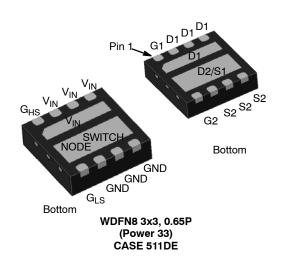


MOSFET – Dual, N-Channel, POWERTRENCH®

30 V, 22 m Ω and 10 m Ω

FDMC7200S

General Description


This device includes two specialized N-Channel MOSFETs in a dual Power 33 (3 mm x 3 mm MLP) package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous MOSFET (Q2) have been designed to provide optimal power efficiency.

Features

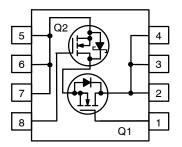
- Q1: N-Channel
 - Max $R_{DS(on)} = 22 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 6 \text{ A}$
 - Max $R_{DS(on)} = 34 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 5 \text{ A}$
- Q2: N-Channel
 - Max $R_{DS(on)} = 10 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 8.5 \text{ A}$
 - Max $R_{DS(on)} = 13.5 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 7.2 \text{ A}$
- This Device is Pb-Free, Halide Free and is RoHS Compliant

Applications

- Mobile Computing
- Mobile Internet Devices
- General Purpose Point of Load

MARKING DIAGRAM

ZXYKK FDMC 7200S


Z = Assembly Plant Code

XY = Date Code

KK = Lot Run Traceability Code

FDMC7200S = Device Code

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC7200S	WDFN8 (Pb-Free,	3000 / Tape & Reel
	Halide Free)	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

$\textbf{MOSFET MAXIMUM RATINGS} \ (T_C = 25^{\circ}C, \ unless \ otherwise \ noted)$

Symbol	Parameter				Q2	Unit
V_{DS}	Drain to Source Voltage			30	30	V
V _{GS}	Gate to Source Voltage		(Note 4)	±20	±20	V
Ι _D	Drain Current - Continuous (Package Limited)	T _C = 25°C		18	13	Α
	- Continuous (Silicon Limited)	T _C = 25°C		23	46	
	- Continuous	T _A = 25°C		7 (Note 1a)	13 (Note 1b)	
	- Pulsed			40	27	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	12	32	mJ
P_D	Power Dissipation for Single Operation	T _A = 25°C		1.9 (Note 1a)	2.5 (Note 1b)	W
	Power Dissipation for Single Operation	T _A = 25°C		0.7 (Note 1c)	1.0 (Note 1d)	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			–55 to	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS ($T_C = 25^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Q1	Q2	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	65 (Note 1a)	50 (Note 1b)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		125 (Note 1d)	
$R_{ heta JC}$	Thermal Resistance, Junction to Case	7.5	4.2	

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

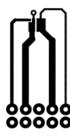
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Unit
OFF CHAI	RACTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$\begin{split} I_D &= 250 \; \mu\text{A, V}_{GS} = 0 \; \text{V} \\ I_D &= 1 \; \text{mA, V}_{GS} = 0 \; \text{V} \end{split}$	Q1 Q2	30 30	- -	-	٧
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}} \begin{array}{c} \text{Breakdown Voltage Temperature} \\ \text{Coefficient} \end{array}$		I_D = 250 μA, referenced to 25°C I_D = 1 mA, referenced to 25°C	Q1 Q2	- -	14 13	- -	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	Q1 Q2	- -	- -	1 500	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q1 Q2	_ _	- -	100 100	nA
ON CHAR	ACTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 μ A V_{GS} = V_{DS} , I_D = 1 mA	Q1 Q2	1.0 1.0	2.3 2.0	3.0 3.0	٧
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μA, referenced to 25°C I_D = 1 mA, referenced to 25°C	Q1 Q2	- -	-5 -6	- -	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 6 A V _{GS} = 4.5 V, I _D = 5 A V _{GS} = 10 V, I _D = 6 A, T _J = 125°C	Q1		17 25 23	22 34 30	mΩ
		V _{GS} = 10 V, I _D = 8.5 A V _{GS} = 4.5 V, I _D = 7.2 A V _{GS} = 10 V, I _D = 8.5 A, T _J = 125°C	Q2	- - -	7.8 10.3 11.4	10.0 13.5 13.1	
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 6 A V _{DD} = 5 V, I _D = 8.5 A	Q1 Q2	- -	29 43	_ _	S

