

Multimeter Click

www.mikroe.com

PID: MIKROE-3116

Multimeter click is a Click board $^{\text{\tiny M}}$ designed to measure voltage, current, resistance, and capacitance properties of the components, connected to the input terminals. Each property measurement is done on a separate terminal. Each measurement section conditions the input signal from the respective input terminal and forwards it to a four-channel 12-bit A/D converter. All the inputs are equipped with the differential amplifiers, that allow both positive and negative signals to be measured. By utilizing the binary-to-decimal converter IC, it is possible to select the optimal range for the resistance measurement. Low internal resistance of only 0.1Ω for the current and high resistance of $1M\Omega$ for the voltage measurement section, ensure no interferences with the measured circuitry, caused by this Click board $^{\text{\tiny M}}$.

Since there are four distinctive properties that can be measured with Multimeter click which all require different measuring techniques, several different ICs had to be used on the Click board $^{\text{TM}}$. Starting with the high-quality, low noise A/D converter as the primary component, all the way to the input operational amplifiers, all components were hand-picked to ensure accuracy. Even the lowest amounts of noise, distortion, or crosstalk, might have a great impact on the overall accuracy of the measurement. This Click board $^{\text{TM}}$ can be used as the development platform for measurement applications, or simply as a very compact, accurate, and handy digital multimeter device.

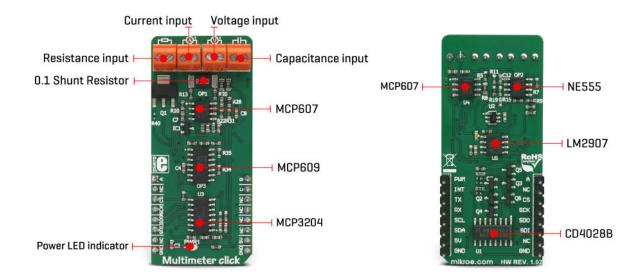
How does it work?

The operation of this Click board [™] is managed by several different ICs, including operational amplifiers, NE555 timer, BCD decoder, frequency to voltage converter, and finally an A/D converter (ADC). The auxiliary ICs for providing -5V and the ADC referent voltage of 2.048V, are also present. The Click board [™] uses the MCP3204, a four-channel, 12-bit ADC with an SPI Mikroe produces entire development roolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

ISO 9001: 2015 certification of quality management system (QMS).



MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

www.mikroe.com

interface, from Microchip. The conditioned signals are routed to each input of the ADC. The input channel is selected by the initial SPI command, after the #CS (chip select) pin becomes LOW. Three configuration LSBs are used to set the sampling channel (D0-D2), while the fourth bit (D3) sets the mode. The ADC is routed to work with single-ended inputs, and therefore this bit should always be set as 1.

Current measurement

A differential input amplifier is used to amplify the voltage difference across the shunt resistor. One half of the MCP607, a dual CMOS op-amp from Microchip is used for that purpose. The value of the shunt resistor is 0.1Ω , which allows up to 1A of current to be measured. Since the ammeter is connected in series, the shunt resistor has to be of a very small value, in order to prevent interferences with the measuring circuitry. This is one of the basic requirements of the ammeter. The voltage drop at the shunt is amplified by the differential op-amp (by the factor of 10), and the op-amp output is routed to one of the ADC inputs, which is labeled I on the schematic. The op-amp uses half of the referent voltage (Vref) as the virtual GND so that both positive and negative values can be converted.

Voltage measurement

When measuring a voltage, the internal resistance of the voltmeter has to be large, since it is connected in parallel with the component across which the voltage is measured. The Click board™ uses the MCP609, a quad CMOS op-amp, configured as dual-buffer and a differential amplifier. It is the same device as the MCP607, but with four integrated op-amps. Two integrated op-amps work as buffers with voltage dividers at their non-inverting inputs, while the third op-amp acts as the actual differential amplifier. Again, the op-amp uses the virtual GND, set at half of the Vref for the output biasing. This allows both negative and positive voltage potential to be measured, across the load connected at the input terminal. The output from the differential amplifier is routed to the ADC input labeled as U.

Resistance measurement

Mikroe produces entire development toolchains for all major microcontroller architectures. Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system. ISO 14001: 2015 certification of environmental management system. OHSAS 18001: 2008 certification of occupational health and safety management system.

Measurement of the resistance consists of a voltage divider, which is formed by an unknown resistance connected to the resistance measuring terminal, and a selectable, known, reference value resistor. The voltage applied to the voltage divider is also known (Vref). The middle tap of the divider is routed directly to the ADC input pin labeled as R, allowing reading of the voltage which directly depends on the unknown resistance. The CD4028B, a BCD decoder IC from Texas Instruments is used to select the correct reference resistance range. Three input pins (A, B, C) of the CD4028B are used to activate one of 6 MOSFET gates, via the logic states of the

AN, PWM and INT pins of the mikroBUS™, which connect the desired reference resistor to the

www.mikroe.com

Capacitance measurement

measuring circuit.

The capacitance property can be measured with many multimeters commercially available, but it is not something included in some cheaper models. It consists of the NE555 precision timer, which is configured as an astable multivibrator. It generates impulses, set to about 50% duty cycle, with the frequency of 585Hz. This signal is converted by the LM2907MX, a frequency to voltage converter from Texas Instruments. The unknown capacitance is connected to the threshold input of the NE555, affecting the frequency of the pulses. The LM2907MX responds by changing the DC output voltage, which is fed to a differential op-amp. The higher the connected capacitance, the lower the LM2907 output becomes. The DC signal is then passed through another differential amplifier and routed to the ADC input labeled as CU, so it can be sampled by the ADC and read via the SPI.

