# MOSFET – Power, Single, N-Channel, DPAK/IPAK 30 V, 79 A

#### **Features**

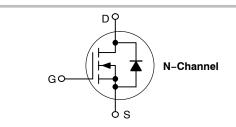
- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These are Pb-Free Devices

#### **Applications**

- CPU Power Delivery
- DC-DC Converters

#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

| Parai                                                                                                   | Parameter                                  |                        |                      |      |   |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|----------------------|------|---|
| Drain-to-Source Volta                                                                                   | V <sub>DSS</sub>                           | 30                     | V                    |      |   |
| Gate-to-Source Volta                                                                                    | ge                                         |                        | $V_{GS}$             | ±20  | V |
| Continuous Drain                                                                                        |                                            | T <sub>A</sub> = 25°C  | I <sub>D</sub>       | 17.8 | Α |
| Current (R <sub>θJA</sub> )<br>(Note 1)                                                                 |                                            | T <sub>A</sub> = 100°C |                      | 12.6 |   |
| Power Dissipation $(R_{\theta JA})$ (Note 1)                                                            |                                            | T <sub>A</sub> = 25°C  | P <sub>D</sub>       | 2.6  | W |
| Continuous Drain                                                                                        |                                            | T <sub>A</sub> = 25°C  | I <sub>D</sub>       | 13   | Α |
| Current (R <sub>θJA</sub> ) (Note 2)                                                                    | Steady<br>State                            | T <sub>A</sub> = 100°C |                      | 9.2  |   |
| Power Dissipation $(R_{\theta JA})$ (Note 2)                                                            | State                                      | T <sub>A</sub> = 25°C  | P <sub>D</sub>       | 1.4  | W |
| Continuous Drain                                                                                        |                                            | T <sub>C</sub> = 25°C  | I <sub>D</sub>       | 79   | Α |
| Current (R <sub>θJC</sub> )<br>(Note 1)                                                                 |                                            | T <sub>C</sub> = 100°C |                      | 56   |   |
| Power Dissipation $(R_{\theta JC})$ (Note 1)                                                            |                                            | T <sub>C</sub> = 25°C  | P <sub>D</sub>       | 52   | W |
| Pulsed Drain Current                                                                                    | t <sub>p</sub> =10μs                       | T <sub>A</sub> = 25°C  | I <sub>DM</sub>      | 316  | Α |
| Current Limited by Pac                                                                                  | kage                                       | T <sub>A</sub> = 25°C  | I <sub>DmaxPkg</sub> | 90   | Α |
| Operating Junction and                                                                                  | Operating Junction and Storage Temperature |                        |                      |      |   |
| Source Current (Body                                                                                    | IS                                         | 47                     | Α                    |      |   |
| Drain to Source dV/dt                                                                                   | dV/dt                                      | 6.0                    | V/ns                 |      |   |
| Single Pulse Drain-to-<br>Energy (T <sub>J</sub> = 25°C, V <sub>D</sub><br>L = 0.1 mH, $I_{L(pk)}$ = 37 | E <sub>AS</sub>                            | 68.4                   | mJ                   |      |   |
| Lead Temperature for S (1/8" from case for 10 s                                                         | TL                                         | 260                    | °C                   |      |   |


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



#### ON Semiconductor®

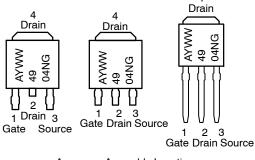
#### http://onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX |  |
|----------------------|-------------------------|--------------------|--|
| 30 V                 | 3.7 m $\Omega$ @ 10 V   | 79 A               |  |
| 30 V                 | 5.5 mΩ @ 4.5 V          |                    |  |










CASE 369AA DPAK (Bent Lead) STYLE 2

CASE 369AD IPAK (Straight Lead)

CASE 369D IPAK (Straight Lead DPAK)

