High density power driver - high voltage full bridge with integrated comparators #### **Features** - Power system-in-package integrating gate drivers and high-voltage power MOSFETs - R_{DS(ON)} = 1.38 Ω - BV_{DSS} = 600 V - · Suitable for operating as - full bridge - dual independent half bridges - UVLO protection on low-side and high-side - 3.3 V to 15 V compatible inputs with hysteresis and pull-down - Internal bootstrap diode - Uncommitted comparators - · Adjustable dead-time - Bill of material reduction - · Very compact and simplified layout - · Flexible, easy and fast design #### **Applications** - · Industrial fans and pumps - · Cooking hoods and gas heaters - Blowers - Industrial drives and factory automation - · Power supply units # PWD5F60 | Product summary | | | | | | |-----------------|-----------------|--|--|--|--| | Marking PWD5F60 | | | | | | | Package | VFQFPN 15x7x1mm | | | | | | Or | der codes | | | | | | PWD5F60 | Tray | | | | | | PWD5F60TR | Tape and Reel | | | | | #### **Description** The PWD5F60 is an advanced power system-in package integrating gate drivers and four N-channel power MOSFETs in dual half-bridge configuration. The integrated power MOSFETs have $R_{DS(ON)}$ of 1.38 Ω and 600 V drain-source breakdown voltage, while the embedded gate drivers high side can be easily supplied by the integrated bootstrap diode. The high integration of the device allows to efficiently drive loads in a tiny space. The PWD5F60 accepts a supply voltage (VCC) extending over a wide range (10 V to 20 V) and also features UVLO protection on both the lower and upper driving sections, preventing the power switches from operating in low efficiency or dangerous conditions. The input pins extended range allows easy interfacing with microcontrollers, DSP units or Hall effect sensors. The PWD5F60 embeds two uncommitted comparators available for protections against overcurrent, overtemperature, etc. The PWD5F60 operates in the industrial temperature range, -40 $^{\circ}$ C to 125 $^{\circ}$ C. The device is available in a compact VFQFPN package. ## 1 Block diagram Figure 2. Block diagram ## Pin description and connection diagram #### 2.1 Pin list Table 1. Pin description | Pin number | Pin name | Туре | Function | |--|----------|--------------|--| | 9, 10, 11, 31, 32, 33, EPAD3,
EPAD6 | VS | Power Supply | High voltage supply (high-side MOSFET Drain) ⁽¹⁾ | | 27, 28, 29, 30, EPAD5 | OUT1 | Power Output | Half-bridge 1 output | | 5, 6, 7, 8, EPAD2 | OUT2 | Power Output | Half-bridge 2 output | | 12 | OUTB1 | Power supply | Half-bridge 1 output connection for high-side supply capacitor (2) | | 34 | OUTB2 | Power supply | Half-bridge 2 output connection for high-side supply capacitor (3) | | 25 | SENSE1 | Power Supply | Half-bridge 1 sense (low-side MOSFET Source) | | 3 | SENSE2 | Power Supply | Half-bridge 2 sense (low-side MOSFET Source) | | 13 | BOOT1 | Power Supply | Gate driver 1 high-side supply voltage | | 35 | BOOT2 | Power Supply | Gate driver 2 high-side supply voltage | | 18 | VCC1 | Power Supply | Gate driver 1 supply voltage | | 42 | VCC2 | Power Supply | Gate driver 1 supply voltage | | 16, 22, 26, EPAD4 | GND1 | Power Supply | Gate driver 1 ground | | 4, 40, 46, EPAD1 | GND2 | Power Supply | Gate driver 2 ground | | 14 | IN1 | Logic Input | Driver 1 logic input | | 37 | IN2 | Logic Input | Driver 2 logic input | | 15 | SD1 | Logic Input | Driver 1 shut down input (active low) | | 38 | SD2 | Logic Input | Driver 2 shut down input (active low) | | 17 | PWM1 | Logic Input | Driver 1 PWM input | | 41 | PWM2 | Logic Input | Driver 2 PWM input | | 19 | DT1 | Input | Driver 1 dead time setting | | 43 | DT2 | Input | Driver 2 dead time setting | | 21 | CPOUT1 | Output | Comparator 1 output (open drain) | | 45 | CPOUT2 | Output | Comparator 2 output (open drain) | | 23 | CP+1 | Input | Comparator 1 positive input | | 1 | CP+2 | Input | Comparator 2 positive input | | 24 | CP-1 | Input | Comparator 1 negative input | | 2 | CP-2 | Input | Comparator 2 negative input | | 36, 39, EPAD7 | reserved | Reserved | Not connected | | 20, 44, | NC | Reserved | Not connected | - 1. EPAD3 is internally connected with EPAD6. No connection is required at PCB level. - 2. Pin 12 is internally connected to OUT1. No connection is required at PCB level. - 3. Pin 34 is internally connected to OUT2. No connection is required at the PCB level. Use pin 34 for bootstrap capacitor connection only. DS12543 - Rev 1 page 4/26 ### 3 Electrical data ### 3.1 Absolute maximum ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Test Condition | Value | Unit | |---------------------------------------|---|---|-------------------------------|------| | V _{DS} | MOSFET Drain-to-Source Voltage | T _J = 25 °C | 600 | V | | VCC1, VCC2 | Drivers supply voltage | - | -0.3 to 20 | V | | VCCx-SENSEx | VCCx to SENSEx pin voltage | - | -0.3 to 25 | V | | V _{BOOTx} | Bootstrap voltage | - | GNDx-0.3 to 600 | V | | V _{BO1} , V _{BO2} | BOOTx to OUTx pin voltage | - | -0.3 to 20 | V | | V _{CP+x} , V _{CP-x} | Comparator input pin voltage | - | -0.3 to V _{CCx} +0.3 | V | | V _{CPOUTx} | Comparator open-drain output voltage | - | -0.3 to 15 | V | | | | DC @ T _{CB} = 25 °C ⁽¹⁾ | 3.5 | Α | | I _D | Drain current (per MOSFET) | DC @ T _{CB} = 100 °C ⁽¹⁾ (2) | 2 | Α | | | | Peak @ T _{CB} = 25 °C ^{(1) (2) (3)} | 14 | Α | | SR _{OUT} | Full-bridge outputs slew rate (10% - 90%) | (2) | 40 | V/ns | | V _i | Logic inputs voltage range | - | -0.3 to 15 | V | | TJ | Junction temperature | - | -40 to 150 | °C | | T _s | Storage temperature | - | -40 to 150 | °C | | | | T _{CB} = 25 °C for each MOSFET | 43 | W | | P _{tot} | Total power dissipation (4) | T _{amb} = 25 °C, whole device, device
mounted on an FR4 2s2p board as per
JESD51-5,7. See Table 4 ⁽⁵⁾ | 5 | W | | ESD | Human body model | - | ±1500 | V | | EOD | Charged device model | - | ±500 | V | - 1. T_{CB} is temperature of case bottom pad. - 2. Characterized, not tested in production. - 3. The value specified by design factor, pulse duration limited by max junction temperature and SOA. - 4. Value calculated based on thermal resistance, power uniformly distributed over the four power MOSFETs, still air. - 5. Actual applicative board max dissipation could be higher or lower depending on layout and cooling techniques. #### 3.2 Recommended operating conditions Table 3. Recommended operating conditions | Symbol | Pin | Parameter | Test Condition | Min. | Max. | Unit | |-------------------------------------|-------------|-----------------------------------|--------------------------|------|----------------------|------| | VCC1, VCC2 | VCCx -GNDx | Driver Supply voltage | - | 10 | 20 | V | | V _{BO1} , V _{BO2} | BOOTx -OUTx | BOOTx to OUTx pin voltage | - | 9.8 | 20 | V | | V _{CP-x} | CP-x | Comparator negative input voltage | V _{CP+} ≤ 2.5 V | - | V _{CCx} (1) | V | DS12543 - Rev 1 page 5/26 | Symbol | Pin | Parameter | Test Condition | Min. | Max. | Unit | |----------------|------|-----------------------------------|--------------------------|------|----------------------|------| | V_{CP+x} | CP+x | Comparator positive input voltage | V _{CP-} ≤ 2.5 V | - | V _{CCx} (1) | V | | T _J | - | Junction temperature | - | -40 | 125 | °C | ^{1.