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Unit
DYNAMIC	CHARACTERISTICS	•	•		•	•	
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Q1 Q2	_ _	495 1080	660 1436	pF
C _{oss}	Output Capacitance		Q1 Q2	_ _	145 373	195 495	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2	_ _	20 35	30 52	pF
R_g	Gate Resistance	f = 1 MHz	Q1 Q2	0.2 0.2	1.4 1.2	4.2 3.6	Ω
SWITCHIN	IG CHARACTERISTICS	•					
t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = 15 V, I _D = 1 A,	Q1 Q2	_ _	11 7.6	20 15	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V}, \ \vec{R}_{GEN} = 6 \Omega$ Q2 $V_{DD} = 15 \text{ V}, \ I_D = 1 \text{ A},$	Q1 Q2	- -	3.1 1.8	10 10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	Q1 Q2	- -	35 21	56 34	ns
t _f	Fall Time		Q1 Q2	_ _	1.3 8.5	10 17	ns
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}$ Q1 $V_{DD} = 15 \text{ V}, I_D = 6 \text{ A}$ Q2 $V_{DD} = 15 \text{ V}, I_D = 8.5 \text{ A}$	Q1 Q2	- -	7.3 15.7	10 22	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ Q1 $V_{DD} = 15 \text{ V}, I_D = 6 \text{ A}$ Q2 $V_{DD} = 15 \text{ V}, I_D = 8.5 \text{ A}$	Q1 Q2	- -	3.1 7.2	4.3 10	nC
Q _{gs}	Gate to Source Charge	Q1 V _{DD} = 15 V, I _D = 6 A	Q1 Q2	- -	1.8 3	- -	nC
Q_{gd}	Gate to Drain "Miller" Charge	Q2 V _{DD} = 15 V, I _D = 8.5 A	Q1 Q2	_ _	1 1.9	- -	nC
DRAIN-S	OURCE CHARACTERISTICS						
V _{SD}	Source-Drain Diode Forward Voltage	$\begin{array}{c} V_{GS} = 0 \text{ V, } I_{S} = 6 \text{ A (Note 2)} \\ V_{GS} = 0 \text{ V, } I_{S} = 8.5 \text{ A (Note 2)} \\ V_{GS} = 0 \text{ V, } I_{S} = 1.3 \text{ A (Note 2)} \end{array}$	Q1 Q2 Q2	<u>-</u> -	0.8 0.8 0.6	1.2 1.2 0.8	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 6 A, di/dt = 100 A/μs	Q1 Q2	_ _	13 20	24 32	ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 8.5 A, di/dt = 300 A/μs	Q1 Q2	- -	2.3 15	10 24	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:


1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 65°C/W when mounted on a 1 in² pad of 2 oz copper

b. 50°C/W when mounted on a 1 in^2 pad of 2 oz copper

c. 180°C/W when mounted on a minimum pad of 2 oz copper

d. 125°C./W when mounted on a minimum pad of 2 oz copper

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 Starting Q1: T = 25°C, L = 1 mH, I = 5 A, Vgs = 10 V, Vdd = 27V, 100% test at L = 3 mH, I = 4 A; Q2: T = 25C, L = 1 mH, I = 8 A, Vgs = 10 V, Vdd = 27 V, 100% test at L = 3 mH, I = 3.2 A.
- 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T. I = 25°C, unless otherwise noted)

Figure 1. On Region Characteristics

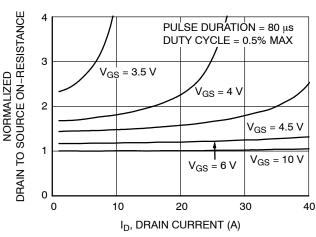


Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

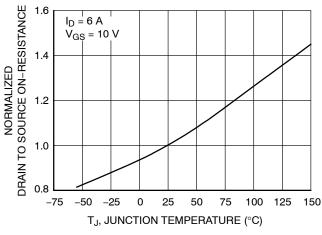


Figure 3. Normalized On Resistance vs. Junction Temperature

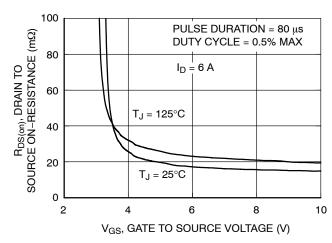


Figure 4. On-Resistance vs. Gate to Source Voltage

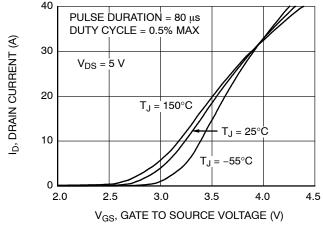


Figure 5. Transfer Characteristics

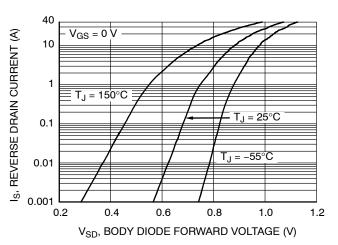


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T_J = 25°C, unless otherwise noted) (continued)

