

SGMOP07C 600kHz, Low Noise, High Voltage, Precision Operational Amplifier

GENERAL DESCRIPTION

The SGMOP07C is a single, low noise, low offset voltage and high voltage operational amplifier, which can operate from 3.6V to 36V single supply or from ±1.8V to ±18V dual supplies, while consuming only 0.75mA quiescent current.

The SGMOP07C is well suited in low noise systems. It exhibits a high gain-bandwidth product of 600kHz and a slew rate of 3V/µs. The output swing is rail-to-rail with heavy loads. These specifications make the operational amplifier appropriate for various applications.

The SGMOP07C is available in a Green SOIC-8 package. It is specified over the extended -40°C to +125°C temperature range.

FEATURES

• Low Bias Current: ±1nA (TYP)

High Open-Loop Gain: 130dB at V_S = ±15V

• High PSRR: 135dB

• Gain-Bandwidth Product: 600kHz

Low Noise: 8.5nV/√Hz at 1kHz

• Rail-to-Rail Output

• Supply Voltage Range:

3.6V to 36V or ±1.8V to ±18V

• Input Common Mode Voltage Range:

 $(-V_S) + 1.5V$ to $(+V_S) - 2V$

• Low Quiescent Current: 0.75mA (TYP)

• -40°C to +125°C Operating Temperature Range

• Available in a Green SOIC-8 Package

APPLICATIONS

Sensors

Audio

Active Filters

A/D Converters

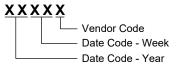
Communications

Test Equipment

Cellular and Cordless Phones

Laptops and PDAs

Photodiode Amplification



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGMOP07C	SOIC-8	-40°C to +125°C	SGMOP07CXS8G/TR	SGM OP07CXS8 XXXXX	Tape and Reel, 2500	

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

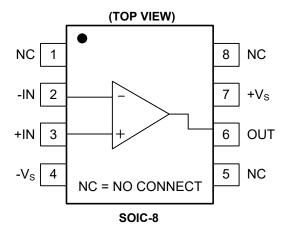
Supply Voltage, +V _S to -V _S	40V
Input Common Mode Voltage Range	
(-V _S) - 0.3	$V \text{ to } (+V_S) + 0.3V$
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	2000V
MM	250V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	3.6V to 36V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

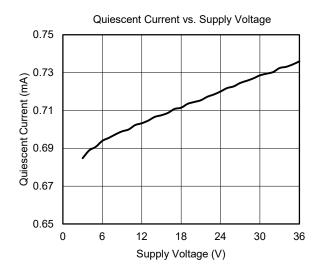

ESD SENSITIVITY CAUTION

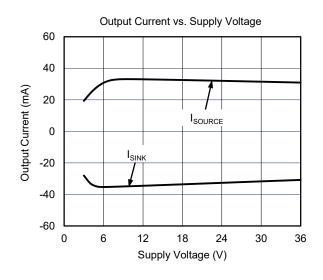
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

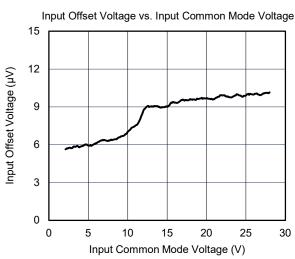
DISCLAIMER

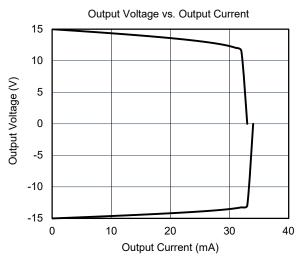
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

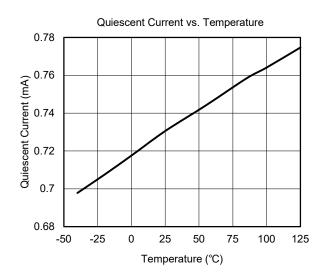
PIN CONFIGURATION

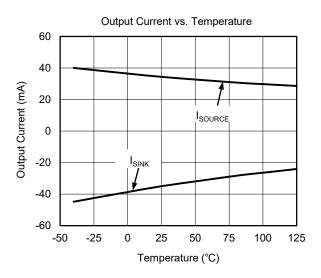


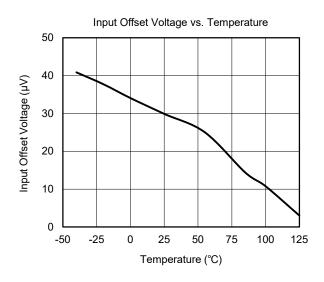

ELECTRICAL CHARACTERISTICS

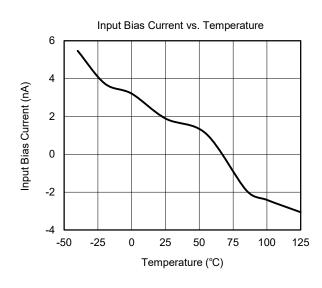

(At T_A = +25°C, V_S = ±5V to ±15V, V_{CM} = 0V, V_{OUT} = 0V and R_L = 2k Ω connected to 0V, Full = -40°C to +125°C, unless otherwise noted.)

