# Positive and Negative Overvoltage Protection with Internal Low R<sub>ON</sub> N-MOSFETs and Reverse Charge Control Pin

The NCP370 is an overvoltage, overcurrent and reverse control device. Two main modes are available by setting logic pins. First mode is Direct Mode from Wall–Adapter to the system. In this mode the system is both positive and negative over–voltage protected up to  $+28~\rm V$  and down to  $-28~\rm V$ . The wall adapter (or AC/DC charger) is disconnected from the system if the input voltage exceeds the overvoltage (OVLO) or undervoltage (UVLO) thresholds. At power up, the  $V_{out}$  turns on 30 ms after the  $V_{in}$  exceeds the undervoltage threshold.

The second mode (see Tables 1 & 2), called the Reverse Mode, allows an external accessory to be powered by the system battery or boost converter. Here the external accessory would be connected to the device input (bottom connector of system) and the device battery would be at the device output. In this case overcurrent protection is activated to prevent accessory faults and battery discharge. Thanks to the NCP370 using an internal NMOS, the system cost and the PCB area of the application board are minimized.

The NCP370 provides a negative going flag (FLAG) output which alerts the system that a fault has occurred.

In addition, the device has ESD-protected input (15 kV Air) when bypassed with a 1  $\mu$ F or larger capacitor.

## **Features**

- Overvoltage Protection Up to 28 V
- Negative Voltage Protection Down to -28 V
- Reverse Charge Control: REV
- Direct Charge Control: DIR
- Overcurrent Protection
- Thermal Shutdown
- On-chip Low R<sub>DS(on)</sub> NMOS Transistors: Typical 130 mΩ
- Overvoltage Lockout (OVLO)
- Undervoltage Lockout (UVLO)
- Soft-Start
- Alert FLAG Output
- Compliance to IEC61000-4-2 (Level 4)

8 kV (Contact) 15 kV (Air)

- ESD Ratings: Machine Model = B Human Body Model = 2
- 12 Lead TLLGA 3x3 mm Package
- This is a Pb-Free Device

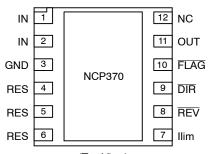


# ON Semiconductor®

http://onsemi.com



## 12 PIN LLGA MU SUFFIX CASE 513AK


## MARKING DIAGRAM



A = Assembly Location

L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package

(Note: Microdot may be in either location)



(Top View)

#### **ORDERING INFORMATION**

| Device    | <br>Package        | Shipping <sup>†</sup> |
|-----------|--------------------|-----------------------|
| NCP370MUA | LLGA12<br>Pb-Free) | 2500 / Tape &<br>Reel |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

# **Typical Applications**

- Cell Phones
- Camera Phones
- Digital Still Cameras
- Personal Digital Applications
- MP3 Players

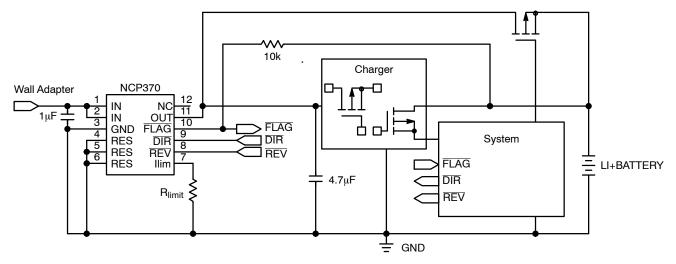
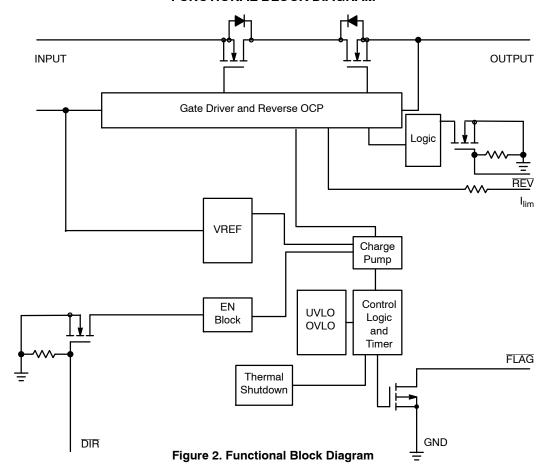