} At least one of the comparator inputs must be lower than 2.5 V to guarantee proper operation. #### 3.3 Thermal data Table 4. Thermal data | Symbol | Parameter | Value | Unit | |-----------------------|---|-------|------| | R _{th(J-CB)} | Thermal resistance junction to each MOSFET exposed pad, typical | 2.85 | °C/W | | R _{th(J-A)} | Thermal resistance junction-to-ambient (1) | 25 | °C/W | The junction to ambient thermal resistance is obtained simulating the device mounted on a 2s2p (4-layer) FR4 board as per JESD51-5,7 with 4 thermal vias for each MOSFET pad. Power dissipation is uniformly distributed over the four power MOSFETs. DS12543 - Rev 1 page 6/26 ## 4 Electrical characteristics #### 4.1 Driver VCCx = 15 V; T_J = 25 °C, unless otherwise specified. **Table 5. Driver electrical characteristics** | Symbol | Pin | Parameter | Test condition | Min. | Тур. | Max | Unit | |--|----------------|--|--|------|------|------|------| | | | Low supply volta | age section | | | | | | VCC_hys | | VCC UV hysteresis | - | 1.2 | 1.5 | 1.8 | V | | $\text{VCC}_{\underline{\text{thON}}}$ | | VCC UV turn ON threshold | - | 9 | 9.5 | 10 | V | | VCC_thOFF | | VCC UV turn OFF threshold | - | 7.6 | 8 | 8.4 | V | | I _{qccu} | VCCx vs. GNDx | Undervoltage quiescent supply current | VCC = 7 V;
\overline{SD} = 5 V; IN = PWM = GND;
R_{DT} = 0 Ω ;
CP+ = GND; CP- = 0.5 V | - | 110 | 150 | μА | | I _{qcc} | | Quiescent current | VCC = 15 V;
\overline{SD} = 5 V; IN = PWM = GND;
R_{DT} = 0 Ω ;
CP+ = GND; CP- = 0.5 V | - | 600 | 1000 | μA | | | | Bootstrapped supply | voltage section | | | | | | V_{BO_hys} | | V _{BO} UV hysteresis | - | 0.8 | 1.0 | 1.2 | V | | V _{BO_thON} | | V _{BO} UV turn ON threshold | - | 8.2 | 9 | 9.8 | V | | V_{BO_thOFF} | | V _{BO} UV turn OFF threshold | - | 7.3 | 8 | 8.7 | V | | I_{QBOU} | BOOTx vs. OUTx | Undervoltage V _{BO} quiescent current | V _{BO} = 7 V | - | 40 | 100 | μA | | I_{QBO} | | V _{BO} quiescent current | $V_{BO} = 15 \text{ V}$
IN = PWM = $\overline{SD} = 5 \text{ V}$; | _ | 140 | 220 | μА | | R _{BD(on)} | VCCx vs. BOOTx | Bootstrap driver on resistance | IN = GND;
PWM = \overline{SD} = 5 V; | - | 120 | - | Ω | | | | Logic inp | outs | | | | | | V_{il} | | Logic level Low threshold voltage | - | 0.8 | - | 1.1 | V | | V _{ih} | INIV DIMAN CDV | Logic level High threshold voltage | - | 1.9 | - | 2.3 | V | | l _{ih} | INx, PWMx, SDx | Logic '1' input bias current | IN = PWM = SD = 15 V | 10 | 40 | 100 | μA | | l _{il} | | Logic '0' input bias current | IN = PWM = \overline{SD} = GND | - | - | 1 | μΑ | | R _{in_pd} | | Logic Inputs pull-down resistor | IN = PWM = SD = 15 V | 0.18 | 0.37 | 1.5 | МΩ | | | | Comparat | or | | | | | | V_{io} | CP-x, CP+x vs. | Input offset voltage | V _{CP-} = 0.5 V | -16 | - | +16 | mV | | l _{ib} | GNDx | Input bias current | V _{CP+} = 1 V, V _{CP-} = 1 V | - | - | 1 | μΑ | | | | | | | | | | DS12543 - Rev 1 page 7/26 | Symbol | Pin | Parameter | Test condition | Min. | Тур. | Max | Unit | | |---------------------|----------------|-----------------------------------|---|--|------|------|------|----| | t _{d_comp} | CP+x to CPOUTx | Comparator delay | R_{pu} = 100 k Ω to 5 V
V_{CP-} = 0.5 V;
Voltage step on CP+ = 0 to 3.3 V;
50% CP+ to 90% CPOUT | - | 90 | 130 | ns | | | I _{OD} | СРОИТХ | Open-drain low level sink current | CPOUT = 400 mV,
V _{CP+} = 1 V, V _{CP-} = 0.5 V | 2.4 | - | - | mA | | | I _{ODIk} | CPOUTX | Open-drain leakage current | CPOUT = 15 V,
V _{CP+} = 0 V, V _{CP-} = 0.5 V | - | - | 1 | μА | | | SR _{CPOUT} | CPOUTx | Comparator output slew rate | C_L = 180 pF