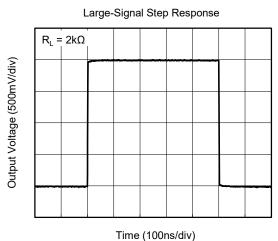

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Input Characteristics								
Input Offset Voltage	Vos		+25°C		35	150	μV	
input Offset Voltage	V OS		Full			220	μν	
Input Bias Current	I _B		+25°C		±1	±12	nA	
input bias current	В		Full			±45		
Input Offset Current	I _{os}		+25°C		±1	±12	nA	
•	.05		Full			±35		
Input Common Mode Voltage Range	V _{CM}		Full	(-V _S) + 1.5		(+V _S) - 2	V	
Common Mode Rejection Ratio	CMRR	$(-V_S) + 1.5V \le V_{CM} \le (+V_S) - 2V$	+25°C	120	140		dB	
			Full	115				
		$V_S = \pm 5V, V_{OUT} = \pm 2.5V, R_L = 10k\Omega$	+25°C	115	135			
		, , , , , ,	Full	112				
		$V_S = \pm 15V, V_{OUT} = \pm 10V, R_L = 10k\Omega$	+25°C	120	135			
Open-Loop Voltage Gain	A _{OL}		Full	117			dB	
		$V_S = \pm 5V, V_{OUT} = \pm 2.5V, R_L = 2k\Omega$	+25°C	110	124			
			Full	106				
		$V_{\rm S} = \pm 15 \text{V}, V_{\rm OUT} = \pm 10 \text{V}, R_{\rm L} = 2 \text{k}\Omega$	+25°C	120	130		_	
			Full	112				
Input Offset Voltage Drift	ΔV _{OS} /ΔT		Full		0.3		μV/°C	
Output Characteristics	1	T	2502		00	100	1	
		$V_S = \pm 15V$, $R_L = 10k\Omega$	+25°C		90	120	- mV	
Output Voltage Swing from Rail	V_{OUT}		Full		450	165		
		$V_S = \pm 15V$, $R_L = 2k\Omega$	+25°C		450	600		
Outrout Chart Cinquit Command		\(\(\lambda = 145\)\(\)	Full	104	124	820	A	
Output Short-Circuit Current Power Supply	I _{SC}	V _S = ±15V	+25°C	±21	±34		mA	
Operating Voltage Range	Vs		Full	3.6		36	V	
Operating Voltage Ivange	VS		+25°C	3.0	0.75	0.9	V	
Quiescent Current	ΙQ	I _{OUT} = 0mA	Full		0.73	1	mA	
			+25°C	123	135	'		
Power Supply Rejection Ratio	PSRR	V _S = 3V to 38V	Full	120	100		dB	
Dynamic Performance						<u> </u>		
Gain-Bandwidth Product	GBP	V _{OUT} = 100mV _{P-P} , C _L = 10pF	+25°C		600		kHz	
Slew Rate	SR	,	+25°C		3		V/µs	
Settling Time to 0.1%	ts	V _{IN} = 1V Step, G = +1	+25°C		3.5		μs	
Overload Recovery Time		$V_{IN} \times G = V_{S}$	+25°C		1.5		μs	
Phase Margin	φο	$V_{OUT} = 100 \text{mV}_{P-P}, C_L = 10 \text{pF}$	+25°C		60		•	
Total Harmonic Distortion + Noise	THD+N	$V_{IN} = 1V_{RMS}, G = +1, f = 1kHz$	+25°C		0.0008		%	
Noise	1	1000 - 13 · · · · ·	1 200	1		1	<u> </u>	
Input Voltage Noise		f = 0.1Hz to 10Hz	+25°C		300		nV _{P-P}	
Input Voltage Noise Density	e _n	f = 1kHz	+25°C		8.5		nV/√Hz	
Input Current Noise Density	i _n	f = 1kHz	+25°C		1.5		pA/√Hz	
pat Janont Holoo Donoity	'n		.200		1.0		Pr√ / I IZ	