Figure 1. Typical Application Circuit

# **FUNCTIONAL BLOCK DIAGRAM**



## **PIN FUNCTION DESCRIPTION**

| Pin  | Name | Type   | Description                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2 | IN   | POWER  | Input voltage pins. These pins are connected to the power supply. A 1 $\mu$ F low ESR ceramic capacitor, or larger, must be connected between these pins and GND. The two IN pins must be hardwired to common supply.                                                                                                                                                                                                     |
| 3    | GND  | POWER  | Main Ground                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4    | RES  | INPUT  | Reserved pin. This pin must be connected to GND.                                                                                                                                                                                                                                                                                                                                                                          |
| 5    | RES  | INPUT  | Reserved pin. This pin must be connected to GND.                                                                                                                                                                                                                                                                                                                                                                          |
| 6    | RES  | INPUT  | Reserved pin. This pin must be connected to GND.                                                                                                                                                                                                                                                                                                                                                                          |
| 7    | llim | OUTPUT | Current Limit Pin. This pin provides the reference, based on the internal band-gap voltage reference, to limit the over current, across internal N-MOSFETs, from battery to external accessory. A 1% tolerance, or better, resistor shall be used to get the highest accuracy of the overcurrent limit.                                                                                                                   |
| 8    | REV  | INPUT  | Reverse Charge Control Pin. In combination with $\overline{\text{DIR}}$ , the internal N–MOSFETs are turned on if Battery is applied on the OUT pin (See Tables 1 & 2). In reverse mode, the internal overcurrent protection is activated. When reverse mode is disabled, the NCP370 current consumption, into OUT pin, is drastically decreased to limit battery discharge.                                              |
| 9    | DIR  | INPUT  | Direct Mode Pin. In combination with REV, the internal N-MOSFETs are turned on if a wall adapter AC-DC is applied on the IN pins (See Tables 1 & 2). The device enters in shutdown mode when this pin is tied to a high level and the REV pin is tied to high. In this case the output is disconnected from input. The state of this pin does not have an impact on the fault detect of the FLAG pin.                     |
| 10   | FLAG | OUTPUT | Fault Indication Pin. This pin allows an external system to detect fault condition. The pin goes low when input voltage exceeds OVLO threshold or drops below UVLO threshold, charge current from battery to accessory exceeds current limit or internal temperature exceeds thermal shutdown limit. Since the pin is open drain functionality, an external pull up resistor to VBat must be added (10 kΩ minimum value). |
| 11   | OUT  | OUTPUT | Output Voltage Pin. This pin follows IN pins when "no input fault" is detected. The output is disconnected from the $V_{\text{IN}}$ power supply when the input voltage is under the UVLO threshold or above OVLO threshold or thermal shutdown limit is exceeded. In Reverse Mode, the device is supplied across OUT pin.                                                                                                |
| 12   | NC   | NC     | Not Connected                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13   | PAD1 | POWER  | The PAD1 is used to dissipate the internal MOSFET thermal energy and must be soldered to an isolated PCB area. The area mustn't be connected to any other potential than complete isolated one. See PCB recommendations on page 9.                                                                                                                                                                                        |

# **MAXIMUM RATINGS**

| Rating                                                                                                                         | Symbol              | Value                                  | Unit         |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|--------------|
| Minimum Voltage (IN to GND)                                                                                                    | Vmin <sub>in</sub>  | -30                                    | V            |
| Minimum Voltage (All others to GND)                                                                                            | Vmin                | -0.3                                   | V            |
| Maximum Voltage (IN to GND)                                                                                                    | Vmax <sub>in</sub>  | 30                                     | V            |
| Maximum Voltage (OUT to GND)                                                                                                   | Vmax <sub>out</sub> | 10                                     | ٧            |
| Maximum Voltage (All others to GND)                                                                                            | Vmax                | 7                                      | V            |
| Thermal Resistance, Junction-to-Air, (Note 1)                                                                                  | $R_{	hetaJA}$       | 200                                    | °C/W         |
| Operating Ambient Temperature Range                                                                                            | T <sub>A</sub>      | -40 to +85                             | °C           |
| Storage Temperature Range                                                                                                      | T <sub>STG</sub>    | -65 to +150                            | °C           |
| Junction Operating Temperature                                                                                                 | TJ                  | 150                                    | °C           |
| ESD Withstand Voltage (IEC 61000-4-2)<br>Human Body Model (HBM), Model = 2, (Note 2)<br>Machine Model (MM) Model = B, (Note 3) | Vesd                | 15kV air, 8kV contact<br>2000V<br>200V | kV<br>V<br>V |
| Moisture Sensitivity                                                                                                           | MSL                 | Level 1                                |              |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- The R<sub>θJA</sub> is highly dependent on the PCB heat sink area (connected to PAD1). See PCB recommendation paragraph.
   Human Body Model, 100 pF discharged through a 1.5 kΩ resistor following specification JESD22/A114.
   Machine Model, 200 pF discharged through all pins following specification JESD22/A115.

