERST_N
D3	DFC_02_IFDET_N
D4	nRESET_IN
D5	DFC_00_IFDET2_N
D6	HFC_04_CHNG_DET_N
D7	HFC_02_SCL
D8	HFC_02_CHNG_DET_N
D9	DFC_07_PRSNT_N
D10	DFC_11_ACTIVITY_N
D11	HFC_05_2WIRE_RESET
D12	HFC_00_2WIRE_RESET
E1	BMC_2WIRE_RESET
E2	DFC_11_PERST_N
E3	DFC_04_IFDET2_N
E4	DFC_03_ACTIVITY_N
E5	VCC
E6	VSS
E7	VCC
E8	VSS
E9	DFC_02_PERST_N
E10	DFC_09_ACTIVITY_N
E11	DFC_00_LED_ACT_N
E12	DFC_10_PWR_DISABLE
F1	VR_CAP
F2	DFC_07_IFDET2_N
F3	DFC_07_ACTIVITY_N
F4	DFC_03_PERST_N
F5	VCC
F6	DFC_06_IFDET_N
F7	DFC_04_LED_STA_N
F8	VSS
F9	DFC_04_PERST_N
F10	nSTRAP_IN
F11	DFC_01_PERST_N
F12	DFC_06_LED_STA_N
G1	HFC_05_CHNG_DET_N
G2	VREF_ADC
G3	DFC_08_ACTIVITY_N
G4	DFC_09_PWR_DISABLE
G5	VSS
G6	VSS

TABLE 11-7: UBM CONTROLLER - 144 PIN ALT PACKAGE (CONTINUED)

Ball Number	Function
G7	DFC_04_ACTIVITY_N
G8	VCC
G9	HEARTBEAT_PIN
G10	DFC_08_LED_STA_N
G11	DFC_03_LED_STA_N
G12	DFC_05_ACTIVITY_N
H1	CONFIG_PIN
H2	DFC_05_IFDET_N
H3	HFC_01_2WIRE_RESET
H4	DFC_01_LED_ACT_N
H5	HFC_02_2WIRE_RESET
H6	VCC
H7	VCC
H8	DFC_00_ACTIVITY_N
H9	DFC_09_LED_STA_N
H10	DFC_10_LED_STA_N
H11	DFC_11_LED_STA_N
H12	DFC_11_LED_ACT_N
J1	DFC_04_IFDET_N
J2	DFC_00_IFDET_N
J3	DFC_03_IFDET_N
J4	DFC_10_IFDET_N
J5	DFC_03_LED_ACT_N
J6	DFC_01_PWR_DISABLE
J7	HFC_03_2WIRE_RESET
J8	DFC_06_PWR_DISABLE
J9	HFC_04_SCL
J10	HFC_05_SCL
J11	DFC_11_PRSNT_N
J12	HFC_04_SDA
K1	CONFIG_BPNUM_PIN
K2	DFC_00_PRSNT_N
K3	DFC_07_PERST_N
K4	DFC_02_LED_ACT_N
K5	HFC_04_2WIRE_RESET
K6	DFC_02_PWR_DISABLE
K7	DFC_06_LED_ACT_N
K8	DFC_07_LED_ACT_N
K9	DFC_09_LED_ACT_N
K10	DFC_08_LED_ACT_N
K11	HFC_01_CHNG_DET_N
K12	HFC_05_SDA
L1	DFC_01_PRSNT_N

TABLE 11-7: UBM CONTROLLER - 144 PIN ALT PACKAGE (CONTINUED)

Ball Number	Function
L2	HFC_01_SDA
L3	DFC_06_PERST_N
L4	HFC_00_CHNG_DET_N
L5	DFC_00_PWR_DISABLE
L6	DFC_04_PWR_DISABLE
L7	DFC_05_LED_ACT_N
L8	DFC_04_PRSNT_N
L9	DFC_01_LED_STA_N
L10	HFC_03_CHNG_DET_N
L11	DFC_05_PRSNT_N
L12	DFC_10_LED_ACT_N
M1	DFC_09_IFDET_N
M2	DFC_02_PRSNT_N
M3	DFC_11_IFDET_N
M4	DFC_03_PRSNT_N
M5	DFC_08_PRSNT_N
M6	DFC_04_LED_ACT_N
F8	DFC_03_PWR_DISABLE
M8	DFC_00_LED_STA_N
M9	DFC_07_PWR_DISABLE
M10	DFC_01_ACTIVITY_N
M11	DFC_05_PWR_DISABLE
M12	DFC_06_PRSNT_N

12.0 ELECTRICAL SPECIFICATIONS

12.1 Maximum Ratings*

*Stresses exceeding those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied.