R_{pu} = 5 k Ω to 5 V
CPOUT from 90% to 10% | - | 60 | - | V/µs | | | | | Dead tir | ne | | | | | | | | | | R _{DT} = 0 | 0.1 | 0.18 | | | | | DT | | Dead time setting range .(3) | R_{DT} = 37 k Ω , C_{DT} = 100 nF | 0.48 | 0.6 | 0.72 | μs | | | | | | $R_{DT} = 136 \text{ k}\Omega, C_{DT} = 100 \text{ nF}$ | 1.35 | 1.6 | 1.85 | | | | | DTx | | R_{DT} = 260 k Ω , C_{DT} = 100 nF | 2.6 | 3.0 | 3.4 | | | | | DIX | | R _{DT} = 0 | - | - | 80 | | | | MDT | | Machine dead time (3) (4) | Matching dead time (3) (4) | R_{DT} = 37 k Ω , C_{DT} = 100 nF | - | - | 120 | ns | | IVIDI | | Matching dead time (3) (4) | R_{DT} = 136 k Ω , C_{DT} = 100 nF | - | - | 250 | 113 | | | | | | R _{DT} = 260 kΩ, C _{DT} = 100 nF | - | - | 400 | | | ^{1.} $R_{BD(on)}$ is tested in the following way: $R_{BD(on)} = [(VCC - V_{BOOTa}) - (VCC - V_{BOOTb})] / [la - lb]$, where: la is BOOT pin current when $V_{BOOT} = V_{BOOTb}$. DS12543 - Rev 1 Downloaded from Arrow.com. ^{2.} The comparator is disabled when VCC is in UVLO condition. ^{3.} Tested at wafer level before packaging ^{4.} MDT = |DTLH - DTHL|. Figure 4. Typical dead time vs. R_{DT} resistor value #### 4.2 Power MOSFET VCCx = 15 V; T_J = 25 °C, unless otherwise specified. **Table 6. Power MOSFET electrical characteristics** | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | | | | |---------------------|---|--|-----|------|------|------|--|--|--| | | MOSFET | | | | | | | | | | V _{(BR)DS} | Drain-source breakdown voltage | I _D = 1 mA ⁽¹⁾ | 600 | - | - | V | | | | | I _{DSS} | Zero gate voltage drain current | $V_{DS} = 600 \text{ V}$ $\overline{SD} = \text{SENSE} = \text{GND}$ | - | - | 1 | μA | | | | | V _{GS(th)} | Gate threshold voltage | $V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$ ⁽¹⁾ | 3 | 4 | 5 | V | | | | | R _{DS(on)} | Static drain-source on-resistance | I _D = 1.75 A;
V _{GS} = 10 V; | - | 1.38 | 1.75 | Ω | | | | | | MOSFET | Avalanche | | | | | | | | | I _{AS} | Avalanche current, repetitive or not repetitive | pulse width limited by T _J max (1) | - | - | 1 | Α | | | | | E _{AS} | Single pulse avalanche energy | Starting $T_J = 25$ °C,
$I_D = I_{AS}$, $V_{DD} = 50$ V ⁽¹⁾ | - | - | 132 | mJ | | | | | | Source-Drain diode | | | | | | | | | | V _{SD} | Diode forward on voltage | \overline{SD} = SENSE = GND
I _{SD} = 3.5 A; | - | - | 1.6 | V | | | | 1. Tested at the wafer level before packaging. DS12543 - Rev 1 page 9/26 ### 5 Device characterization values Table 7., Table 8. and the electrical characteristics curves (from Figure 6. to Figure 15.) represent typical values based on characterization and simulation results and are not subject to production tests. Table 7. Power MOSFET characterization values | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |------------------|--------------------------------|--|-----|-----|-----|------| | | MOS | SFET Dynamic | | | | | | Q_g | Total gate charge | V_{GS} = 10 V, T_J = 25 °C | _ | 5.3 | _ | nC | | <u> </u> | J G | V _{DS} = 480 V, I _D = 3.5 A | | | | | | | Sour | ce-Drain diode | | | | | | t _{rr} | Diode reverse recovery time | I _{SD} = 3.5 A, T _J = 25 °C | _ | 58 | - | ns | | Q _{rr} | Diode reverse recovery charge | di/dt = 100 A/µs, | - | 109 | - | μC | | I _{RRM} | Diode reverse recovery current | V _{DS} = 60 V | - | 4 | - | Α | | t _{rr} | Diode reverse recovery time | I _{SD} = 3.5 A, T _J = 150 °C | - | 109 | - | ns | | Q _{rr} | Diode reverse recovery charge | di/dt = 100 A/µs, | - | 309 | - | μC | | I _{RRM} | Diode reverse recovery current | V _{DS} = 60 V | - | 5 | - | Α | Table 8. Inductive load switching characteristics | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |-------------------------|---|--|-----|-----|-----|------| | t _(on) (1) | Turn-on time | | - | 450 | - | ns | | t _{C(on)} (2) | Crossover time (on) | | - | 67 | - | ns | | t _(off) (1) | Turn-off time | VS = 300 V,