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{in} = 5 \ V, \ Minimum/Maximum \ limits \ at \ -40 ^{\circ}C < T_{A} < +85 ^{\circ}C \ unless \ otherwise \ noted. \ Typical values are at \ T_{A} = +25 ^{\circ}C)$ 

| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Symbols                | Conditions                                                                                                                                                         | Min  | Тур        | Max        | Unit       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|------------|------------|
| Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>in</sub>        | Disable, Direct and Enhance Modes, V <sub>out</sub> = 0 V                                                                                                          |      |            | 28         | V          |
| Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vin <sub>min</sub>     | Disable, Direct and Enhance Modes, Vout = 4.25V                                                                                                                    |      |            |            | V          |
| Output Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{out}$              | Reverse Mode                                                                                                                                                       | 2.5  |            | 5.5        | V          |
| Undervoltage Lockout Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UVLO                   | Vin falls below UVLO Threshold<br>(Disable, Direct and Enhance Modes)                                                                                              | 2.6  | 2.7        | 2.8        | V          |
| Undervoltage Lockout Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UVLO <sub>hyst</sub>   | V <sub>in</sub> rises above UVLO Threshold + UVLO <sub>hyst</sub>                                                                                                  | 45   | 60         | 75         | mV         |
| Over voltage Lockout Threshold NCP370MUAITXG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OVLO                   | V <sub>in</sub> rises above OVLO threshold<br>(Disable and Direct Modes)                                                                                           | 6.3  | 6.6        | 6.9        | V          |
| Overvoltage Lockout Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OVLO <sub>hyst</sub>   | V <sub>in</sub> falls below to OVLO – OVLO <sub>hyst</sub>                                                                                                         | 60   | 80         | 100        | mV         |
| Over System Voltage Lockout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OVLO <sub>00</sub>     | V <sub>in</sub> rises above OVLO <sub>00</sub> Threshold Enhanced<br>Mode @ 25°C                                                                                   | 7.9  | 8.27       | 8.6        | V          |
| Overvoltage Lockout Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OVLO <sub>00hyst</sub> | V <sub>in</sub> falls below to OVLO <sub>00</sub> – OVLO <sub>00hyst</sub> @ 25°C                                                                                  | 80   | 100        | 145        | mV         |
| V <sub>in</sub> to V <sub>out</sub> Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R <sub>DS(on)</sub>    | V <sub>in</sub> = 5 V, Direct Mode, Load Connected to V <sub>out</sub> V <sub>in</sub> = 5 V, Direct Mode, Load Connected to V <sub>out</sub> @ 25°C               |      | 130<br>130 | 220<br>200 | mΩ         |
| V <sub>out</sub> to V <sub>in</sub> Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                      | V <sub>out</sub> = 5 V, Reverse Mode, Accessory                                                                                                                    |      | 130        | 220        | mΩ         |
| v <sub>out</sub> to v <sub>in</sub> nesistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R <sub>DS(on)</sub>    | V <sub>out</sub> = 5 V, Heverse Mode, Accessory  Connected to V <sub>in</sub> V <sub>out</sub> = 5 V, Reverse Mode, Accessory  Connected to V <sub>in</sub> @ 25°C |      | 130        | 200        | 11152      |
| Input Standby Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Idd <sub>STD</sub>     | No Load. Disable Mode, V <sub>in</sub> connected                                                                                                                   |      | 140        | 200        | μΑ         |
| Input Supply Quiescent Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Idd <sub>IN</sub>      | No Load. Direct Mode                                                                                                                                               |      | 200        | 280        | μΑ         |
| Output Standby Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Idd <sub>STDOUT</sub>  | Rin = 10 kΩ, V <sub>out</sub> = 5.5 V, Disable Mode                                                                                                                |      | 0.02       | 1.0        | μ <b>A</b> |
| Reverse Mode current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                                                                                                                                                    |      | 200        | 315        | μΑ         |
| Minimum DC Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>CHG</sub>       | Output Load, V <sub>in</sub> = 5.5 V, Direct                                                                                                                       | 1.3  |            |            | Α          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I <sub>REV</sub>       | Accessory, V <sub>out</sub> = 5.5 V, Reverse Modes                                                                                                                 | 1.3  |            |            |            |
| Overcurrent Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I <sub>OCP</sub>       | $V_{out}$ = 4.2 V, Load on $V_{in}$ , Reverse Mode, $R_{ILIM}$ = 0 Ω, 1 A/1 μs                                                                                     | 1.35 | 1.75       | 2.10       | Α          |
| Overcurrent Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l <sub>acc</sub>       | Direct Accessory Short, Reverse Mode,<br>V <sub>out</sub> = 4.2 V, I <sub>lim</sub> = 1.6 A                                                                        |      | 7.0        |            | %          |
| FLAG Output Low Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vol <sub>flag</sub>    | 1.2 V < V <sub>in</sub> < UVLO<br>Sink 50 μA on FLAG Pin                                                                                                           |      | 30         | 400        | mV         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | V <sub>in</sub> > OVLO, Sink 1 mA on FLAG Pin                                                                                                                      |      |            | 400        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | I <sub>reverse</sub> > I <sub>lim</sub> , Sink 1 mA on FLAG Pin                                                                                                    |      |            | 400        |            |
| FLAG Leakage Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FLAG <sub>leak</sub>   | FLAG Level = 5.5 V                                                                                                                                                 |      | 1.0        |            | nA         |
| DIR Voltage High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{ihDIR}$            |                                                                                                                                                                    | 1.2  |            |            | V          |
| DIR Voltage Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V_{iIDIR}$            |                                                                                                                                                                    |      |            | 0.55       | V          |
| DIR Leakage Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DIR <sub>leak</sub>    | V <sub>in</sub> or V <sub>out</sub> connected<br>V <sub>in</sub> and V <sub>out</sub> disconnected                                                                 |      | 200<br>1.0 |            | nA         |
| REV Voltage High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{ihREV}$            |                                                                                                                                                                    | 1.2  |            |            | V          |
| REV Voltage Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                    |      |            | 0.55       | V          |
| REV Leakage Current  REV <sub>leak</sub> V <sub>in</sub> or V <sub>out</sub> connected V <sub>in</sub> and V <sub>out</sub> disconnected V <sub>in</sub> and V <sub>in</sub> an |                        | V <sub>in</sub> or V <sub>out</sub> connected<br>V <sub>in</sub> and V <sub>out</sub> disconnected                                                                 |      | 200<br>1.0 |            | nA         |
| Thermal Shutdown Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T <sub>SD</sub>        |                                                                                                                                                                    |      | 150        |            | °C         |
| Thermal Shutdown Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub>SDHYST</sub>    |                                                                                                                                                                    |      | 30         |            | °C         |