Note: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

12.1.1 ABSOLUTE MAXIMUM THERMAL RATINGS

Parameter	Maximum Limits
Operating Temperature Range	-40°C to +85°C Industrial
Storage Temperature Range	-55° to +150°C
Lead Temperature Range	Refer to JEDEC Spec J-STD-020B

12.1.2 ABSOLUTE MAXIMUM SUPPLY VOLTAGE RATINGS

Symbol	Parameter	Maximum Limits
VCC	3.3V Power Supply with respect to ground	-0.3V to +3.63V

12.1.3 ABSOLUTE MAXIMUM I/O VOLTAGE RATINGS

Parameter	Maximum Limits
Voltage on any Digital Pin with respect to ground	Determined by Power Supply of I/O Buffer and Pad Type

12.2 Operational Specifications

12.2.1 POWER SUPPLY OPERATIONAL CHARACTERISTICS

TABLE 12-1: POWER SUPPLY OPERATING CONDITIONS

Symbol	Parameter	MIN	TYP	MAX	Units
VCC	3.3V Power Supply	3.135	3.3	3.465	V

12.2.2 CAPACITIVE LOADING SPECIFICATIONS

The following table defines the maximum capacitive load validated for the buffer characteristics listed in [Table 12-4, "DC Electrical Characteristics"](#).

CAPACITANCE $T_A = 25^\circ\text{C}$; $f_c = 1\text{MHz}$; $V_{cc} = 3.3\text{ VDC}$

Note: All output pins, except pin under test, tied to AC ground.

TABLE 12-2: MAXIMUM CAPACITIVE LOADING

Parameter	Symbol	Limits			Unit	Notes
		MIN	TYP	MAX		
Input Capacitance	C_{IN}			10	pF	Note 1
Output Capacitance	C_{OUT}			20	pF	Note 2
Note 1: All input buffers can be characterized by this capacitance unless otherwise specified. 2: All output buffers can be characterized by this capacitance unless otherwise specified.						

12.2.3 DC ELECTRICAL CHARACTERISTICS FOR I/O BUFFERS

TABLE 12-3: BUFFER TYPE

Signal Name	Buffer Type
DFC_xx_ACTIVITY_N	I
DFC_xx_IFDET_N	I
DFC_xx_IFDET2_N	I
DFC_xx_PRSNT_N	I
HFC_xx_2WIRE_RESET	I
DFC_xx_LED_ACT_N	OD-2mA
DFC_xx_LED_STA_N	OD-2mA
DFC_xx_PERST_N	OD-2mA
DFC_xx_CHNG_DET_N	OD-2mA
DFC_xx_PWR_DISABLE_N	PIO
CONFIG_PIN	I_AN
CONFIG_BPNUM_PIN	I_AN

Note: xx is the instance/port number

TABLE 12-4: DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
PIO Type Buffer						
All PIO Buffers Pull-up Resistor @3.3V	R_{PU}	34	52	95	$K\Omega$	Internal PU selected via the GPIO Pin Control Register.
All PIO Buffers Pull-down Resistor @3.3V	R_{PD}	38	63	127	$K\Omega$	Internal PD selected via the GPIO Pin Control Register.
PIO	V_{OL} V_{OH}	$VCC-0.4$		0.4	V V	$I_{OL} = 4\text{ mA (min)}$ $I_{OH} = -4\text{ mA (min)}$
OD-2mA Low Output Level	V_{OL}			0.4	V	$I_{OL} = 2\text{ mA (min)}$
I Type Input Buffer Low Input Level High Input Level Schmitt Trigger Hysteresis				0.3x VCC 0.7x VCC 400	V V mV	TTL Compatible Schmitt Trigger Input
I_AN Type Buffer						
I_AN Type Buffer (Analog Input Buffer)	I_{AN}	Voltage range on pins: -0.3V to +3.63V			These buffers are not 5V tolerant buffers and they are not back- drive protected	
ADC Reference Pins						
VREF_ADC Voltage (Option A) Voltage (Option B) Input Impedance Input Low Current	V V V R_{REF} I_{LEAK}	2.97 3.0 75 -0.05	VCC 3.0 75 +0.05	V V $K\Omega$ μA	Connect to same power supply as VCC This buffer is not 5V tolerant This buffer is not backdrive pro- tected.	

