Silicon Phototransistor

FEATURES

- End-looking plastic package
- 135° (nominal) acceptance angle
- Low profile for design flexibility
- · Mechanically and spectrally matched to SEP8507 infrared emitting diode

DESCRIPTION

The SDP8407 is an NPN silicon phototransistor molded in an end-looking black plastic package. The chip is positioned to accept radiation from the top of the package. Lead lengths are staggered to provide a simple method of polarity identification.

OUTLINE DIMENSIONS in inches (mm)

3 plc decimals ±0.008(0.20) 2 plc decimals ±0.020(0.51)

DIM_018.ds4

Honeywell

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Silicon Phototransistor

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Light Current	l _L				mA	V _{CE} =5 V
SDP8407-001		0.10				H=1 mW/cm ^{2 (1)}
Collector Dark Current	Iceo			100	nA	V _{CE} =10 V, H=0
Collector-Emitter Breakdown Voltage	V _(BR) ceo	30			V	Ic=100 μA
Emitter-Collector Breakdown Voltage	V _{(BR)ECO}	5.0			V	I _E =100 μA
Collector-Emitter Saturation Voltage	VCE(SAT)			0.4	V	lc=10 μA
						H=1 mW/cm ²
Angular Response (2)	Ø		135		degr.	I _F =Constant
Rise And Fall Time	t _r , t _f		15		μs	Vcc=5 V, I _L =1 mA
						R _L =1000 Ω

- Notes
 1. The radiation source is an IRED with a peak wavelength of 935 nm.
 2. Angular response is defined as the total included angle between the half sensitivity points.

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted) Collector-Emitter Voltage 30 V Emitter-Collector Voltage 5 V Power Dissipation 100 mW (1) -40°C to 85C Operating Temperature Range Storage Temperature Range -40°C to 85°C Soldering Temperature (5 sec) 240°C

Notes

1. Derate linearly from 25°C free-air temperature at the rate of 0.66 mW/°C.

Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell

Silicon Phototransistor

SWITCHING TIME TEST CIRCUIT

GaAs Emitter

H

Emitter

R_L

1000Ω

Po

SWITCHING WAVEFORM

Fig. 1 Responsivity vs Angular Displacement

Fig. 2 Collector Current vs

Fig. 3 Dark Current vs

Fig. 4 Spectral Responsivity

All Performance Curves Show Typical Values

Honeywell

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

126

Silicon Phototransistor

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Honeywell

127