| Characteristics              | Characteristics Symbols Conditions |                                                                                                                                          | Min | Тур | Max | Unit |  |  |
|------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|--|--|
| TIMINGS                      |                                    |                                                                                                                                          |     |     |     |      |  |  |
| DIRECT MODE                  |                                    |                                                                                                                                          |     |     |     |      |  |  |
| Start Up Delay               | t <sub>on</sub>                    | From $V_{in}$ > UVLO to $V_{out} \ge 0.3 \text{ V}$                                                                                      | 20  | 30  | 40  | ms   |  |  |
| FLAG Going Up Delay          | t <sub>start</sub>                 | From V <sub>out</sub> > 0.3 V to FLAG = 1.2 V                                                                                            | 20  | 30  | 40  | ms   |  |  |
| Turn Off Delay               | t <sub>off</sub>                   | From $V_{in}$ > OVLO to $V_{out} \le 0.3 \text{ V}$<br>$V_{in}$ Increasing from 5 V to 8 V at 3 V/ $\mu$ s                               |     | 1.5 | 5.0 | μs   |  |  |
| Alert Delay                  | t <sub>stop</sub>                  | From V <sub>in</sub> > OVLO to $\overline{FLAG} \le 0.4$ V See Figure 3 and 9 V <sub>in</sub> Increasing from 5 V to 8 V at 3 V/ $\mu$ s |     | 1.5 |     | μs   |  |  |
| Disable Time                 | t <sub>dis</sub>                   | $\overline{REV}$ = 1.2 V, From $\overline{DIR}$ = 0.4 V to 1.2 V to V <sub>out</sub> $\leq$ 0.3 V                                        |     | 2.5 |     | μs   |  |  |
| REVERSE MODE                 |                                    |                                                                                                                                          |     |     |     |      |  |  |
| Reverse Start Up Delay       | ton <sub>REV</sub>                 | $V_{out} \ge 2.5 \text{ V}$ , From $\overline{\text{REV}}$ = 1.2 to 0.55 to $V_{in} \ge 0.3 \text{ V}$ , Reverse Mode                    | 0.6 | 1.2 | 1.8 | ms   |  |  |
| Reverse FLAG Going Up Delay  | tstart <sub>REV</sub>              | From $V_{in} \ge 0.3 \text{ V} \overline{\text{FLAG}} = 1.2 \text{ V}$ , Reverse Mode                                                    | 0.6 | 1.2 | 1.8 | ms   |  |  |
| Rearming Reverse Delay       | t <sub>RRD</sub>                   | $V_{out}$ > 2.5 V, $R_{in}$ = 1 $\Omega$ , Reverse Mode                                                                                  | 20  | 30  | 40  | ms   |  |  |
| Over Current Regulation Time | t <sub>REG</sub>                   | V <sub>out</sub> > 2.6, V <sub>in</sub> > 0.3 V, Reverse Mode                                                                            | 0.5 | 1.2 | 1.8 | ms   |  |  |
| OCP Delay Time               | t <sub>OCP</sub>                   | From I <sub>reverse</sub> > I <sub>lim</sub> , 1 A/1 μs                                                                                  |     | 5   |     | μs   |  |  |
| Reverse Disable Time         | t <sub>REVDIS</sub>                | From REV = 0.55 V to 1.2 V, to V <sub>in</sub> < 0.3 V.                                                                                  |     | 200 |     | μS   |  |  |