12.2.3.1 Pin Leakage

Leakage characteristics for all digital I/O pins is shown in the following Pin Leakage table, unless otherwise specified. Two exceptions are pins with Over-voltage protection and Backdrive protection (11.3 “Pin List”). Leakage characteristics for Over-Voltage protected pins and Backdrive protected pins are shown in the two sub-sections following the Pin Leakage table.

TABLE 12-5: PIN LEAKAGE (VCC=3.3V + 5%; VCC = 1.8V +5%)

(TA = -40°C to +85°C)						
Leakage Current	I _{IL}			+/-2	μA	VIN=0V to VCC

12.2.4 ADC ELECTRICAL CHARACTERISTICS

TABLE 12-6: ADC CHARACTERISTICS

Symbol	Parameter	MIN	TYP	MAX	Units	Comments
VCC	Analog Supply Voltage	3.135	3.3	3.465	V	
V _{RNG}	Input Voltage Range	0		VREF _{_ADC}	V	Range of VREF_ADC input to ADC ground
RES	Resolution	–	–	10/12	Bits	Guaranteed Monotonic
ACC	Absolute Accuracy	–	2	4	LSB	
DNL	Differential Non Linearity, DNL	-1	–	+1	LSB	Guaranteed Monotonic
INL	Integral Non Linearity, INL	-3.0	–	+3	LSB	Guaranteed Monotonic
E _{GAIN}	Gain Error, E _{GAIN}	-2	–	2	LSB	
E _{OFFSET}	Offset Error, E _{OFFSET}	-2	–	2	LSB	
CONV	Conversion Time		1.125		μS/channel	
II	Input Impedance	4	4.5	5.3	MΩ	

12.2.5 THERMAL CHARACTERISTICS

TABLE 12-7: THERMAL OPERATING CONDITIONS

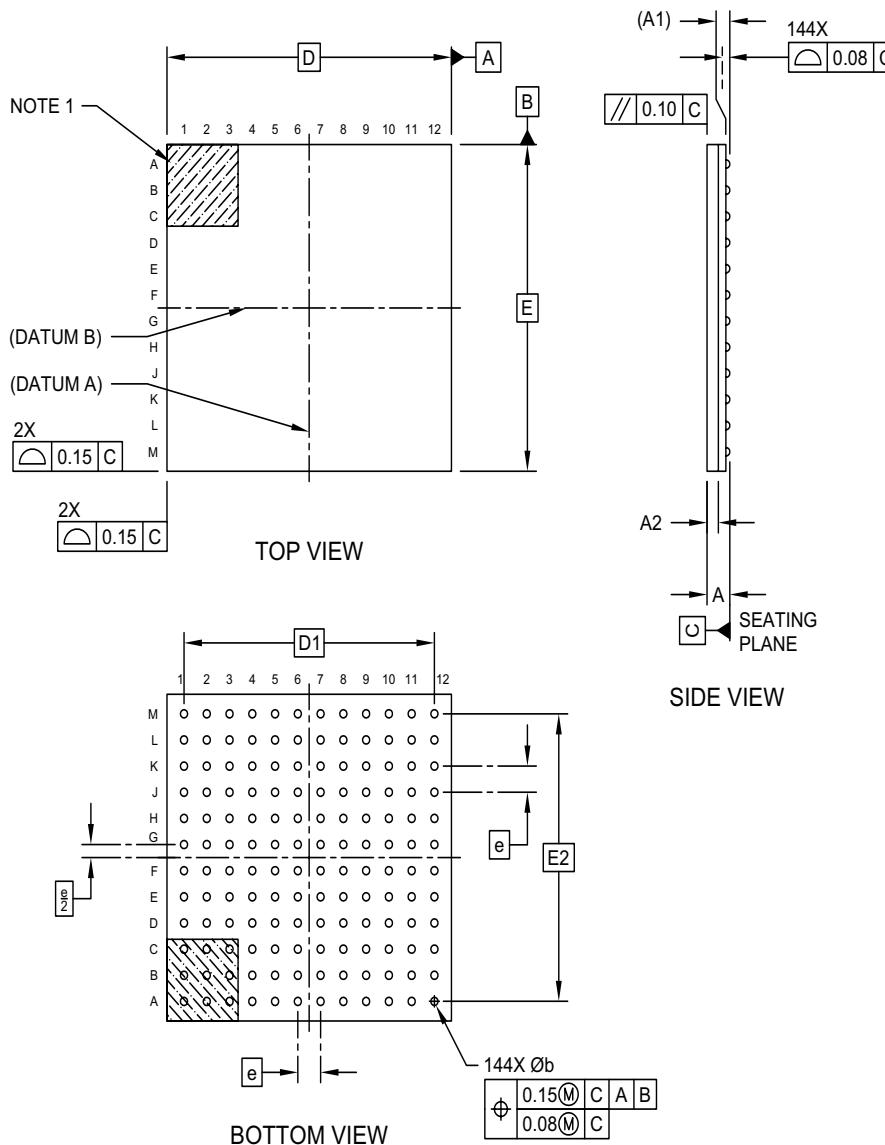
Rating	Symbol	MIN	TYP	MAX	Unit
Consumer Temperature Devices					
Operating Junction Temperature Range	T _J	0	—	125	°C
Operating Ambient Temperature Range - Industrial	T _A	-40	—	+85	°C
Power Dissipation: Internal Chip Power Dissipation: P _{INT} = V _D D x (I _{DD} – S _{IOH}) I/O Pin Power Dissipation: I _O = S _O ((V _D D – V _O H) x I _{OH}) + S _O (V _O L x I _{OL})	P _D	69.3 (P _{INT} + P _{I/O})			mW
Maximum Allowed Power Dissipation	P _{DMAX}	(T _J ^a – T _A) / θ _{JA}			W