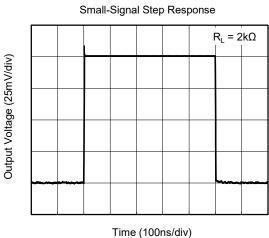

TYPICAL PERFORMANCE CHARACTERISTICS

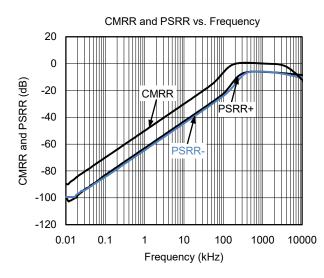


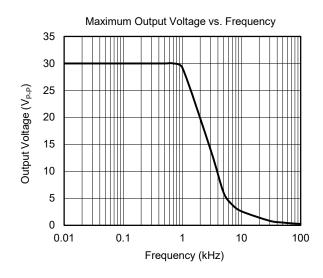


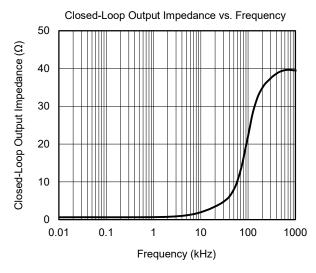


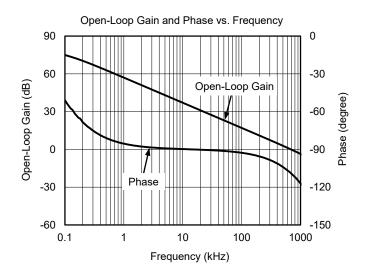


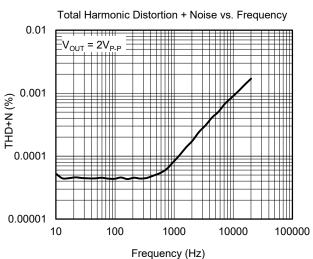


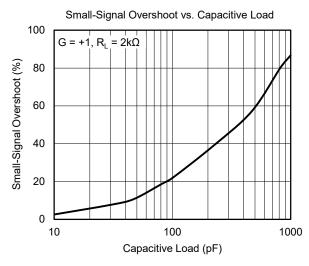

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

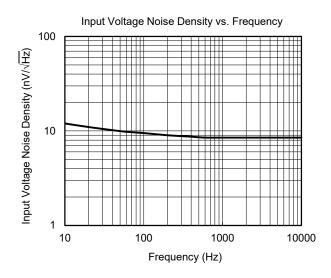


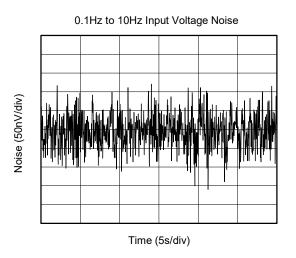


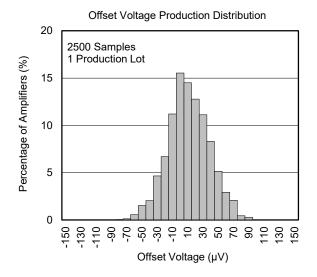


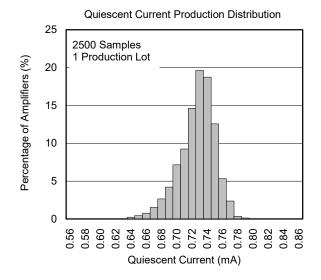


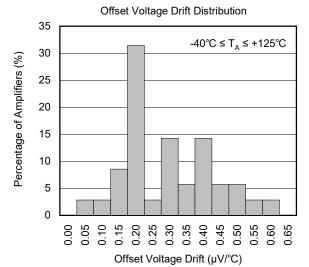



TYPICAL PERFORMANCE CHARACTERISTICS (continued)









TYPICAL PERFORMANCE CHARACTERISTICS (continued)

APPLICATION INFORMATION

Power Supply Decoupling and Layout

A clean and low noise power supply is very important in amplifier circuit design, besides of input signal noise, the power supply is one of important source of noise to the amplifier through +V_S and -V_S pins. Power supply bypassing is an effective method to clear up the noise at power supply, and the low impedance path to ground of decoupling capacitor will bypass the noise to GND. In application, $10\mu F$ ceramic capacitor paralleled with $0.1\mu F$ or $0.01\mu F$ ceramic capacitor is used in Figure 1. The ceramic capacitors should be placed as close as possible to +V_S and -V_S power supply pins.