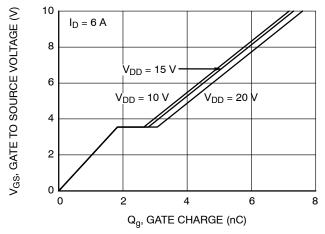


Figure 7. Gate Charge Characteristics

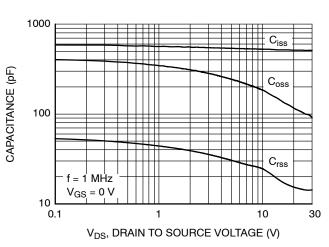


Figure 8. Capacitance vs. Drain to Source Voltage

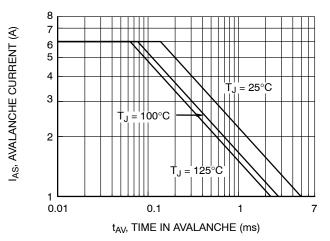


Figure 9. Unclamped Inductive Switching Capability

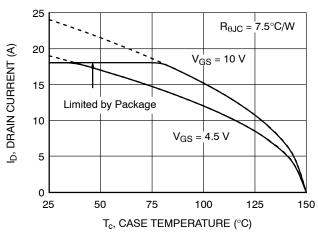


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

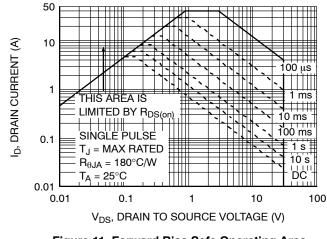


Figure 11. Forward Bias Safe Operating Area

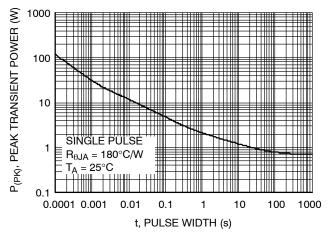


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) ($T_J = 25$ °C, unless otherwise noted) (continued)

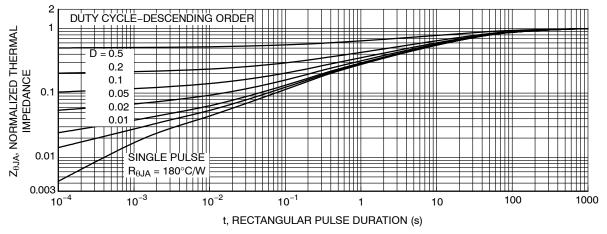


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T, = 25°C, unless otherwise noted)

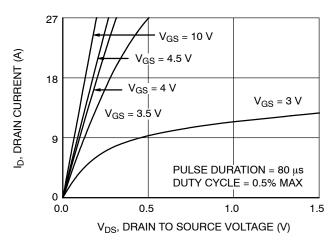


Figure 14. On-Region Characteristics

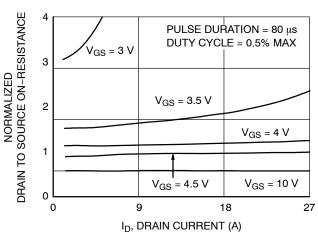


Figure 15. Normalized On–Resistance vs.

Drain Current and Gate Voltage

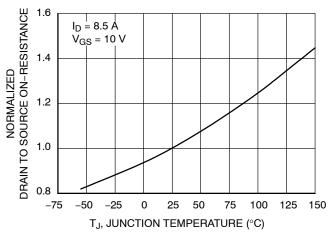


Figure 16. Normalized On Resistance vs.

Junction Temperature

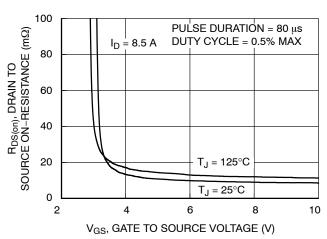


Figure 17. On-Resistance vs. Gate to Source Voltage

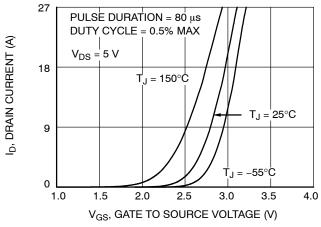


Figure 18. Transfer Characteristics

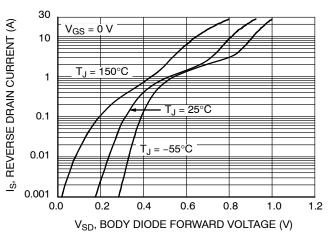


Figure 19. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T_J = 25°C, unless otherwise noted) (continued)

ID, DRAIN CURRENT (A)