a. T_J Max value is at ambient of 70°C

12.3 Power Consumption

TABLE 12-9: VCC SUPPLY CURRENT, I_VCC

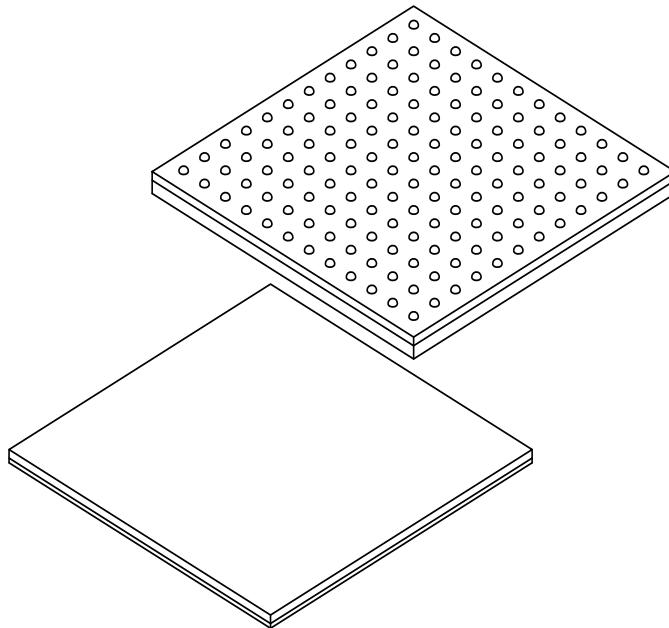
48 MHz Clock	Typical (3.3V, 25C)	Max (3.45V, 70C)	Max (3.45V, 85C)	Unit	Comments
48MHz	9.41	13.79	15.8	mA	Full On


13.0 PACKAGE INFORMATION

13.1 144 Pin WFBGA/WC Package

Note: For the most current package drawings, see the Microchip Packaging Specification at <http://www.microchip.com/packaging>.

144-Ball Very, Very Thin Fine Pitch Ball Grid Array (WCX) - 10x10 mm Body [WFBGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

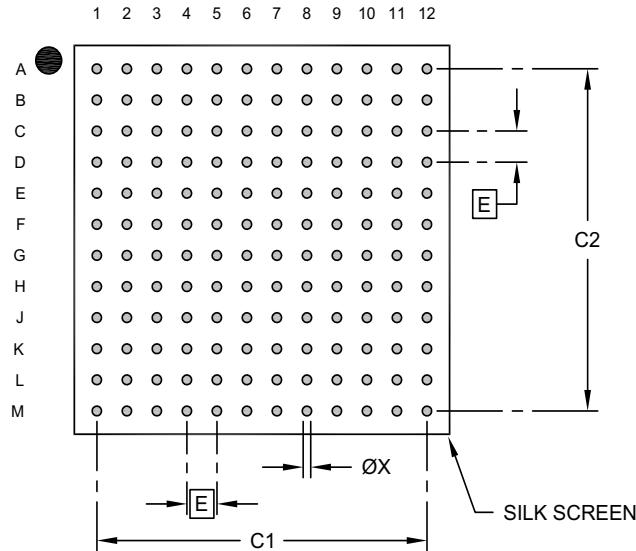
Microchip Technology Drawing C04-416A Sheet 1 of 2

