

Ceramic transient voltage suppressors

SMD type, case size 0402

Series/Type: CT0402*******
Ordering code: B72590T*******

Date: 2008-02-01

Version:

© EPCOS AG 2008. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited

CT0402******

Reliable ESD protection of single lines

Description

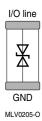
Due to the ongoing miniaturization, today's electronic devices are more and more sensitive to electrostatic discharges (ESD). Therefore reliable protection components become absolutely necessary to safeguard your valuable electronics against the impact of ESD.

Multilayer Varistors are ceramic semiconductors optimized specifically for high performance in ESD applications. They have a non-linear voltage/current characteristic for effectively suppressing extremely fast voltage transients and offer superior parametric stability over the complete operating range of –40 °C to +85 °C.

Multilayer Varistors are bi-directional devices. A single Multilayer Varistor connected from signal/data line to ground routes both positive and negative ESD transitions safely to the ground plane. This technique eliminates the need to route ESD charge into the power plane, possibly damaging nearby integrated circuits.

Features

- Bidirectional ESD protection to IEC 61000-4-2 (level 4)
- Suitable for uni and bidirectional lines
- Bidirectional ESD protection in a two-pin line
- Routes all ESD events, both positive and negative, safely to ground
- Suitable for DC working voltages up to 16 V
- Very low capacitance down to 0.6 pF
- No derating of maximum ratings up to 85 °C
- Extremely fast response time < 0.5 ns
- Nickel barrier terminations suitable for lead-free soldering
- RoHS-compatible


Applications

- Mobile communication
- Portable handheld products (e.g. PDA)
- Peripherals (e.g. printers, memory cards, etc.)
- EDP products (e.g. desktop and notebook computers)
- Interfaces (e.g. audio and video, USB, IEEE 1394, Ethernet, DVI)
- Consumer products (Flat TVs, set-top boxes, MP3 players, digital cameras, etc.)
- Liquid crystal displays (LCD) / monitors

CT0402****

Pin configuration

Due to the symmetrical configuration no marking information is needed. I/O and GND can be interchanged.

Maximum ratings $(T_A = 85 °C)$

Rating	Symbol	Value	Unit
Maximum DC working voltage	V_{DC}	CT0402M4G: 5.5	V
		CT0402S11AG: 14	
		CT0402L14G: 16	
		CT0402S14AHSG: 16	
		CT0402S17AG: 19	
		CT0402V150RFG: 16	
		CT0402V275RFG: 16	
		CT0402S5ARFG: 5.6	
Air discharge ESD capability	V _{ESD}	15	kV
(to IEC 61000-4-2 method)			
Contact discharge ESD capability	V _{ESD}	8	kV
(to IEC 61000-4-2 method)			
Operating temperature	T _{op}	-40 to +85	°C
(without derating)			
Storage temperature	T _{stg}	-40 to +125	°C

Characteristics ($T_A = 25$ °C)

B72590T0040M060: CT0402M4G

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	8	-	12	V
Leakage current	I _{leak}	V _{leak} = 3 V	-	0.01	0.5	μA
Clamping voltage	V_{clamp}	I _{PP} = 1 A, 8/20 μs	-	19	24	V
Capacitance	С	V = 1 V, f = 1 MHz	-	200	-	pF

CT0402*****

B72590T0110S160: CT0402S11AG

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	16.5	-	20.3	V
Leakage current	I _{leak}	V _{leak} = 3 V	-	0.01	0.5	μΑ
Clamping voltage	V_{clamp}	I _{PP} = 1 A, 8/20 μs	-	-	35	V
Capacitance	С	V = 1 V, f = 1 MHz	-	120	-	pF

B72590T0140L060: CT0402L14G

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	20	23.5	27	V
Leakage current	I _{leak}	V _{leak} = 3 V	-	0.01	0.5	μΑ
Clamping voltage	V _{clamp}	I _{PP} = 1 A, 8/20 μs	-	-	46	V
Capacitance	С	V = 1 V, f = 1 MHz	-	47	-	pF

B72590T8140S160: CT0402S14AHSG

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	23	28	33	V
Leakage current	I _{leak}	V _{leak} = 3 V	-	0.01	0.5	μΑ
Clamping voltage	V_{clamp}	I _{PP} = 1 A, 8/20 μs	-	-	66	V
Capacitance	С	V = 1 V, f = 1 MHz	-	10	15	pF

B72590T0170S160: CT0402S17AG

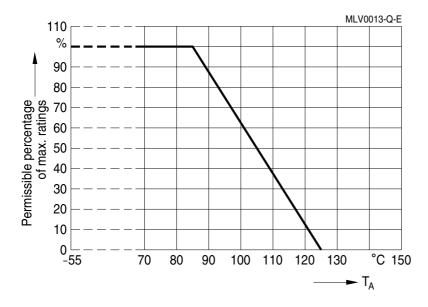
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	25	-	40	V
Leakage current	I _{leak}	V _{leak} = 3 V	-	0.01	0.5	μΑ
Clamping voltage	V_{clamp}	I _{PP} = 1 A, 8/20 μs	-	59	-	V
Capacitance	С	V = 1 V, f = 1 MHz	-	33	-	pF

B72590T7151V060: CT0402V150RFG

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	-	150	200	V
Leakage current	I _{leak}	$V_{leak} = 3 V$	-	0.001	0.1	μΑ
Clamping voltage	V _{clamp}	I _{PP} = 1 A, 8/20 μs	-	-	290	V
Capacitance	С	V = 1 V, f = 1 MHz	-	2	3	pF

B72590T7271V060: CT0402V275RFG

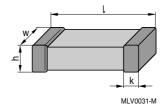
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	-	275	350	V
Leakage current	I _{leak}	V _{leak} = 3 V	-	0.001	0.1	μΑ
Capacitance	С	V = 1 V, f = 1 MHz	-	1.5	2	pF


CT0402*****

B72590T7050S160: CT0402S5ARFG

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Breakdown voltage	V_{BR}	I _{BR} = 1 mA	150	210	-	V
Leakage current	I _{leak}	V _{leak} = 3 V	-	0.001	0.1	μΑ
Capacitance	С	V = 1 V, f = 1 MHz	-	0.6	1	pF

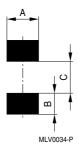
Note: Any operating voltage lower than V_{leak} results in lower leakage current.