# MARKING DIAGRAMS & PIN ASSIGNMENTS



A = Assembly Location

Y = Year WW = Work \

WW = Work Week 4904N = Device Code G = Pb-Free Package

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

#### THERMAL RESISTANCE MAXIMUM RATINGS

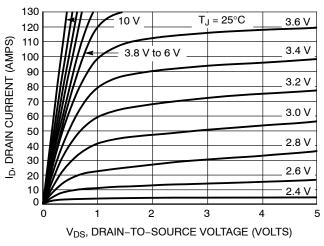
| Parameter                                   | Symbol              | Value | Unit |
|---------------------------------------------|---------------------|-------|------|
| Junction-to-Case (Drain)                    | $R_{	heta JC}$      | 2.9   | °C/W |
| Junction-to-Tab (Drain)                     | $R_{\theta JC-TAB}$ | 4.3   |      |
| Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$     | 57    |      |
| Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$     | 108   |      |

- Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.
   Surface-mounted on FR4 board using the minimum recommended pad size.

#### **ELECTRICAL CHARACTERISTICS** (T<sub>.I</sub> = 25°C unless otherwise noted)

| Parameter                                                    | Symbol                               | Test Con                                                              | dition                       | Min | Тур  | Max  | Unit  |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|------------------------------|-----|------|------|-------|
| OFF CHARACTERISTICS                                          |                                      |                                                                       |                              |     | -    | •    | •     |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 \text{ V}, I_D$                                           | = 250 μA                     | 30  |      |      | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> |                                                                       |                              |     | 15   |      | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | V <sub>GS</sub> = 0 V,                                                | T <sub>J</sub> = 25°C        |     |      | 1.0  | μА    |
|                                                              |                                      | $V_{DS} = 24 \text{ V}$                                               | T <sub>J</sub> = 125°C       |     |      | 10   |       |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | $V_{DS} = 0 V, V_{G}$                                                 | <sub>S</sub> = ±20 V         |     |      | ±100 | nA    |
| ON CHARACTERISTICS (Note 3)                                  |                                      |                                                                       |                              |     |      |      |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | V <sub>GS</sub> = V <sub>DS</sub> , I <sub>D</sub>                    | = 250 μΑ                     | 1.0 | 1.6  | 2.2  | V     |
| Negative Threshold Temperature<br>Coefficient                | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                       |                              |     | 4.0  |      | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 10 V                                                | I <sub>D</sub> = 30 A        |     | 3.0  | 3.7  | mΩ    |
|                                                              |                                      |                                                                       | I <sub>D</sub> = 15 A        |     | 3.0  |      | 1     |
|                                                              |                                      | V <sub>GS</sub> = 4.5 V                                               | I <sub>D</sub> = 30 A        |     | 4.0  | 5.5  | 1     |
|                                                              |                                      |                                                                       | I <sub>D</sub> = 15 A        |     | 4.0  |      | 1     |
| Forward Transconductance                                     | gFS                                  | V <sub>DS</sub> = 1.5 V,                                              | I <sub>D</sub> = 30 A        |     | 76   |      | S     |
| CHARGES AND CAPACITANCES                                     | -                                    |                                                                       |                              |     |      |      |       |
| Input Capacitance                                            | C <sub>iss</sub>                     | $V_{GS} = 0 \text{ V, } f = 1.0 \text{ MHz,}$ $V_{DS} = 15 \text{ V}$ |                              |     | 3052 |      | pF    |
| Output Capacitance                                           | C <sub>oss</sub>                     |                                                                       |                              |     | 976  |      | 1     |
| Reverse Transfer Capacitance                                 | C <sub>rss</sub>                     | VDS - 1                                                               |                              |     | 23   |      | 1     |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  |                                                                       |                              |     | 16.8 |      | nC    |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   | V <sub>GS</sub> = 4.5 V, V                                            | <sub>DS</sub> = 15 V,        |     | 4.4  |      | 1     |
| Gate-to-Source Charge                                        | $Q_{GS}$                             | I <sub>D</sub> = 30                                                   |                              |     | 8.2  |      | 1     |
| Gate-to-Drain Charge                                         | $Q_{GD}$                             |                                                                       |                              |     | 3.0  |      | 1     |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  | V <sub>GS</sub> = 10 V, V<br>I <sub>D</sub> = 30                      | <sub>DS</sub> = 15 V,<br>0 A |     | 41   |      | nC    |
| WITCHING CHARACTERISTICS (Note                               | <del>2</del> 4)                      |                                                                       |                              |     |      |      |       |
| Turn-On Delay Time                                           | t <sub>d(on)</sub>                   |                                                                       |                              |     | 15.3 |      | ns    |
| Rise Time                                                    | t <sub>r</sub>                       | V <sub>GS</sub> = 4.5 V, V                                            | <sub>DS</sub> = 15 V,        |     | 19.8 |      | 1     |
| Turn-Off Delay Time                                          | t <sub>d(off)</sub>                  | $I_D = 15 \text{ A}, R_G = 3.0 \Omega$                                |                              |     | 23.4 |      |       |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                       |                              |     | 7.5  |      | 1     |
| Turn-On Delay Time                                           | t <sub>d(on)</sub>                   |                                                                       |                              |     | 10.3 |      | ns    |
| Rise Time                                                    | t <sub>r</sub>                       | V <sub>GS</sub> = 10 V, V                                             | <sub>DS</sub> = 15 V,        |     | 20   |      | 1     |
| Turn-Off Delay Time                                          | t <sub>d(off)</sub>                  | $I_{D} = 15 \text{ A}, R_{0}$                                         |                              |     | 28.7 |      | 1     |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                       |                              |     | 8.0  |      | 1     |