VCC = V _{BO} = 15 V, | - | 171 | - | ns | | t _{C(off)} (2) | Crossover time (off) | $I_D = 1.75 \text{ A}$ | - | 25 | - | ns | | t _{SD} | Shutdown to high/low-side propagation delay | See Figure 5. | - | 165 | - | ns | | E _{on} | Turn-on switching losses | | - | 51 | - | μJ | | E _{off} | Turn-off switching losses | | - | 3 | - | μJ | ^{1.} $t_{(on)}$ and $t_{(off)}$ include the propagation delay time of the internal driver DS12543 - Rev 1 page 10/26 ^{2.} $t_{C(on)}$ and $t_{C(off)}$ are the switching times of MOSFET itself under the internally given gate driving conditions Figure 5. Switching time definition DS12543 - Rev 1 page 11/26 Figure 8. Static drain-source on-resistance Figure 9. Normalized on-resistance vs temperature Figure 10. Transfer characteristics Figure 11. Output characteristics Figure 12. Static source-drain diode forward characteristics Figure 13. Gate charge vs. gate-source voltage DS12543 - Rev 1 page 12/26 #### 6 Functional description #### 6.1 Logic inputs The PWD5F60 full bridge features two identical half-bridge sections. Each section has three logic inputs to control the internal high-side and low-side MOSFETs. | Inputs | | | Out | puts | |--------|----|-----|-----|------| | SD | IN | PWM | нѕ | LS | | 0 | Х | X | OFF | OFF | | 1 | 0 | 0 | OFF | ON | | 1 | 0 | 1 | OFF | ON | | 1 | 1 | 0 | OFF | ON | | 1 | 1 | 1 | ON | OFF | Table 9. Truth table The logic inputs have internal pull-down resistors. The purpose of these resistors is to set a defined logic level if, for example, there is an interruption on the logic lines or the controller outputs are in tri-state conditions. #### **6.2** Bootstrap structure Bootstrap circuitry is typically used to supply the high-voltage section. This function is normally accomplished with a high-voltage fast recovery diode, as shown in Figure 16. (side a). In the PWD5F60, a patented integrated structure replaces the external diode. The structure consists of a series of low-voltage diodes and a high-voltage DMOS, driven synchronously by the low-side driver (LVG), as shown in Figure 16. (side b). An internal bootstrap provides the DMOS driving voltage. The integrated diode structure is actively turned on and guarantees best performance only when the low-side driver is on. In applications where the control strategy requires recharging the bootstrap capacitor even when the low-side driver is off, the use of an external bootstrap diode in parallel to the integrated structure is possible. Figure 16. Bootstrap structure DS12543 - Rev 1 Downloaded from Arrow.com. #### 6.3 Supply pins and UVLO function The VCCx supply pin supplies current to the low-side section of the gate driver and to the integrated bootstrap diode used to charge the bootstrap capacitor. During output commutations, the average current used to provide gate charge to the high-side and low-side MOSFETs flow through these pins. The VCC1 and VCC2 pins separately supply power to the two drivers, even if they are usually connected together at the power supply in final applications. The PWD5F60 VCCx supply voltage is continuously monitored by undervoltage lockout (UVLO) circuits that turn the high-side and low-side MOSFETs off when the supply voltage falls below the VCC $_{thOFF}$ threshold. The VCCx UVLO circuitry turns on the high-side