144-Ball Very, Very Thin Fine Pitch Ball Grid Array (WCX) - 10x10 mm Body [WFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Terminals		N		144
Pitch		e		0.80 BSC
Overall Height		A		-
Standoff		A1		0.17 REF
Mold Package Thickness		A2		0.35
Overall Length		D		10.00 BSC
Exposed Pad Length		D1		8.80 BSC
Overall Width		E		10.00 BSC
Exposed Pad Width		E1		8.80 BSC
Terminal Diameter		b		0.20
		0.25		0.30

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

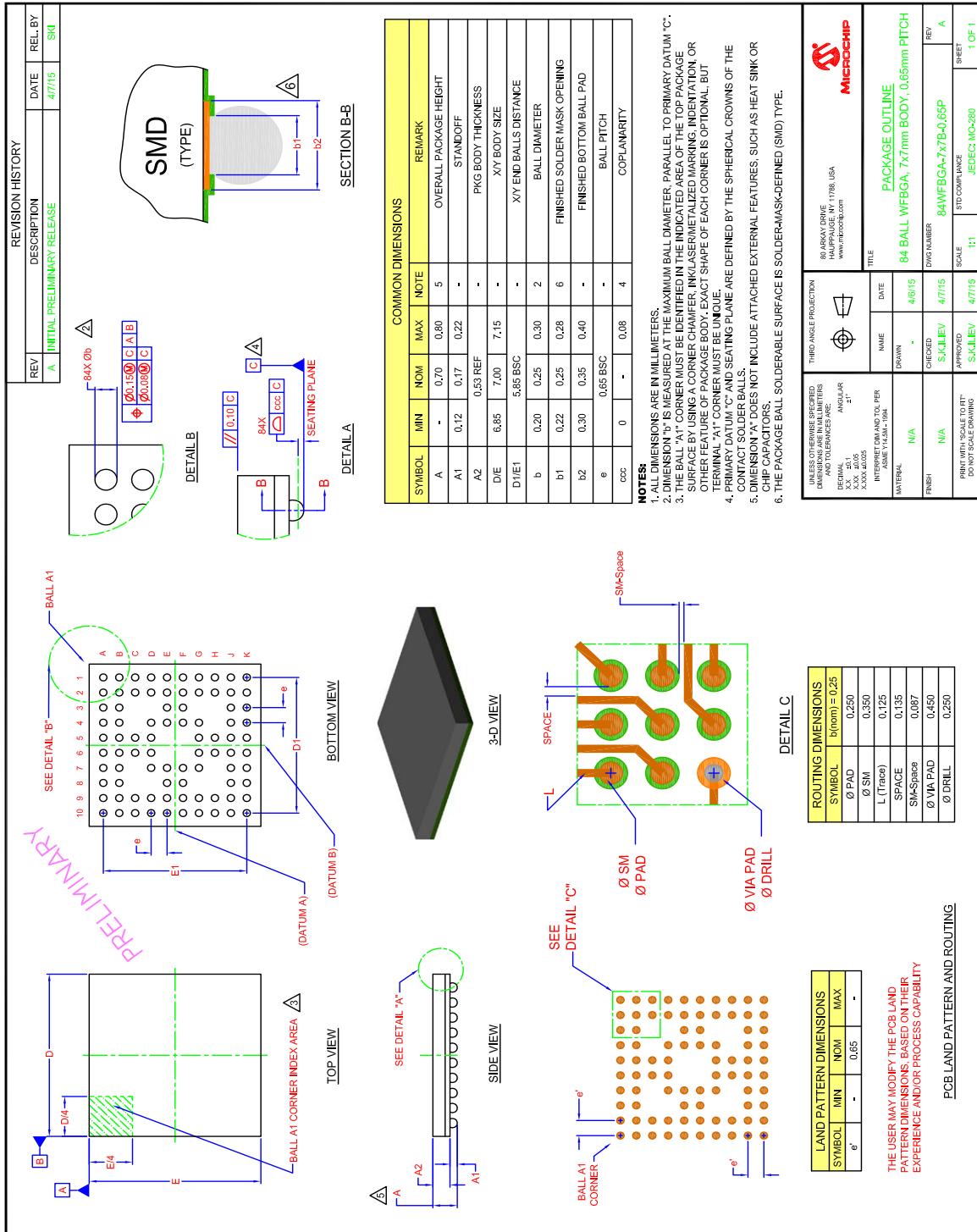
REF: Reference Dimension, usually without tolerance, for information purposes only.