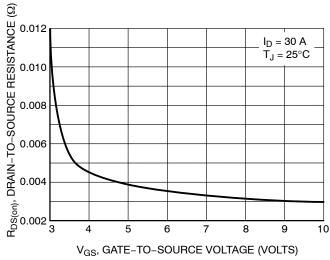
- 3. Pulse Test: Pulse Width  $\leq$  300  $\mu\text{s},$  Duty Cycle  $\leq$  2%.
- 4. Switching characteristics are independent of operating junction temperatures.


## **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise noted)

| Parameter                       | Symbol          | Test Condition             |                                                                                       | Min | Тур    | Max | Unit |
|---------------------------------|-----------------|----------------------------|---------------------------------------------------------------------------------------|-----|--------|-----|------|
| DRAIN-SOURCE DIODE CHARACTERIS  | STICS           |                            |                                                                                       |     |        |     |      |
| Forward Diode Voltage           | V <sub>SD</sub> | V <sub>GS</sub> = 0 V,     | $T_J = 25^{\circ}C$                                                                   |     | 0.84   | 1.1 | V    |
|                                 |                 | I <sub>S</sub> = 30 A      | T <sub>J</sub> = 125°C                                                                |     | 0.7    |     |      |
| Reverse Recovery Time           | t <sub>RR</sub> |                            | •                                                                                     |     | 40.4   |     | ns   |
| Charge Time                     | ta              | V <sub>GS</sub> = 0 V, dls | $V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$<br>$I_{S} = 30 \text{ A}$ |     | 20.5   |     |      |
| Discharge Time                  | tb              |                            |                                                                                       |     | 19.9   |     |      |
| Reverse Recovery Time           | Q <sub>RR</sub> | 1                          |                                                                                       |     | 35     |     | nC   |
| PACKAGE PARASITIC VALUES        |                 |                            |                                                                                       |     |        |     |      |
| Source Inductance (Note 5)      | L <sub>S</sub>  |                            |                                                                                       |     | 2.48   |     | nH   |
| Drain Inductance, DPAK          | L <sub>D</sub>  | 1                          |                                                                                       |     | 0.0164 |     |      |
| Drain Inductance, IPAK (Note 5) | L <sub>D</sub>  | T <sub>A</sub> = 25°C      |                                                                                       |     | 1.88   |     |      |
| Gate Inductance (Note 5)        | L <sub>G</sub>  |                            |                                                                                       |     | 4.9    |     |      |
| Gate Resistance                 | R <sub>G</sub>  | 1                          |                                                                                       |     | 1.0    | 2.0 | Ω    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Assume terminal length of 110 mils.


