
GaN on SiC Power Amplifier Module for 5G

Description

The WS1A2639 is an Asymmetric Doherty Power Amplifier Module (PAM) integrating Wolfspeed GaN on SiC technology with RF matching and biasing networks on a multilayer laminate substrate with advanced heat sinking technology. The WS1A2639 has been designed to operate from 2496 MHz to 2690 MHz supply voltages of up to 50 V at average output power levels of 6 to 8 W with crest-factor reduced and digitally pre-distorted LTE and 5G NR signals with instantaneous bandwidths of up to 200 MHz. The device is housed in a 6 mm X 6 mm land grid array (LGA) package.

Features

- GaN on SiC technology
- Frequency: 2496-2690 MHz
- Average Output Power: 6 to 8 W maximum
- P_{SAT} = 48 dBm
- RF inputs matched to 50 Ω and DC matched
- Gate bias supply for main and peak sides available from either side of device
- Integrated harmonic terminations
- · Pb-free and RoHS compliant

WS1A2639 Package PG-LGA-6x6-2

Typical Broadband Performance

Single-carrier LTE Performance (tested in Wolfspeed applications circuit for 2500 – 2700 MHz) $V_{DD} = 48 \text{ V}$, $I_{DQ(main)} = 25 \text{ mA}$, $V_{GS(peak)} = -5 \text{ V}$, channel bandwidth = 5 MHz, input PAR = 10 dB @ 0.01% CCDF

	P _{OUT} (dBM)	Gain (dB)	Efficiency (%)	ACPR – (dBc)	ACPR + (dBc)	PAR (dB)
2500 MHz	38.5	17.8	53.5	-26.5	-26.2	8.05
2600 MHz	38.5	17.8	54.3	-26	-25.7	7.95
2700 MHz	38.5	16.9	53.2	-28	-28.5	8.2

All published data at T_{CASE} = 25°C unless otherwise indicated

Maximum Ratings at T_{CASE} = 25°C

Parameter		Symbol	Value	Unit
Drain-source Voltage		V_{DSS}	125	V
Gate-source Voltage		V _{GS}	-10 to +2	V
Operating Voltage		V_{DD}	55	V
RF Input Power (main)	Pulse CW, 10% duty cycle,	P _{IN}	32.7	dBm
(peak)	20 μs pulse width	P_{IN}	32.8	dBm
Case Temperature		T _C	135	°C
Storage Temperature Range		T _{STG}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

DC Characteristics

Characteristics	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage (main)	$V_{GS} = -8 \text{ V}, I_D = 2.58 \text{ mA}$	V _{(BR)DSS}	150	_		V
(peak)	$V_{GS} = -8 \text{ V}, I_D = 4.3 \text{ mA}$ $V_{(BR)DSS}$		150	_	_	V
Gate Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 50 \text{ V}$	I _{GSS}	_	_	-1.5	mA
Gate Threshold Voltage (main)	V _{DS} = 10 V, I _D = 2.58 mA	V _{GS(th)}	-3.8	-3.0	-2.3	V
(peak)	$V_{DS} = 10 \text{ V}, I_D = 4.3 \text{ mA}$	$V_{GS(th)}$	-3.8	-2.7	-2.3	V

Recommended Operating Conditions

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Operating Voltage		V_{DD}	0	_	50	V
Gate Quiescent Voltage (main)	$V_{DS} = 48 \text{ V}, I_D = 30 \text{ mA}$	$V_{GS(Q)}$	-3.6	-3.1	-2.6	V
(peak)	$V_{DS} = 48 \text{ V}, I_D = 50 \text{ mA}$	$V_{GS(Q)}$	-3.6	-3.0	-2.6	V

Moisture Sensitivity Level

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	°C

ESD Characteristics

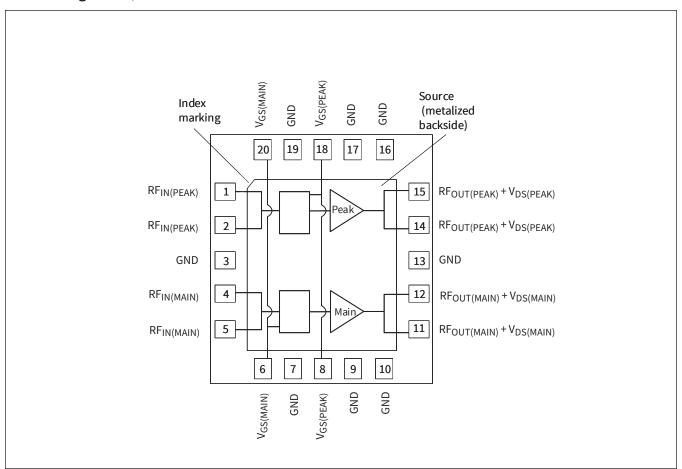
Parameter	Class	Standard
Human Body Model (HBM)	Class 1B	ANSI/ESDA/JEDEC JS-001
Charge Device Model (CDM)	Class C2b	ANSI/ESDA/JEDEC JS-002

RF Characteristics (tested in Wolfspeed production test fixture)