NOTE: Electrical parameters are guaranteed by correlation across the full range of temperature.

#### TYPICAL OPERATING CHARACTERISTICS

#### Operation

The NCP370 provides overvoltage protection for positive and negative voltages, up to 28 V or down to -28 V on IN pins. At powerup, with  $\overline{DIR}$  pin = low,  $\overline{REV}$  = high, the output rises 30 ms after the input rises above the UVLO. The NCP370 provides a  $\overline{FLAG}$  output, which alerts the system that a fault has occurred. The  $\overline{FLAG}$  signal rises 30 ms after the output signal rises.

A Reverse Mode is available when an accessory is connected on IN pins and the internal battery is applied on the OUT pin, allowing the accessory to be powered. In this mode, no supply must be connected on IN pins and  $\overline{\text{REV}}$  pin must be tied to low level. The NCP370 provides overcurrent protection for the battery from current faults in the accessory.

#### **Undervoltage Lockout (UVLO)**

To ensure proper turn–on operation from AC/DC (or Wall adapter charging) under any conditions, the device has a built–in undervoltage lock out (UVLO) circuit. During positive going slope on  $V_{in}$ , the output remains disconnected from input until  $V_{in}$  voltage is above UVLO. The  $\overline{FLAG}$  output will be low as long as  $V_{in}$  has not reached UVLO threshold. This circuit has a 60 mV hysteresis to provide noise immunity to transient conditions.

In Reverse Mode ( $\overline{\text{REV}}$  pin  $\leq 0.55 \text{ V}$ ,  $\overline{\text{DIR}} \geq 1.2 \text{ V}$ ), UVLO and OVLO comparators are inactivated.

#### Overvoltage Lockout (OVLO)

To protect connected systems on Vout pin from overvoltage, the device has a built–in overvoltage lock out (OVLO) circuit. During overvoltage condition, the output is disabled as long as the input voltage exceeds OVLO.

Additional OVLO thresholds can be manufactured (Please contact your ON Semiconductor representative for availability).

FLAG output will be low since V<sub>in</sub> is higher than OVLO. This circuit has a 80 mV hysteresis to provide noise immunity to transient conditions.

# Oversystem Voltage Lockout (OVLO<sub>00</sub>)

A second overvoltage comparator is available for supplying the sytem (output) by the Wall Adaptor (input) by setting  $\overline{DIR} = low$  and  $\overline{REV} = low$ . The  $R_{DS(on)}$  will be higher during this mode allowing to handle few 10 mA

This additional comparator allows to put higher input voltage (OVLO = 8.27 V typical) on the NCP370 during test production sequence (I.E. One Time Programming of the cell phone, PDA). This parameter is 25°C guaranteed only.

# **FLAG** Output

The NCP370 provides a  $\overline{FLAG}$  output which alerts that a fault has occurred. As soon as a fault state is detected by the NCP370 (see Figure 3), the  $\overline{FLAG}$  pin output goes low, alerting the micro–controller to take appropriate action.