Typical characteristics

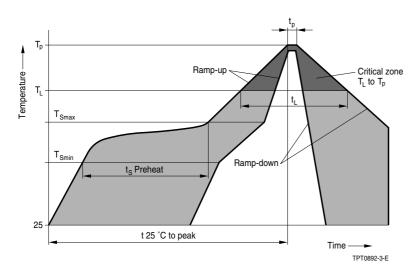
Dimensional drawing

Dimensions in mm for case size 0402

Symbol	Min.	Max.
	0.85	1.15
W	0.4	0.6
h	0.4	0.6
k	0.1	0.3



CT0402*****


Recommended solder pad

Dimensions in mm for case size 0402

Symbol	
Α	0.6
В	0.6
С	0.5

Recommended infrared reflow soldering temperature profile

Profile feature	Sn-Pb eutectic assembly	Pb-free assembly
Average ramp-up rate (T _{Smax} to T _p)	3 °C/ s max.	3 °C/ s max.
Preheat		
- Temperature min (T _{Smin})	100 °C	150 °C
- Temperature max (T _{Smax})	150 °C	200 °C
- Time (t _{Smin} to t _{Smax})	60 120 s	60 180 s
Time maintained above		
- Temperature min (T _L)	183 °C	217 °C
- Time (t _L)	60 150 s	60 150 s
Peak classification temperature (T _p)	220 °C 240 °C	240 °C 260 °C
Time within 5 °C of actual peak temperature (tp)	10 30 s	20 40 s
Ramp-down rate	6 °C/ s max.	6 °C/ s max.
Time 25 °C to peak temperature	6 min max.	8 min max.
	•	

Note: All temperatures refer to topside of the package, measured on the package body surface.

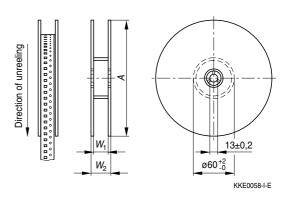
CT0402*****

Soldering guidelines

The usage of mild, non-activated fluxes for soldering is recommended, as well as proper cleaning of the PCB. The components are suitable for reflow soldering to JEDEC J-STD-020C.

Storage conditions

As far as possible, the components shall be employed within 12 months. They should be left in their original packing to avoid soldering problems due to oxidized contacts.


Storage temperature: -25 °C up to 45 °C

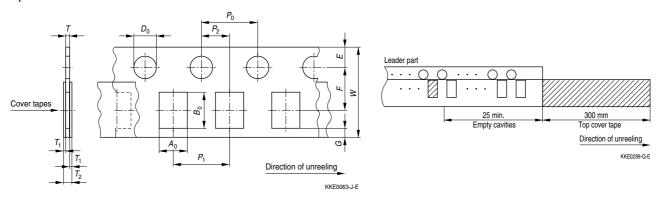
Relative humidity: < 75 % annual average, < 95 % on max. 30 days in a year.

Reel dimensions in mm

Definition	Symbol	Dim.	Tolerance
Reel diameter	Α	180	+0/-3
Reel width	W ₁	8.4	+1.5/ -0
(inside)			
Reel width	W ₂	14.4	max.
(outside)			

Package: 8-mm tape Reel material: Plastic

Selection guide


Туре	Ordering code	Case size	Pcs. per reel	Reel size
CT0402M4G	B72590T0040M060	0402	10000	180 mm
CT0402S11AG	B72590T0110S160	0402	10000	180 mm
CT0402L14G	B72590T0140L060	0402	10000	180 mm
CT0402S14AHSG	B72590T8140S160	0402	10000	180 mm
CT0402S17AG	B72590T0170S160	0402	10000	180 mm
CT0402V150RFG	B72590T7151V060	0402	10000	180 mm
CT0402V275RFG	B72590T7271V060	0402	10000	180 mm
CT0402S5ARFG	B72590T7050S160	0402	10000	180 mm

CT0402*****

Taping to IEC 60286-3

Tape material: Cardboard

Dimensions and tolerances in mm for case size 0402:

Definition	Symbol	Dim.	Tolerance
Compartment width	A ₀	0.6	± 0.2
Compartment length	B ₀	1.15	± 0.2
Sprocket hole diameter	D ₀	1.5	+0.1/ -0
Sprocket hole pitch	P ₀	4.0	± 0.1 ¹⁾
Distance centre hole to centre compartment	P ₂	2.0	± 0.05
Pitch of the component compartments	P ₁	2.0	± 0.1
Tape width	W	8.0	± 0.3
Distance edge to centre of hole	E	1.75	± 0.1
Distance centre hole to centre compartment	F	3.5	± 0.05
Distance compartment to edge	G	0.75	min.
Thickness tape	Т	0.6	max.
Overall thickness	T ₂	0.7	max.

¹⁾ \leq ± 0.2 mm over any 10 pitches

Note

Multilayer Varistors are not suitable for switching applications or for voltage stabilization, where static power dissipation is required.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSSP, DSSP, MiniBlue, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.