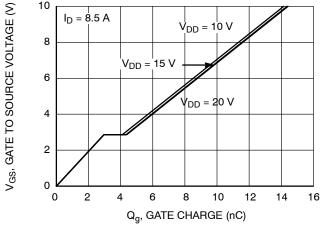


Figure 20. Gate Charge Characteristics

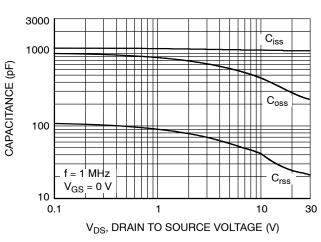


Figure 21. Capacitance vs. Drain to Source Voltage

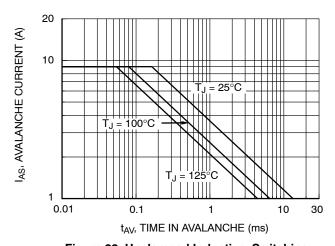


Figure 22. Unclamped Inductive Switching Capability

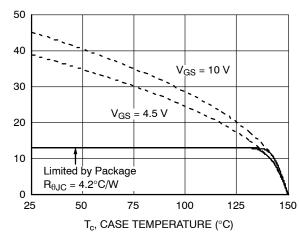


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

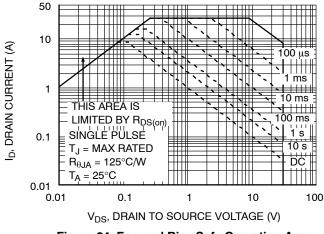


Figure 24. Forward Bias Safe Operating Area

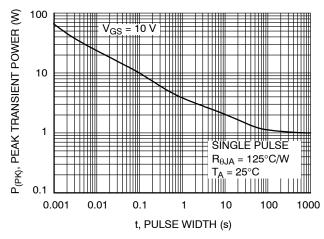


Figure 25. Single Pulse Maximum Power Dissipation

$\textbf{TYPICAL CHARACTERISTICS (Q2 N-CHANNEL)} \ (T_J = 25^{\circ}C, \ unless \ otherwise \ noted) \ (continued)$

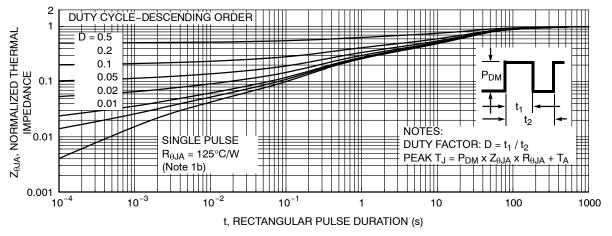


Figure 26. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (continued)

SyncFET™ Schottky Body Diode Characteristics

onsemi's SyncFET process embeds a Schottky diode in parallel with POWERTRENCH MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDMC7200S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

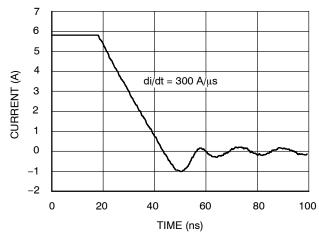


Figure 27. FDMC7200S SyncFET Body Diode Reverse Recovery Characteristic

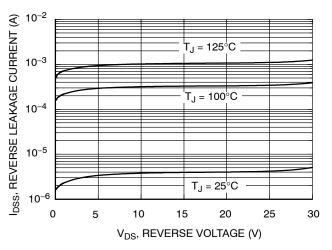
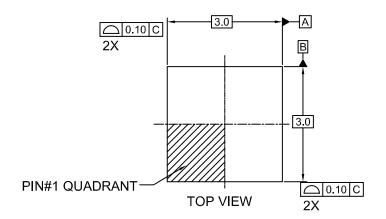
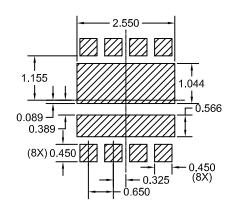
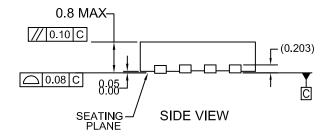


Figure 28. SyncFET Body Diode Reverse Leakage vs. Drain-Source Voltage

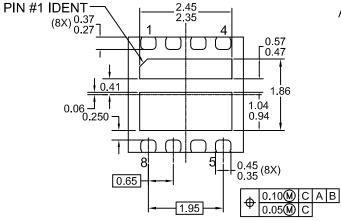

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


SyncFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



WDFN8 3x3, 0.65P CASE 511DE ISSUE O

DATE 31 AUG 2016



RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

BOTTOM VIEW

DOCUMENT NUMBER:	98AON13621G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WDFN8 3X3, 0.65P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