144-Ball Very, Very Thin Fine Pitch Ball Grid Array (WCX) - 10x10 mm Body [WFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80	BSC
Contact Pad Spacing	C1		8.80	
Contact Pad Spacing	C2		8.80	
Contact Pad Width (X20)	X		0.25	


Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2416A

13.2 84 Pin WFBGA/SX1 Package

Note: For the most current package drawings, see the Microchip Packaging Specification at <http://www.microchip.com/packaging>.

APPENDIX A: DATA SHEET REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision	Section/Figure/Entry	Correction
DS00003392D (7-11-23)	Page 1: Features	Corrects number of UB2 Configurations to 21.
	Section 4.0, "Configuration FRU", Table 4-1	<ul style="list-style-type: none">- Adds Note at bottom for IBPI PATTERN 2/3 byte encodings.- Adds Notes at bottom for Not Solid State and 1Hz encodings.- For each HFCx, adds bytes for "VPP Address", "VPP Interrupt Mode" and "EDSFF SMBRST# Support".- Adds TEST Mode custom patterns in addresses 0xE7--0xEC.- Fixes Note 2 at bottom to say "Solid State OFF".
	Table 10-1, "VPP Bits used by Enclosure Management"	<ul style="list-style-type: none">Adds PERST as function of VPP bit[2].Adds text to define bit usage.
	Section 10.1.3, "VPP Target Addressing"	Adds Figure 10-2, "VPP SMBus Architecture Without I/O Mux" as an option, and text to mention difference in addressing for this option.
	Section 1.1, "References"	Adds EDSFF standard (1009) and Connector standard (1002) to list.
	Section 8.0, "LED Specifications"	Adds generic IBPI 3-LED pattern selection, expands EDSFF as special case without ACTIVITY from EEC. Changes "Fault" to "Fail" in Table 8-2 for consistency.
	Various	Misc. non-substantial typos fixed.
	Section 8.0, "LED Specifications"	Brings headings in Table 8-1 into conformance with IBPI standard. Removes color names.
	Various	Clarifies role of Configuration FRU Address 0x01, and its need for EDSFF drive support (Three-LED configuration and SMBRST# generation).
	Section 8.0, "LED Specifications"	Adds 3-LED patterns for EDSFF designs, and UB2 implementation.
	Section 10.7.2, "Adds DFC SMBus Reset Control"	Adds that EDSFF designs re-assign LED_ACT_N pin as SMBRST#.
	Section 10.7.2, "Adds DFC SMBus Reset Control"	Adds DFC Reset Control bits to Capabilities and Features command bytes, as supported features in UB2 for EDSFF designs.
	Section 10.2, "LED Test Mode"	Adds that LED Test Mode will not pulse LED_ACT_N pin in EDSFF designs. Resulting pattern on LED_STA_N pin added.
	Section 3.0, "Configurations"	Removes non-existent Configuration #0x12.
DS00003392C (4-03-23)	Section 8.0, "LED Specifications"	"Rebuild Abort" LED pattern entry removed to match current standards.
	Section 10.1, "Intel VPP Support"	Adds that VPP FAULT and LOCATE, asserted together, will present REBUILD pattern.
DS00003392C (4-03-23)	Throughout Document	Changed "slave" terminology to "target" where necessary
	Section 3.0, "Configurations"	<ul style="list-style-type: none">Two new UB2 Configuration settings added (0x16, 0x17).Add definition of "Min" pinout Configurations.