The  $\overline{FLAG}$  pin goes low as soon the input voltage exceeds the OVLO threshold or falls below the UVLO threshold. When the  $V_{in}$  level recovers normal condition,  $\overline{FLAG}$  goes high after a time delay,  $t_{start}$  (see Figure 3), following the  $V_{out}$  response. The  $\overline{FLAG}$  pin is an open drain output and

therefore a pull up resistor (typically 1 M $\Omega$ , minimum 10 k $\Omega$ ) must be connected to Battery. The  $\overline{FLAG}$  level will always reflect  $V_{in}$  status, even if the device is turned off  $\overline{(DIR)}$  = 1 and  $\overline{REV}$  = 1).

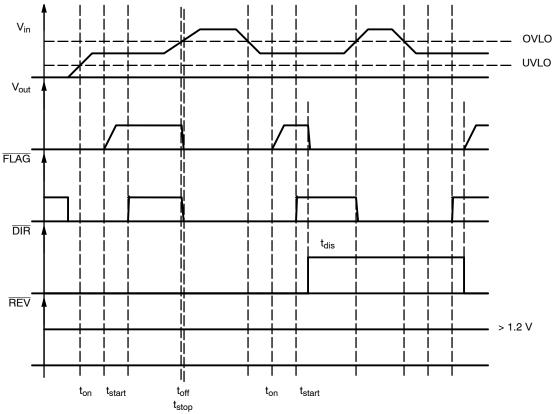



Figure 3. FLAG Pin in AC/DC Charging Mode

During over thermal condition ( $T^{\circ}_{J}>T^{\circ}_{SD}$ ), output is disconnected from input, and  $\overline{FLAG}$  pin goes low.

In Reverse Mode, FLAG pin remains available, allowing the micro-controller to appropriately process the

overvoltage condition, overcurrent condition or thermal shutdown condition.

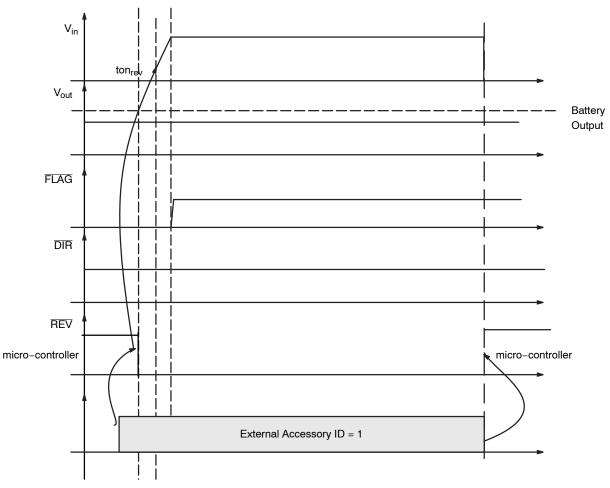



Figure 4. FLAG status in Reverse Mode

Table 1. FLAG TABLE

| DIR | REV | IN                                            | OUT                        | FLAG<br>Status | Pass Element (Dual NMOS FET) |
|-----|-----|-----------------------------------------------|----------------------------|----------------|------------------------------|
| 0   | 0   | $1.5 < V_{in} < UVLO$ or $V_{in} > OVLO_{oo}$ | Hiz                        | Low            | Open                         |
| 0   | 0   | UVLO < V <sub>in</sub> < OVLO <sub>oo</sub>   | = V <sub>in</sub> -DROPOUT | High           | Close                        |
| 0   | 1   | $1.5 < V_{in} < UVLO$ or $V_{in} > OVLO$      | Hiz                        | Low            | Open                         |
| 0   | 1   | UVLO < V <sub>in</sub> < OVLO                 | = V <sub>in</sub> -DROPOUT | High           | Close                        |
| 1   | 0   | = V <sub>out</sub> -DROPOUT                   | V <sub>out</sub> > 2.5 V   | High           | Close                        |
| 1   | 1   | $1.5 < V_{in} < UVLO$ or $V_{in} > OVLO$      | Hiz                        | Low            | Open                         |
| 1   | 1   | UVLO < V <sub>in</sub> < OVLO                 | Hiz                        | High           | Open                         |

# DIR Input

To enable Direct Charge operation (Direct Mode), the  $\overline{DIR}$  pin shall be forced to low and  $\overline{REV}$  to high. A high level on the  $\overline{DIR}$  pin disconnects OUT pin from IN pin.  $\overline{DIR}$  does not over–ride an OVLO or UVLO fault ( $\overline{FLAG}$  status is still available).