or low-side MOSFET according to the input status as soon as the supply voltage rises above the VCC $_{thON}$ voltage. VCC $_{hvs}$ hysteresis is provided for noise rejection purposes. Two separate UVLO circuits monitor VCC1 and VCC2 so that when a UVLO occurs on a single rail, only the corresponding half bridge MOSFETs are turned off. The PWD5F60 V_{BO} supply voltages are also continuously monitored by two dedicated V_{BO} UVLO circuits that turn the corresponding high-side MOSFET off when the supply voltage falls below the V_{BO_thOFF} threshold. The UVLO circuitry allows turning the high-side MOSFET on again, according to input edges, as soon as the V_{BO} supply voltage rises above the V_{BO_thON} voltage. A V_{BO_hys} hysteresis is provided for noise rejection purposes. #### 6.4 Dead time The PWD5F60 automatically inserts a DT dead time on each half bridge. This avoids shoot-through as a MOSFET gate discharges completely before charging starts on the other MOSFET gate. The DT value is set by the resistor placed between the DTx pin and GNDx, as shown in Figure 4.. The minimum dead time value set with a 0 Ω resistor is normally sufficient to avoid shoot-through between high side and low side. Some applications, like those operating with soft turn-on commutations at low current seeking maximum efficiency, might benefit from a longer dead time. The PWD5F60 lets you set the dead time for each half bridge for maximum flexibility. DS12543 - Rev 1 page 15/26 ## 7 Typical application diagrams From CONTROLLER SINT OTHER SINSE Reense Reense Reense Figure 17. Generic application Figure 18. Current mode motor control DS12543 - Rev 1 page 16/26 Downloaded from Arrow.com. ## 8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. #### 8.1 VFQFPN 15 x 7 x 1 mm package information The package outline CAD file is available upon request. Figure 19. VFQFPN 15 x 7 x 1 mm package dimensions – drawing top and side view DS12543 - Rev 1 page 17/26 Figure 20. VFQFPN 15 x 7 x 1 mm package dimensions – drawing bottom view SAME PADDLE: EP2 and EP5, EP3 and EP6 DS12543 - Rev 1 page 18/26 Figure 21. VFQFPN 15 x 7 x 1 mm package dimensions – exposed pads details Table 10. VFQFPN 15 x 7 x 1 mm package mechanical data | Symbol | Dimensions (mm) | | | |--------|-----------------|-------|-------| | Зушьы | Min. | Тур. | Max. | | A | 0.80 | 0.85 | 0.90 | | A1 | 0.00 | | 0.05 | | A3 | 0.20 | | | | b | 0.20 | 0.30 | 0.40 | | b1 | 0.14 | 0.24 | 0.34 | | D | 14.90 | 15.00 | 15.10 | | E | 6.90 | 7.00 | 7.10 | | D1 | 0.865 | | | DS12543 - Rev 1 page 19/26 | Dimensions | | | s (mm) | | |------------|-------|-------|--------|--| | Symbol | Min. | Тур. | Max. | | | D2 | 1.89 | 1.99 | 2.09 | | | D3 | | 5.10 | | | | D4 | 1.70 | 1.86 | 1.90 | | | D5 | | 1.945 | | | | D6 | 0.50 | 0.60 | 0.70 | | | D7 | | 8.30 | | | | D8 | 2.17 | 2.27 | 2.37 | | | D9 | 0.70 | 0.80 | 0.90 | | | D10 | 0.85 | 0.95 | 1.05 | | | D11 | 2.985 | | | | | D12 | | 4.01 | | | | D13 | | 2.85 | | | | D14 | 0.20 | 0.345 | 0.40 | | | E1 | 0.90 | 1.00 | 1.10 | | | E2 | | 1.455 | | | | E3 | 3.13 | 3.23 | 3.33 | | | E4 | 0.505 | 0.605 | 0.705 | | | E5 | 2.75 | 2.85 | 2.95 | | | E6 | 3.70 | 3.80 | 3.90 | | | L | 0.40 | 0.50 | 0.60 | | | е | 0.65 | | | | | R1 | 0.33 | | | | | R2 | 0.20 | | | | | R3 | 0.15 | | | | | aaa | 0.10 | | | | | bbb | 0.10 | | | | | ccc | 0.10 | | | | | ddd | 0.05 | | | | | eee | | 0.08 | | | #### Note: - VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Packages No lead. - Dimensioning and tolerances comply with ASME Y14.5-2009. - All dimensions are in millimetres. - A variable pitch is applied on