TABLE A-1: REVISION HISTORY (CONTINUED)

Revision	Section/Figure/Entry	Correction
	Section 10.0, "UB2 Enhancements"	The additional Configurations 0x16 and 0x17 listed and described.
	Section 10.2, "LED Test Mode"	LED Test Mode blink pattern specified.
	Section 7.0, "UBM Controller Commands"	Add table of all UBM commands.
	Section 2.3, "BMC-Tunneled I2C HFC Emulation"	I2C addresses changed to 8-bit forms uniformly, to match Standard. Addressing clarified generally.
	Section 3.0, "Configurations"	Three new UB2 Configuration settings added (0x13, 0x14, 0x15). Specific resistor values filled in.
	Section 10.0, "UB2 Enhancements"	Three additional Configurations listed and identified by function.
	Section 2.3, "BMC-Tunneled I2C HFC Emulation", Cover Page (Features)	Add section capturing addresses used, add to Features list.
	Table 4-1: Configuration FRU	Add declaration entries for: Clock Routing, PERST Support, PERST Management Override, PWRDIS Support
	Section 7.0, "UBM Controller Commands"	Clarify that the command list is not comprehensive, and holds only some commands that require comment for EEC1005 application.
	Section 7.6, "Capabilities (0x33)"	Fix errata in fields SLOT POWER CONTROL, PCIE RESET CONTROL, 2WIRE RESET
	Section 10.1.1, "Background"	Update Intel VPP modes to new, simpler simultaneous support.
	Various	Customer application references redacted. Misc changes to phrasing for accuracy.
	Product Identification System Page, Cover Page (Features), Section 1.0, "General Description"	Adds UB2 enhanced version, and identifies original version as UB1. Adds UB1 vs. UB2 ordering information.
	Section 10.0, "UB2 Enhancements"	New features in UB2 version listed and identified.
	Section 3.0, "Configurations"	New UB2 Configuration settings added.
	Section 11.2, "Strap pins"	New UB2 Strap Pin usages added.
	Section 7.1, "Silicon Identity and Version (0x02)", Section 7.6, "Capabilities (0x33)"	New UB2 Changes to UBM command formats for Revision 1.4 standard.
	Section TABLE 11-7: "UBM Controller - 144 Pin ALT Package"	New Configuration Pinout table added
	Section TABLE 11-3: "UBM Controller - 144 Pin Package"	Fixed Pin swap of B9-F8 and B8-F9
	Section TABLE 11-1: "EEC1005 Strap Pins"	Added Strap pins table

EEC1005

TABLE A-1: REVISION HISTORY (CONTINUED)

Revision	Section/Figure/Entry	Correction
	Section TABLE 3-1: "EEC1005 Configuration Select"	Added 144 pin UBM ALT configuration and ID numbers corrected
	Section TABLE 4-1: "Configuration FRU table"	Added Note on LED Pattern selection
	Section TABLE 8-1: "IBPI Two-LED Blink Pattern"	Updated LED blink pattern table as per SFF8489 Spec for 2 LEDs
DS00003392B (05-06-20)	Section 7.6, "Capabilities (0x33)"	Register bits "2-Wire Reset" updated to 02h.
	Section 12.0, "Electrical Specifications"	Chapter added
DS00003392A (02-26-20)	Initial document	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: <http://www.microchip.com/support>

PRODUCT IDENTIFICATION SYSTEM

Not all of the possible combinations of Device, Temperature Range and Package may be offered for sale. To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO.</u> ⁽¹⁾	<u>X/XXX</u> ⁽²⁾	<u>XXX</u> ⁽³⁾	<u>[X]</u> ⁽³⁾	Example:
Device	Temp Range/ Package	Family Member	Tape and Reel Option	
Device:	EEC1005 ⁽¹⁾	UBM Controller		a) EEC1005-I/WC-UB1 = EEC1005 with 12-drive UBM solution, Level 1.3 compliant FW
Temperature Range:	I/	= -40°C to +85°C (Industrial)		b) EEC1005-I/WC-UB2 = EEC1005 with 12-drive UBM solution, Level 1.4 compliant FW
Package:	WC	144 pin WFBGA 10x10mm body, 0.80mm pitch		
	SX1	84 pin WFBGA 7x7mm body, 0.65mm pitch		
Family Member	UB1 UB2	Original Member: Level 1.3 Compliant Enhanced Member: Level 1.4 Compliant		Note 1: These products meet the halogen maximum concentration values per IEC61249-2-21.
Tape and Reel Option:	Blank	= Tray packaging		2: All package options are RoHS compliant. For RoHS compliance and environmental information, please visit http://www.microchip.com/pagehandler/en-us/aboutus/ehs.html
	TR	= Tape and Reel ⁽³⁾		3: Family Member number and Tape and Reel identifier only appear in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at <https://www.microchip.com/en-us/support/design-help/client-support-services>.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscent Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 9781668327708

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820