

SMALL SIGNAL SCHOTTKY DIODES

DESCRIPTION

General purpose, metal to silicon diodes featuring very low turn-on voltage and fast switching.

These devices have integrated protection against excessive voltage such as electrostatic discharges.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	TMMBAT47	TMMBAT48	Unit		
V_{RRM}	Repetitive Peak Reverse Voltage	20	40	V		
l _F	Forward Continuous Current	T _I = 25 °C	T ₁ = 25 °C 350			
I _{FRM}	Repetitive Peak Fordward Current	$\begin{array}{l} t_p \leq 1s \\ \delta \leq 0.5 \end{array}$		1		
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms	7	Α		
		t _p = 1s	1			
P _{tot}	Power Dissipation	T _I = 25 °C 330			mW	
$T_{stg} \ T_{j}$	Storage and Junction Temperature Range	- 65 t - 65 t	°C O°			
T_L	Maximum Temperature for Soldering during	20	°C			

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
$R_{th(j-l)}$	Junction-leads	300	°C/W

August 1999 Ed: 1A 1/5

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol		Test Conditions	5	Min.	Тур.	Max.	Unit
V_{BR}	T _j = 25°C	$I_R = 10\mu A$	TMMBAT47	20			V
	T _j = 25°C	$I_R = 25\mu A$	TMMBAT48	40			
V _F *	T _j = 25°C	$I_F = 0.1 \text{mA}$	All Types			0.25	V
	T _j = 25°C	$I_F = 1mA$				0.3	
	T _j = 25°C	$I_F = 10mA$				0.4	
	T _j = 25°C	$I_F = 30 \text{mA}$	TMMBAT47			0.5	
	T _j = 25°C	$I_F = 150 \text{mA}$				0.8	
	T _j = 25°C	$I_F = 300 \text{mA}$				1	
	T _j = 25°C	$I_F = 50 \text{mA}$	TMMBAT48			0.5	
	T _j = 25°C	I _F = 200mA				0.75	
	T _j = 25°C	I _F = 500mA				0.9	
I _R *	T _j = 25°C	V _R = 1.5V	All Types			1	μΑ
	T _j = 60°C					10	
	T _j = 25°C	V _R = 10V	TMMBAT47			4	
	$T_j = 60^{\circ}C$					20	
	T _j = 25°C	V _R = 20V				10	
	$T_j = 60^{\circ}C$					30	
	T _j = 25°C	V _R = 10V	TMMBAT48			2	
	T _j = 60°C					15	
	T _j = 25°C	V _R = 20V				5	
	T _j = 60°C					25	
	T _j = 25°C	V _R = 40V				25	
	T _j = 60°C					50	

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions				Тур.	Max.	Unit
С	$T_j = 25^{\circ}C$	$V_R = 0V$	f = 1MHz		20		pF
	$T_j = 25^{\circ}C$	$V_R = 1V$			12		
t _{rr}	$T_j = 25^{\circ}C$ I_F	= 10mA V _R = 1V	$i_{rr} = 1 \text{mA}$ $R_L = 100 \Omega$		10		ns

^{*} Pulse test: $t_p \le 300 \mu s$ $\delta < 2\%$.

Figure 1. Forward current versus forward voltage at different temperatures (typical values).

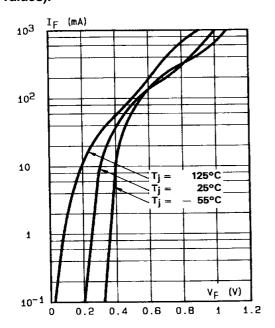


Figure 2. Forward current versus forward voltage (typical values).

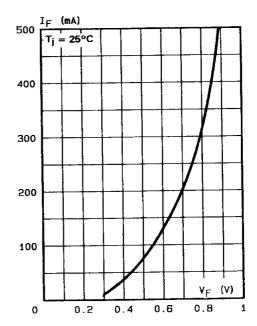


Figure 3. Reverse current versus junction temperature.

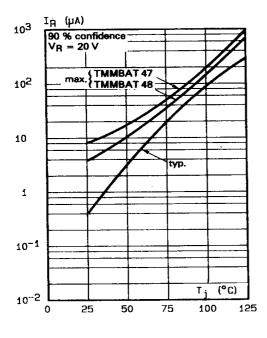


Figure 4. Reverse current versus continuous reverse voltage (typical values).

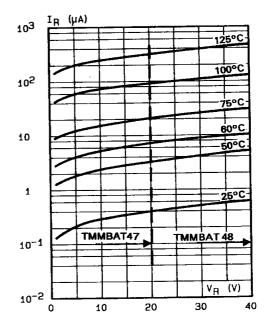
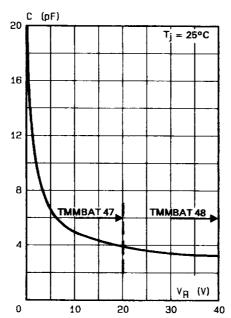
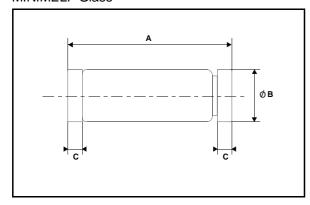
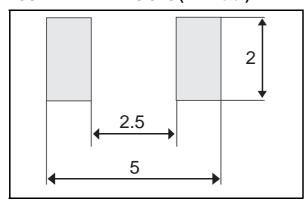




Figure 5. Capacitance C versus reverse applied voltage $V_{\mbox{\scriptsize R}}$ (typical values).


PACKAGE MECHANICAL DATA

MINIMELF Glass

	DIMENSIONS						
REF.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	3.30	3.40	3.6	0.130	0.134	0.142	
В	1.59	1.60	1.62	0.063	0.063	0.064	
С	0.40	0.45	0.50	0.016	0.018	0.020	
D		1.50			0.059		

FOOT PRINT DIMENSIONS (Millimeter)

Marking: ring at cathode end. Weight: 0.05g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval

of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