#### **TYPICAL PERFORMANCE CURVES**



130  $V_{DS} \ge 10 \text{ V}$ 120 110 DRAIN CURRENT (AMPS) 100 90 80 70 60  $T_J = 125^{\circ}C$ 50 40  $T_J = 25^{\circ}C$ 30 ے 20  $T_J = -55^{\circ}C$ 2.5 3 2 3.5 V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics



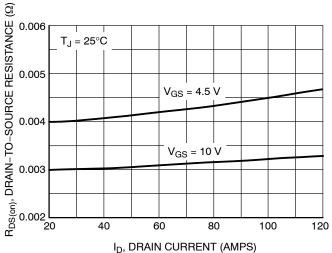
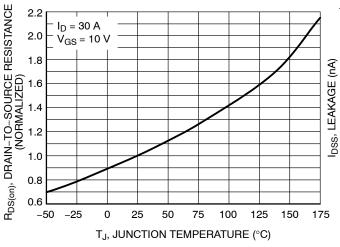




Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage



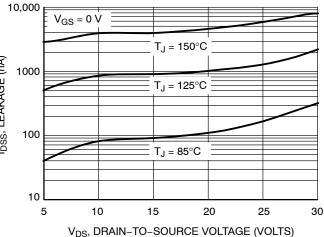



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

#### **TYPICAL PERFORMANCE CURVES**

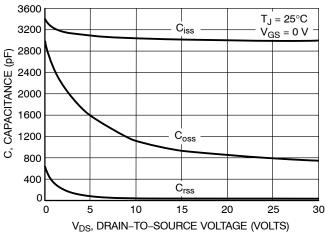



Figure 7. Capacitance Variation

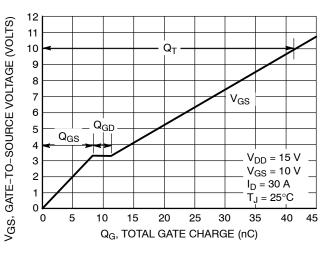



Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

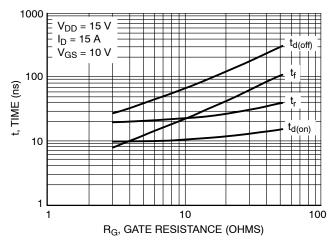



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

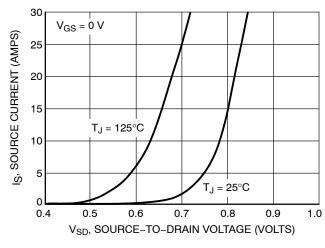



Figure 10. Diode Forward Voltage vs. Current

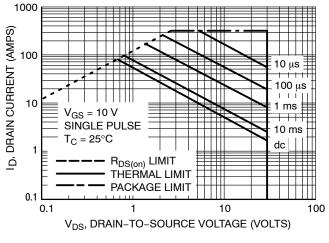



Figure 11. Maximum Rated Forward Biased Safe Operating Area

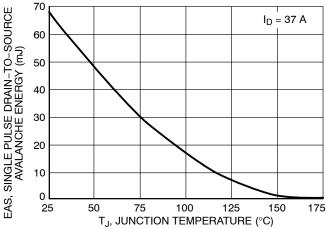



Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

#### **TYPICAL PERFORMANCE CURVES**

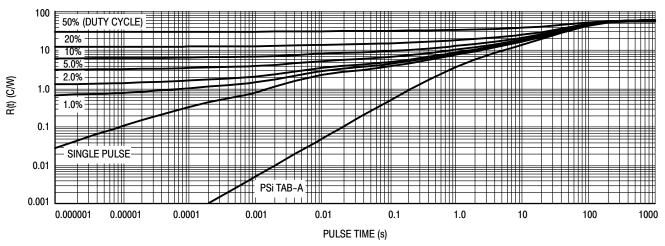



Figure 13. FET Thermal Response

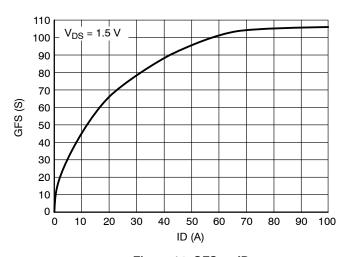


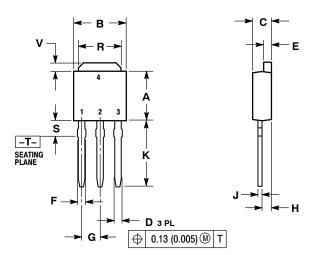

Figure 14. GFS vs ID

### **ORDERING INFORMATION**

| Order Number | Package                        | Shipping <sup>†</sup> |
|--------------|--------------------------------|-----------------------|
| NTD4904NT4G  | DPAK<br>(Pb-Free)              | 2500 / Tape & Reel    |
| NTD4904N-1G  | IPAK<br>(Pb-Free)              | 75 Units / Rail       |
| NTD4904N-35G | IPAK Trimmed Lead<br>(Pb-Free) | 75 Units / Rail       |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.