 V_{DD} = 48 V, Pulse CW 10% duty cycle, 20 μ s pulse width

Davasatas	Cl	C diti	Ma	ain	Pe	ak	Unit
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
2496 MHz							
Gain	G	P _{OUT} = 37 dBm (main) P _{OUT} = 39 dBm (peak)	15	19	17.5	21	dB
Saturated Power	urated Power P_{SAT} $I_{DQ} = 30 \text{ mA (main)}$ $I_{DO} = 50 \text{ mA (peak)}$		41.5	-	44	_	dBm
Efficiency Eff		I_{DQ} = 30 mA (main), P_{SAT} I_{DQ} = 50 mA (peak), P_{SAT}	42	-	45	_	%
2690 MHz							
Gain	G	P _{OUT} = 37 dBm (main) P _{OUT} = 39 dBm (peak)	15.5	19.5	17	21	dB
Saturated Power	P _{SAT}	I _{DQ} = 30 mA (main) I _{DQ} = 50 mA (peak)	41.5	-	43.5	_	dBm
Efficiency	Eff	I_{DQ} = 30 mA (main), P_{SAT} I_{DQ} = 50 mA (peak), P_{SAT}	47	-	52	_	%

Ordering Information


Order Code	Description
WS1A2639-V1-R1	330 mm (13") Reel 100 pcs
WS1A2639-V1-R7	330 mm (13") Reel 750 pcs
WS1A2639-V1-R3K	330 mm (13") Reel 3,000 pcs
FXA/WS1A2639V1-05	2.495-2.690 GHz Evaluation Board
FXL/WS1A2639V1-06	Integrated Driver+Final Stage 2.496-2.690 GHz Evaluation Board

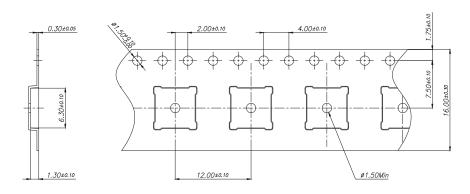
Evaluation Boards - Typical RF Performance

Part Number Frequency		P _{OUT} (dBm)	Eff (%)	Gain (dB)	PAR (dB)	ACPR+ (dBc)	ACPR- (dBc)	
Output Stage: WS1A2639 Single-carrier WCDMA Performance, V _{DD} = 48 V, I _{DQ(main)} = 30 mA, channel bandwidth = 3.84 MHz, input PAR = 10 dB @ 0.01% CCDF								
FXA/WS1A2639V1-05	2.495-2.690 GHz	38.5	52	17	8	-26	-26	

WSGPA01 Driver Single-carrier WCDMA Pe	erformance, V _{DD} = 48 V, I _{DQ} = 25 mA,	channel bandwidth	n = 3.84 MHz, i	nput PAR = 10	dB @ 0.01%	CCDF	
FXA/WSGPA01V1-19	2.496-2.690 GHz	25	17.1	19.4	8.5	-36.7	-36.9

Pinout Diagram (top view)

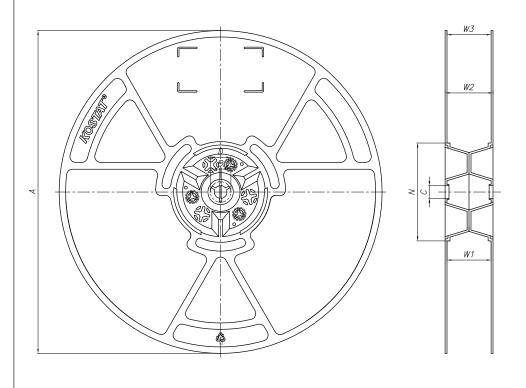
Bias Sequencing

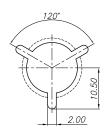

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of –5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

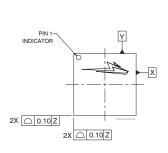
- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

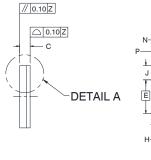

Tape and Reel Information

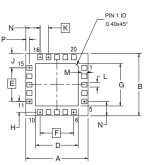


- (I) 10 sprocket hole pitch cumulative tolerance ± 0.20
- (II) Camber not to exceed 1 mm in 250 mm
- (III) Material: Black conductive Polystyrene
- (IV) Ao and Bo measured on a plane 0.3 mm above the bottom of the pocket.
- (V) Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier
- (VI) Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

ALL DIMENSIONS IN MILLIMETERS UNLESS OTHERWISE STATED.

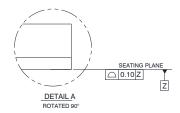





Size	Α	В	С	D	N	W1	W2	W3
16mm	330 ^{+2.0} _{-2.0}	1.5min	13.0 ^{+0.5} _{-0.2}	20.2 min	100 +3.0	16.4 ^{+2.0} _{-0.0}	20.4 +2.0 -2.0	17.65 ^{+1.75} _{-1.75}

Package Outline Specifications

Package PG-LGA-6x6-2-1



6

TOP VIEW

SIDE VIEW

BOTTOM VIEW

	INCHES			M	LLIMETER	RS
DIM	MIN	TYP	MAX	MIN	TYP	MAX
Α	.234	.236	.238	5.95	6.00	6.05
В	.234	.236	.238	5.95	6.00	6.05
С	.038	.040	.042	0.96	1.01	1.07
D	.157	.161	.165	4.00	4.10	4.20
Е	-	.128	_	-	3.24	_
F	-	.128	_	-	3.24	-
G	_	.161	-	_	4.10	_
Н	_	.041	-	_	1.03	_
J	.054	.054	.055	1.37	1.38	1.39
K	_	.032	-	_	0.81	_
L	_	.018	_	_	0.46	_
M	_	.020	_	_	0.50	_
N	.054	.054	.055	1.37	1.38	1.39
Р	.013	.014	.014	0.34	0.35	0.36

Diagram Notes-unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/rf

Sales Contact rfsales@cree.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

 $@\ 2021\ Cree, Inc.\ All\ rights\ reserved.\ Wolfspeed @\ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree, Inc.\ All\ rights\ reserved.$