Software

A software (or a firmware) running on the host MCU is required, in order to transform raw ADC readings and show them on an output device (UART, display) The library provided with the Multimeter click offers a set of functions, which output straight-forward measurements and can be implemented easily in a custom code. Before actual measurement, as a part of the device initialization procedure, a calibration routine needs to be performed, so that components tolerances are taken into an account. Therefore, there should be nothing connected at the input terminals of the Multimeter click, until it is initialized by the software. The provided example application demonstrates how to use this click board, so it can be used as a starting point for future development.

Specifications

Туре	Measurements
Applications	This Click board [™] can be used as the development platform for measurement applications, or simply as a very compact, accurate, and handy digital multimeter device
On-board modules	MCP607 dual CMOS op-amp, MCP609 quad CMOS op-amp, MCP3024 12-bit ADC, by Microchip; NE555 timer, CD4028 BCD decoder, LM2907 freq to voltage, by Texas Instruments; MAX6106 2.048 V reference, by Maxim Integrated
Key Features	Low internal resistance for the current and high internal resistance for the voltage, five different resistance measuring ranges,

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

www.mikroe.com

	capacitance measurement, separate inputs for each measured property
Interface	GPIO,SPI
Feature	No ClickID
Compatibility	mikroBUS™
Click board size	L (57.15 x 25.4 mm)
Input Voltage	5V

Pinout diagram

This table shows how the pinout on **Multimeter click** corresponds to the pinout on the mikroBUS $^{\text{m}}$ socket (the latter shown in the two middle columns).

Notes	Pin	mikro™ BUS				Pin	Notes
Range Sel Bit 0	Α	1	AN	PWM	16	В	Range Sel Bit 1
	NC	2	RST	INT	15	С	Range Sel Bit 2
SPI Chip Select	CS	3	CS	RX	14	NC	
SPI Clock	SCK	4	SCK	TX	13	NC	
SPI Data OUT	SDO	5	MISO	SCL	12	NC	
SPI Data IN	SDI	6	MOSI	SDA	11	NC	
	NC	7	3.3V	5V	10	5V	Power supply
Ground	GND	8	GND	GND	9	GND	Ground

Onboard jumpers and settings

Label	Name	Default	Description
LD1	PWR	-	Power LED indicator
V meter	Voltmeter symbol	-	Voltage measurement input terminal
A meter	Ammeter symbol	-	Current measurement input terminal
R meter	Resistor symbol	-	Resistance measurem ent input terminal
CU meter	Capacitor symbol	-	Capacitance measure ment input terminal

Multimeter click electrical specifications

Description	Min	Туре	Max	Unit
Measurement resolution	-	5e ⁻⁴	-	V/bit
Current measurement range	0.001	-	1.024	Α
Voltage measure ment range	0.008	-	17.068	V
Resistance meas urement range	0.25	-	20M	Ω

rvikroe produces entire development rooicnains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

Capacitance	0.001	-	2.2	μF
measurement				
range				

www.mikroe.com

Software Support

We provide a library for the Multimeter Click as well as a demo application (example), developed using MIKROE <u>compilers</u>. The demo can run on all the main MIKROE <u>development boards</u>.

Package can be downloaded/installed directly from NECTO Studio Package Manager (recommended), downloaded from our <u>LibStock™</u> or found on <u>MIKROE github account</u>.

Library Description

This library contains API for Multimeter Click driver.

Key functions

- This function reads and returns resistance data.
- This function reads and returns voltage data.
- This function reads and returns current data.

Example Description

This example showcases how to configure, initialize and use the Multimeter Click. The click measures resistance in Ohms, voltage in mVs, current in mAs and capacitance in nFs using a dual CMOS and quad CMOS op-amps, an ADC and other on board modules.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager (recommended), downloaded from our $\underline{\mathsf{LibStock}}^{\mathsf{TM}}$ or found on $\underline{\mathsf{MIKROE}}$ github account.

Other MIKROE Libraries used in the example:

- · MikroSDK.Board
- MikroSDK.Log
- · Click.Multimeter

Additional notes and informations

Depending on the development board you are using, you may need <u>USB UART click</u>, <u>USB UART 2 Click</u> or <u>RS232 Click</u> to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE <u>compilers</u>.

mikroSDK

This Click board $^{\scriptscriptstyle{\mathsf{TM}}}$ is supported with $\underline{\mathsf{mikroSDK}}$ - MIKROE Software Development Kit. To ensure proper operation of mikroSDK compliant Click board $^{\scriptscriptstyle{\mathsf{TM}}}$ demo applications, mikroSDK should be

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

ISO 9001: 2015 certification of quality management system (QMS).

downloaded from the <u>LibStock</u> and installed for the compiler you are using.

www.mikroe.com

For more information about mikroSDK, visit the official page.

Resources

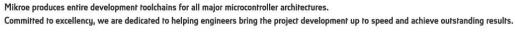
mikroBUS™

mikroSDK

Click board™ Catalog

Click Boards™

Downloads


MCP3204 datasheet

Multimeter click schematic

Multimeter click 2D and 3D files

Multimeter click example on Libstock

CD4028B datasheet

health and safety management system.