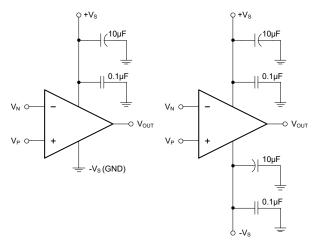


Figure 1. Amplifier Power Supply Bypassing

Grounding

In low speed application, one node grounding technique is the simplest and most effective method to eliminate the noise generated by grounding. In high speed application, the general method to eliminate noise is to use a complete ground plane technique, and the whole ground plane will help distribute heat and reduce EMI noise pickup.

Reduce Input-to-Output Coupling

To reduce the input-to-output coupling, the input traces must be placed as far away from the power supply or output traces as possible. The sensitive trace must not be placed in parallel with the noisy trace in same layer. They must be placed perpendicularly in different layers to reduce the crosstalk. These PCB layout techniques will help to reduce unwanted positive feedback and noise.

Typical Application Circuits

Difference Amplifier

The circuit in Figure 2 is a design example of classical difference amplifier. If $R_4/R_3 = R_2/R_1$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

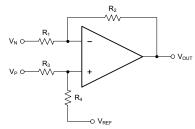


Figure 2. Difference Amplifier

High Input Impedance Difference Amplifier

The circuit in Figure 3 is a design example of high input impedance difference amplifier, the added amplifiers at the input are used to increase the input impedance and eliminate drawback of low input impedance in Figure 2.

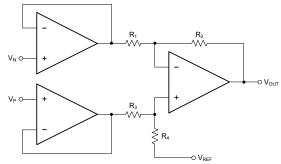


Figure 3. High Input Impedance Difference Amplifier

Active Low-Pass Filter

The circuit in Figure 4 is a design example of active low-pass filter, the DC gain is equal to $-R_2/R_1$ and the -3dB corner frequency is equal to $1/2\pi R_2C$. In this design, the filter bandwidth must be less than the bandwidth of the amplifier, the resistor values must be selected as low as possible to reduce ringing or oscillation generated by the parasitic parameters in PCB layout.

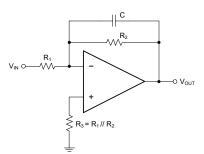
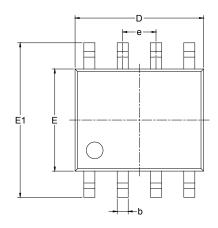
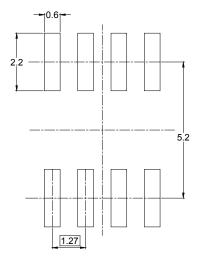


Figure 4. Active Low-Pass Filter

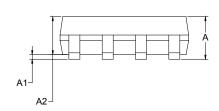
600kHz, Low Noise, High Voltage, Precision Operational Amplifier

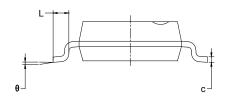
SGMOP07C


REVISION HISTORY

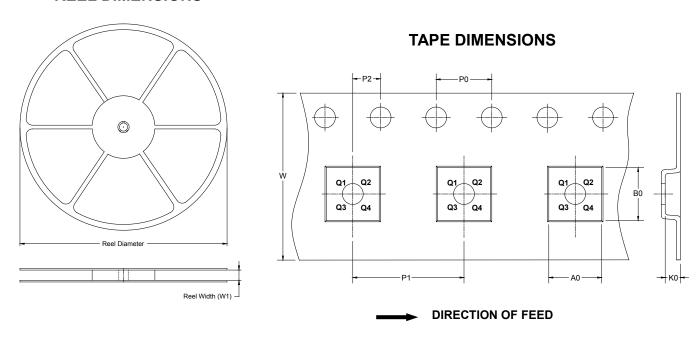

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

MAY 2018 – REV. A.1 to REV.B	Page
Updated version	All
AUGUST 2017 – REV.A to REV.A.1	Page
Updated open-loop gain and phase vs. frequency	6
Changes from Original (AUGUST 2017) to REV.A	Page
Changed from product preview to production data	All




PACKAGE OUTLINE DIMENSIONS SOIC-8

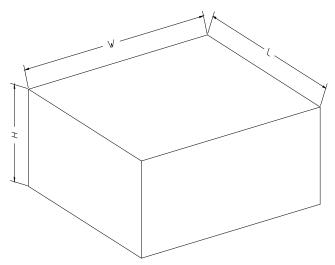
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350 1.550		0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	0 6.200 0.228		0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	