leads. Please refer to Figure 20. for lead position details. - The leads size is comprehensive of the thickness of the leads finishing material. - Dimensions do not include mold protrusion, not to exceed 0.15 mm. - Package outline does not include eventual metal burr dimensions. DS12543 - Rev 1 Downloaded from Arrow.com. ## 9 Ordering information **Table 11. Device summary** | Order code | Package | Packaging | |------------|----------------------|---------------| | PWD5F60 | VFQFPN 15 x 7 x 1 mm | Tray | | PWD5F60TR | VFQFPN 15 x 7 x 1 mm | Tape and Reel | DS12543 - Rev 1 page 21/26 ## **Revision history** Table 12. Document revision history | Date | Version | Changes | |-------------|---------|------------------| | 03-Jul-2018 | 1 | Initial release. | DS12543 - Rev 1 page 22/26 ## **Contents** | 1 | Blo | ck diagram | 2 | |----|--------|--|----| | 2 | Pin | description and connection diagram | 3 | | | 2.1 | Pin list | 3 | | 3 | Elec | ctrical data | 5 | | | 3.1 | Absolute maximum ratings | 5 | | | 3.2 | Recommended operating conditions | 5 | | | 3.3 | Thermal data | 6 | | 4 | Elec | ctrical characteristics | 7 | | | 4.1 | Driver | 7 | | | 4.2 | Power MOSFET | 9 | | 5 | Dev | ice characterization values | 10 | | 6 | Fun | ctional description | 14 | | | 6.1 | Logic inputs | 14 | | | 6.2 | Bootstrap structure | 14 | | | 6.3 | Supply pins and UVLO function | 14 | | | 6.4 | Dead time | 15 | | 7 | Тур | ical application diagrams | 16 | | 8 | Pac | kage information | 17 | | | 8.1 | VFQFPN 15 x 7 x 1 mm package information | 17 | | 9 | Ord | ering information | 21 | | Re | vision | history | 22 | # **List of figures** | Figure 2. | Block diagram | . 2 | |------------|---|-----| | Figure 3. | Pin connection (top view) | . 3 | | Figure 4. | Typical dead time vs. R _{DT} resistor value | . 9 | | Figure 5. | Switching time definition | 11 | | Figure 6. | Normalized gate threshold voltage vs temperature | 11 | | Figure 7. | Normalized drain-source breakdown voltage vs. temperature | 11 | | Figure 8. | Static drain-source on-resistance | 12 | | Figure 9. | Normalized on-resistance vs temperature | 12 | | Figure 10. | Transfer characteristics | 12 | | Figure 11. | Output characteristics | 12 | | Figure 12. | Static source-drain diode forward characteristics | 12 | | Figure 13. | Gate charge vs. gate-source voltage | 12 | | Figure 14. | MOSFET capicatance variations | 13 | | Figure 15. | MOSFET output capacitance stored energy | 13 | | Figure 16. | Bootstrap structure | 14 | | Figure 17. | Generic application | 16 | | Figure 18. | Current mode motor control | 16 | | Figure 19. | VFQFPN 15 x 7 x 1 mm package dimensions – drawing top and side view | 17 | | Figure 20. | VFQFPN 15 x 7 x 1 mm package dimensions – drawing bottom view | 18 | | Figure 21. | VFQFPN 15 x 7 x 1 mm package dimensions – exposed pads details | 19 | ## **List of tables** | Table 1. | Pin description | 4 | |-----------|--|----| | | Absolute maximum ratings | | | Table 3. | Recommended operating conditions | 5 | | Table 4. | Thermal data | 6 | | Table 5. | Driver electrical characteristics | 7 | | Table 6. | Power MOSFET electrical characteristics | ç | | Table 7. | Power MOSFET characterization values | C | | Table 8. | Inductive load switching characteristics | C | | Table 9. | Truth table | 4 | | Table 10. | VFQFPN 15 x 7 x 1 mm package mechanical data | ç | | Table 11. | Device summary | :1 | | Table 12. | Document revision history | 2 | #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2018 STMicroelectronics - All rights reserved DS12543 - Rev 1 page 26/26 Downloaded from Arrow.com.