**Table 2. TABLE SELECTION OF CHARGE MODES** 

| DIR | REV | Mode         |  |
|-----|-----|--------------|--|
| 0   | 0   | Enhance Mode |  |
| 0   | 1   | Direct Mode  |  |
| 1   | 0   | Reverse Mode |  |
| 1   | 1   | Disable Mode |  |

#### Negative Voltage and Reverse Current.

The device protects the downstream side from negative voltage occurring on the IN pin, down to -28 V. When a negative voltage occurs, the output is disconnected from the IN pins.

#### **Reverse Mode**

In Reverse Mode, an external accessory plugged into the bottom connector can be powered by the internal battery of the system.

To access to the reverse mode,  $\overline{DIR}$  pin must be tied high (> 1.2) and  $\overline{REV}$  must be tied high to low (< 0.55 V).

In this case, the core of the NCP370 will be supplied by the battery, with a 2.5 V minimum voltage and 5.5 V maximum voltage.

In this reverse state, both OCP and thermal modes are available.

# **Overcurrent Protection (OCP)**

This device integrates the reverse over current protection function, from battery to external accessory.

That means the current across the internal NMOS is limited when the value, set by the external  $R_{limit}$  resistor, exceeds  $I_{\rm OCP}$ 

An internal resistor is placed in series with the  $I_{lim}$  pin allowing a maximum OCP value when  $I_{lim}$  pin is directly connected to GND.

By adding external resistors in series from  $I_{lim}$  to GND, the OCP value is lowered. The typical overcurrent threshold can be calculated with the following formula;

$$R_{ilim} (k\Omega) = (60 / I_{OCP}) - 36$$

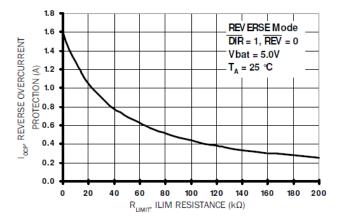
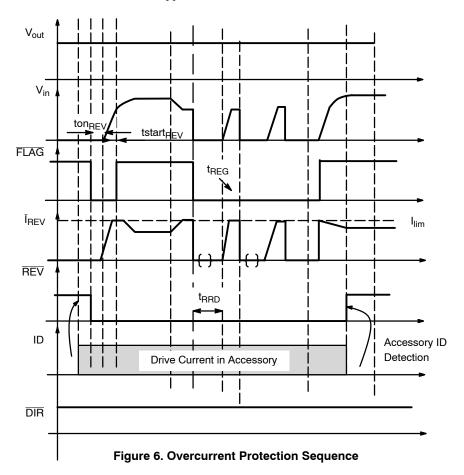




Figure 5. Reverse Mode Overcurrent Protection vs. ILIM Resistance,  $R_{\text{LIMIT}}$ 

During an overcurrent event, the N-MOSFETs turn off and  $\overline{FLAG}$  output goes low, allowing the micro-controller to process the fault event and then disable reverse charge path.

At power up (accessory is plugged on input pins), the current is limited up to  $I_{lim}$  for 1.2 ms (typical), to allow capacitor charge and limit inrush current. If the  $I_{lim}$  threshold is exceeded over 1.2 ms, the device enters OCP burst mode until the overcurrent event disappears.

After 1 ms following the plug in of the accessory, the OCP mode is engaged. See Figure 6.



# **Thermal Shutdown Protection**

In case of internal overheating, the integrated thermal shutdown protection turns off the internal MOSFETs in order to instantaneously decrease the device temperature. The thermal threshold has been set at  $150^{\circ}$ C  $\overline{FLAG}$  then goes low to inform the MCU.

As the thermal hysteresis is 30°C, the MOSFETs will turn on as soon the device temperature falls below 120°C.

If the fault event is still present, the temperature increase engages the thermal shutdown again until the fault event disappears.

### **PCB Recommendations**

Since the NCP370 integrates the 1. 3A N-MOSFETs, PCB rules must be respected to properly evacuate the heat out of the silicon.

From an applications standpoint, PAD1 of the NCP370 package should be connected to an isolated PCB area to increase the heat transfer if necessary.

In any case, PAD1 should be not connected to any other potential or GND other than the isolated extra copper surface.

To assist in the design of the transfer plane connected to PAD1, Figure 7 shows the copper area required with respect to  $R_{\theta JA}$ .