#### **DPAK INSERTION MOUNT**

CASE 369 ISSUE O

**DATE 02 JAN 2000** 





- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.

|     | INC   | HES   | MILLIM   | IETERS |  |
|-----|-------|-------|----------|--------|--|
|     |       |       |          |        |  |
| DIM | MIN   | MAX   | MIN      | MAX    |  |
| Α   | 0.235 | 0.250 | 5.97     | 6.35   |  |
| В   | 0.250 | 0.265 | 6.35     | 6.73   |  |
| С   | 0.086 | 0.094 | 2.19     | 2.38   |  |
| D   | 0.027 | 0.035 | 0.69     | 0.88   |  |
| Е   | 0.033 | 0.040 | 0.84     | 1.01   |  |
| F   | 0.037 | 0.047 | 0.94     | 1.19   |  |
| G   | 0.090 | BSC   | 2.29 BSC |        |  |
| Н   | 0.034 | 0.040 | 0.87     | 1.01   |  |
| J   | 0.018 | 0.023 | 0.46     | 0.58   |  |
| K   | 0.350 | 0.380 | 8.89     | 9.65   |  |
| R   | 0.175 | 0.215 | 4.45     | 5.46   |  |
| S   | 0.050 | 0.090 | 1.27     | 2.28   |  |
| ٧   | 0.030 | 0.050 | 0.77     | 1.27   |  |

| STYLE 1: |           | STYLE 2: |        | STYLE 3: |         | STYLE 4: |         | STYLE 5: |         | STYLE 6: |      |
|----------|-----------|----------|--------|----------|---------|----------|---------|----------|---------|----------|------|
| PIN 1.   | BASE      | PIN 1.   | GATE   | PIN 1.   | ANODE   | PIN 1.   | CATHODE | PIN 1.   | GATE    | PIN 1.   | MT1  |
| 2.       | COLLECTOR | 2.       | DRAIN  | 2.       | CATHODE | 2.       | ANODE   | 2.       | ANODE   | 2.       | MT2  |
| 3.       | EMITTER   | 3.       | SOURCE | 3.       | ANODE   | 3.       | GATE    | 3.       | CATHODE | 3.       | GATE |
| 4.       | COLLECTOR | 4.       | DRAIN  | 4.       | CATHODE | 4.       | ANODE   | 4.       | ANODE   | 4.       | MT2  |

| DOCUMENT NUMBER: | 98ASB42319B          | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | DPAK INSERTION MOUNT |                                                                                                                                                                                     | PAGE 1 OF 1 |  |  |

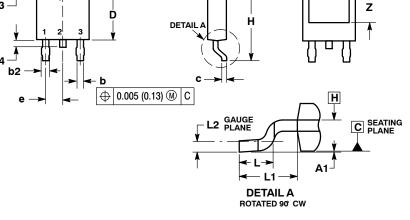
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



SCALE 1:1

# **DPAK (SINGLE GUAGE)** CASE 369AA **ISSUE B**

Α


В

**DATE 03 JUN 2010** 

#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
  3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
  4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

