2-Bit Bus Switch

The 7WB3305 is an advanced high-speed low-power 2-bit bus switch in ultra-small footprints.

Features

- High Speed: $t_{PD} = 0.25 \text{ ns (Max)} @ V_{CC} = 4.5 \text{ V}$
- 3 Ω Switch Connection Between 2 Ports
- Power Down Protection Provided on Inputs
- Zero Bounce
- TTL-Compatible Control Inputs
- Ultra-Small Pb-Free Packages
- These are Pb–Free Devices

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

UDFN8 MU SUFFIX CASE 517AJ

Micro8[™] DM SUFFIX CASE 846A

UDFN8 1.95 x 1.0 CASE 517CA

A = Assembly Location

Y = Year
W = Work Week
M = Date Code

■ = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

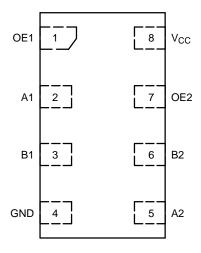
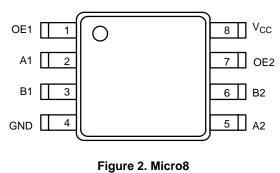



Figure 1. UDFN8 (Top Thru–View)

(Top View)

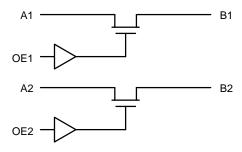


Figure 3. Logic Diagram

FUNCTION TABLE

Input OEn	Function
L	Disconnect
Н	Bn = An

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{IN}	Control Pin Input Voltage	-0.5 to +7.0	V
V _{I/O}	Switch Input / Output Voltage	-0.5 to +7.0	V
I _{IK}	Control Pin DC Input Diode Current V _{IN} < GNI	D –50	mA
I _{OK}	Switch I/O Port DC Diode Current V _{I/O} < GNI	D –50	mA
Io	ON-State Switch Current	±128	mA
	Continuous Current Through V _{CC} or GND	± 150	mA
I _{CC}	DC Supply Current Per Supply Pin	± 150	mA
I _{GND}	DC Ground Current per Ground Pin	± 150	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
$\theta_{\sf JA}$	Thermal Resistance UDFN8 (Note 1 Micro		°C/W
P_{D}	Power Dissipation in Still Air at 85°C UDFN Micro		mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Mode (Note 2 Machine Model (Note 3 Charged Device Model (Note 4	> 200	V
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GND at 125°C (Note 5)	±200	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

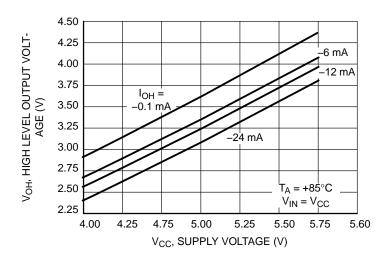
- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.
- 2. Tested to EIA / JESD22-A114-A.
- 3. Tested to EIA / JESD22–A115–A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA / JESD78.

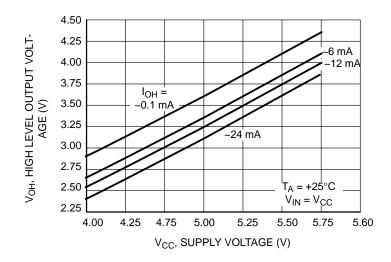
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage	4.0	5.5	V	
V_{IN}	Control Pin Input Voltage	0	5.5	V	
V _{I/O}	Switch Input / Output Voltage	0	5.5	V	
T _A	Operating Free–Air Temperature			+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	Control Input Switch I/O	0 0	5 DC	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS


			V _{CC}	T _A = 25°C			T _A = -55°C to +125°C		
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Unit
V _{IK}	Clamp Diode Voltage	$I_{I/O} = -18 \text{ mA}$	4.5			-1.2		-1.2	V
V _{IH}	High-Level Input Voltage (Control)		4.0 to 5.5	2.0			2.0		V
V _{IL}	Low-Level Input Voltage (Control)		4.0 to 5.5			0.8		0.8	V
V _{OH}	Output Voltage High	See Figure 4							
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	5.5			± 0.1		±1.0	μΑ
I _{OFF}	Power Off Leakage Current	$V_{I/O} = 0 \text{ to } 5.5 \text{ V}$	0			± 0.1		±1.0	μΑ
Icc	Quiescent Supply Current	$I_O = 0$, $V_{IN} = V_{CC}$ or 0 V	5.5			± 0.1		±1.0	μΑ
Δl _{CC}	Increase in Supply Current (Control Pin)	One input at 3.4 V; Other inputs at V _{CC} or GND	5.5					2.5	mA
R _{ON}	Switch ON Resistance	$V_{I/O} = 0,$ $I_{I/O} = 64 \text{ mA}$ $I_{I/O} = 30 \text{ mA}$	4.5		3 3	7 7		7 7	Ω
		$V_{I/O} = 2.4,$ $I_{I/O} = 15 \text{ mA}$			6	15		15	
		$V_{I/O} = 2.4,$ $I_{I/O} = 15 \text{ mA}$	4.0		10	20		20	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