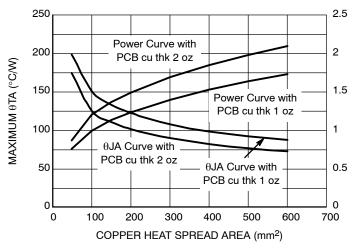



Figure 7. Copper heat Spread Area

#### **ESD Tests**

The NCP370 conforms to the IEC61000–4–2, level 4 on the Input pin. A 1  $\mu F$  (I.E Murata GRM188R61E105KA12D) must be placed close to the IN pins. If the IEC61000–4–2 is not a requirement, a 100 nF/25 V must be placed between IN and GND.

The above configuration supports 15 kV (Air) and 8 kV (Contact) at the input per IEC61000–4–2 (level 4).

Please refer to Figure 8 for the IEC61000-4-2 electrostatic discharge waveform.

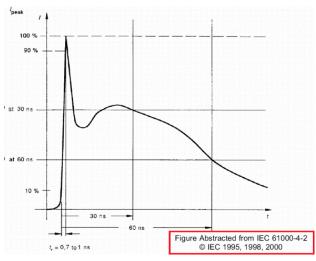
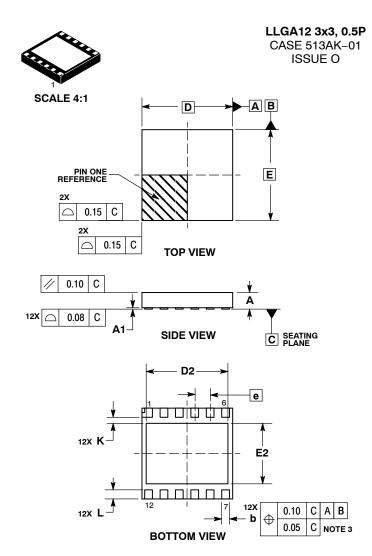



Figure 8.  $I_{peak} = f(t)/IEC61000-4-2$ 


# R<sub>DS(on)</sub> and Dropout

The NCP370 includes two internal low  $R_{DS(on)}$  N-MOSFETs to protect the system, connected on OUT pin, from overvoltage, negative voltage and reverse current protection. During normal operation, the  $R_{DS(on)}$  characteristics of the N-MOSFETs give rise to low losses on  $V_{out}$  pin.

As example:  $R_{load} = 8 \Omega$ , Vin = 5 V.  $R_{DS(on)} = 155 \text{ m}\Omega$ .  $I_{out} = 800 \text{ mA}$ .

 $V_{out} = 4.905 \text{ V}$ 

NMOS Losses =  $R_{DS(on)} \times I_{out}^2 = 0.155 \times 0.8^2 = 0.0992 \text{ W}$ 



**DATE 28 JUN 2007** 

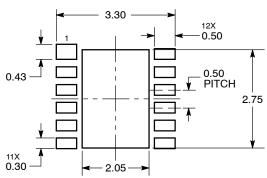
- NOTES:
  1. DIMENSIONING AND TOLERANCING PER
- DIMENSIONING AND TOLEHANGING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION A APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

|     | MILLIMETERS |          |  |  |  |  |
|-----|-------------|----------|--|--|--|--|
| DIM | MIN MAX     |          |  |  |  |  |
| Α   | 0.50        | 0.60     |  |  |  |  |
| A1  | 0.00        | 0.05     |  |  |  |  |
| b   | 0.20        | 0.30     |  |  |  |  |
| D   | 3.00        | 3.00 BSC |  |  |  |  |
| D2  | 2.60        | 2.80     |  |  |  |  |
| E   | 3.00        | BSC      |  |  |  |  |
| E2  | 1.90        | 2.10     |  |  |  |  |
| е   | 0.50 BSC    |          |  |  |  |  |
| K   | 0.20        |          |  |  |  |  |
| Ĺ   | 0.25 0.35   |          |  |  |  |  |

# **GENERIC MARKING DIAGRAM\***



= Assembly Location


L = Wafer Lot Υ = Year W = Work Week

Α

= Pb-Free Package

(Note: Microdot may be in either location)

# **SOLDERING FOOTPRINT\***



DIMENSIONS: MILLIMETERS

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON24833D                      | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | 12 PIN LLGA, 3 X 3 X 0.55T, 0.5P |                                                                                                                                                                                   | PAGE 1 OF 1 |  |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

<sup>\*</sup>This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