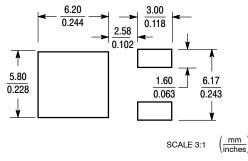
|     | INC       | HES   | MILLIN   | IETERS |  |
|-----|-----------|-------|----------|--------|--|
| DIM | MIN       | MAX   | MIN      | MAX    |  |
| Α   | 0.086     | 0.094 | 2.18     | 2.38   |  |
| A1  | 0.000     | 0.005 | 0.00     | 0.13   |  |
| b   | 0.025     | 0.035 | 0.63     | 0.89   |  |
| b2  | 0.030     | 0.045 | 0.76     | 1.14   |  |
| b3  | 0.180     | 0.215 | 4.57     | 5.46   |  |
| С   | 0.018     | 0.024 | 0.46     | 0.61   |  |
| c2  | 0.018     | 0.024 | 0.46     | 0.61   |  |
| D   | 0.235     | 0.245 | 5.97     | 6.22   |  |
| E   | 0.250     | 0.265 | 6.35     | 6.73   |  |
| е   | 0.090     | BSC   | 2.29 BSC |        |  |
| Н   | 0.370     | 0.410 | 9.40     | 10.41  |  |
| L   | 0.055     | 0.070 | 1.40     | 1.78   |  |
| L1  | 0.108 REF |       | 2.74 REF |        |  |
| L2  | 0.020 BSC |       | 0.51 BSC |        |  |
| L3  | 0.035     | 0.050 | 0.89     | 1.27   |  |
| L4  |           | 0.040 |          | 1.01   |  |
| Z   | 0.155     |       | 3.93     |        |  |



C

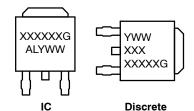


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

CATHODE

STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE


STYLE 6: PIN 1. MT1 2. MT2 3. GATE STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR

## **SOLDERING FOOTPRINT\***



<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

### **GENERIC** MARKING DIAGRAM\*



XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

| DOCUMENT NUMBER: | 98AON13126D         | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | DPAK (SINGLE GAUGE) |                                                                                                                                                                                     | PAGE 1 OF 1 |  |  |

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

<sup>\*</sup>This information is generic. Please refer to device data sheet for actual part





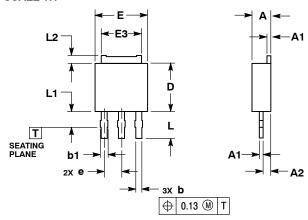
#### 3.5 MM IPAK, STRAIGHT LEAD

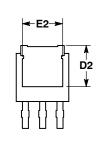
CASE 369AD **ISSUE B** 

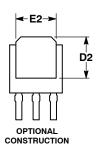
**DATE 18 APR 2013** 



3. EMITTER


2. ANODE 3. CATHODE


ANODE


STYLE 5:

PIN 1. GATE

COLLECTOR



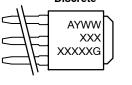




STYLE 4: PIN 1. CATHODE

3. GATE

2. ANODE


ANODE 4.

- NOTES:
  1.. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. 2.. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD GATE OR MOLD FLASH.

|     | MILLIMETERS |      |  |  |  |
|-----|-------------|------|--|--|--|
| DIM | MIN         | MAX  |  |  |  |
| Α   | 2.19        | 2.38 |  |  |  |
| A1  | 0.46        | 0.60 |  |  |  |
| A2  | 0.87        | 1.10 |  |  |  |
| b   | 0.69        | 0.89 |  |  |  |
| b1  | 0.77        | 1.10 |  |  |  |
| D   | 5.97        | 6.22 |  |  |  |
| D2  | 4.80        |      |  |  |  |
| E   | 6.35        | 6.73 |  |  |  |
| E2  | 4.57        | 5.45 |  |  |  |
| E3  | 4.45        | 5.46 |  |  |  |
| е   | 2.28 BSC    |      |  |  |  |
| L   | 3.40        | 3.60 |  |  |  |
| L1  |             | 2.10 |  |  |  |
| L2  | 0.89        | 1.27 |  |  |  |

#### **GENERIC MARKING DIAGRAMS\***

# **Discrete**





Integrated

| STYLE 1:    | STYLE 2:    | STYLE 3:     |
|-------------|-------------|--------------|
| PIN 1. BASE | PIN 1. GATE | PIN 1. ANODE |
| 2 COLLECTOR | 2 DDAIN     | 2 CATHODE    |

STYLE 6:

PIN 1. MT1

MT2
 GATE

MT2

3. SOURCE 3. ANODE 4. DRAIN

CATHODE

STYLE 7: PIN 1. GATE

2. COLLECTOR 3. EMITTER COLLECTOR

XXXXXX = Device Code

Α = Assembly Location

L = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: | 98AON23319D                | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | 3.5 MM IPAK, STRAIGHT LEAD |                                                                                                                                                                                     | PAGE 1 OF 1 |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