			v _{cc}	V	-	Γ _A = 25 °	С		(=) +125°C	
Symbol	Parameter	Test Condition	(V)	Min	Тур	Max	Min	Max	Unit	
t _{PD}	Propagation Delay, Bus to Bus	See Figure 5	4.0 to 5.5			0.25		0.25	ns	
t _{EN}	Output Enable Time	See Figure 5	4.5 to 5.5	0.8	2.5	4.2	0.8	4.2	ns	
			4.0	0.8	3.0	4.6	0.8	4.6		
t _{DIS}	Output Disable Time		4.5 to 5.5	0.8	3.0	4.8	0.8	4.8	ns	
			4.0	0.8	2.9	4.4	0.8	4.4		
C _{IN}	Control Input Capacitance	V _{IN} = 5 or 0 V	5.0		2.5				pF	
C _{IO(ON)}	Switch On Capacitance	Switch ON	5.0		10				pF	
C _{IO(OFF)}	Switch Off Capacitance	Switch OFF	5.0		5				pF	

TYPICAL DC CHARACTERISTICS

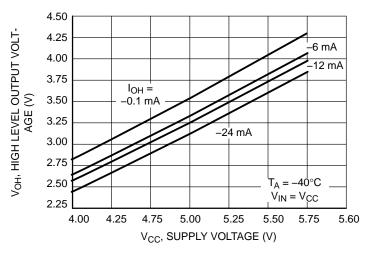
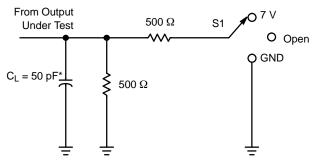
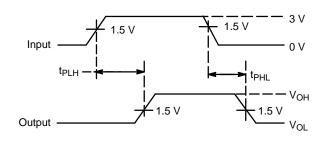
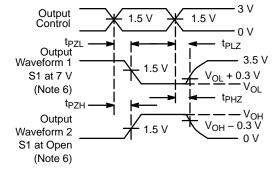



Figure 4. Output Voltage High vs Supply Voltage


AC LOADING AND WAVEFORMS


Parameter Measurement Information

Test	S 1
t _{PD}	Open
t _{PLZ} /t _{PZL}	7 V
t _{PHZ} /t _{PZH}	Open

^{*}C_L includes probes and jig capacitance.

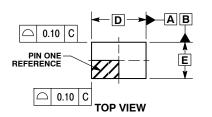
Voltage Waveforms Propagation Delay Times

Voltage Waveforms **Enable and Disable Times**

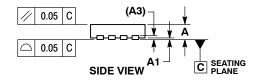
- 6. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control
- 7. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. 8. The outputs are measured one at a time, with one transition per measurement.
- 9. t_{PLZ} and t_{PHZ} are the same as t_{DIS}.
- 10. t_{PZL} and t_{PZH} are the same as t_{EN}.
 11. t_{PHL} and t_{PLH} are the same as t_{PD}.

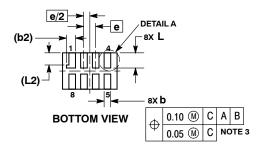
Figure 5. t_{PD}, t_{EN}, t_{DIS} Loading and Waveforms

ORDERING INFORMATION

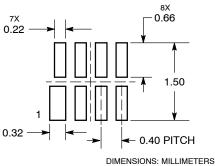

Device	Package	Shipping [†]
7WB3305MUTAG	UDFN8 (Pb-Free)	3000 / Tape & Reel
7WB3305DMR2G	B3305DMR2G Micro8 (Pb-Free)	
7WB3305DMUTCG	UDFN8, 1.95 x 1.0, 0.5 mm Pitch (Pb–Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


SCALE 4:1



DATE 08 NOV 2006



MOUNTING FOOTPRINT SOLDERMASK DEFINED

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED
- DIMENSION 6 APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.15 AND 0.30 mm FROM TERMINAL TIP.
 MOLD FLASH ALLOWED ON TERMINALS
 ALONG EDGE OF PACKAGE. FLASH MAY
 NOT EXCEED 0.03 ONTO BOTTOM
 SURFACE OF TERMINALS.
 DETAIL A SHOWS OPTIONAL
 CONSTRUCTION FOR TERMINALS.

	MILLIMETERS				
DIM	MIN MAX				
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.127	REF			
b	0.15	0.25			
b2	0.30	REF			
D	1.80	BSC			
E	1.20	BSC			
е	0.40	BSC			
L	0.45	0.55			
L1	0.00 0.03				
L2	0.40 REF				

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

DOCUMENT NUMBER:	98AON23417D	Electronic versions are uncontrolled except when accessed directly from the Document Repose Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	UDFN8 1.8X1.2, 0.4P		PAGE 1 OF 1		

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative