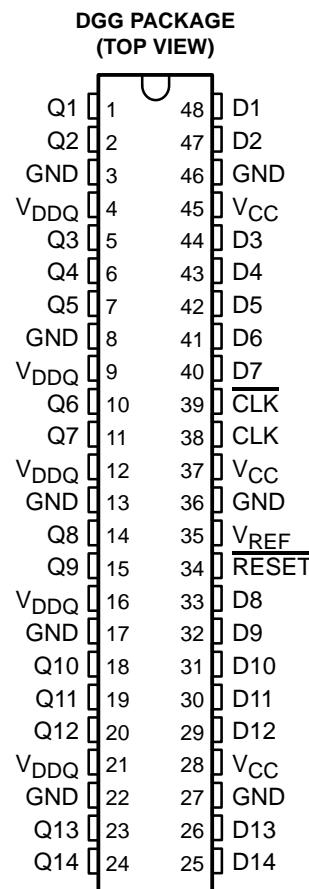


- Member of the Texas Instruments Widebus™ Family
- Supports SSTL_2 Data Inputs
- Outputs Meet SSTL_2 Class II Specifications
- Differential Clock (CLK and $\overline{\text{CLK}}$) Inputs
- Supports LVCMOS Switching Levels on the RESET Input
- RESET Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description


This 14-bit registered buffer is designed for 2.3-V to 2.7-V V_{CC} operation.

All inputs are SSTL_2, except the LVCMOS reset (RESET) input. All outputs are SSTL_2, Class II compatible.

The SN74SSTV16857 operates from a differential clock (CLK and $\overline{\text{CLK}}$). Data are registered at the crossing of CLK going high and $\overline{\text{CLK}}$ going low.

The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled and undriven (floating) data, clock, and reference voltage (V_{REF}) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low. The LVCMOS RESET input always must be held at a valid logic high or low level.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

ORDERING INFORMATION

T_A	PACKAGE†		ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	TSSOP – DGG	Tape and reel	SN74SSTV16857DGG	SSTV16857

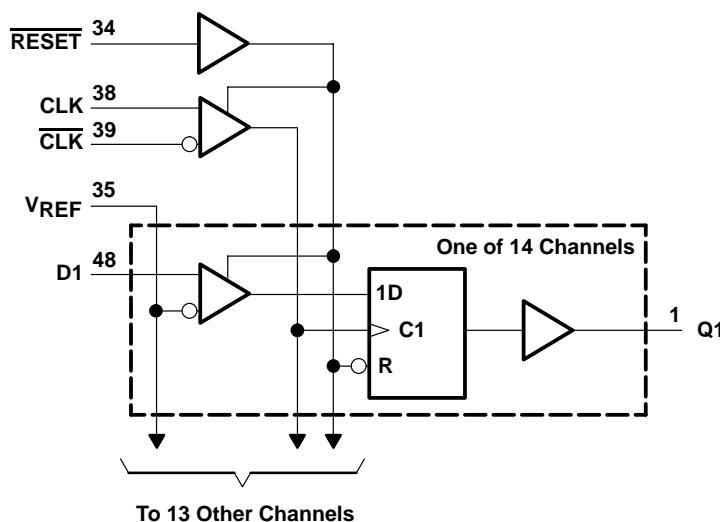
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated


SN74SSTV16857
14-BIT REGISTERED BUFFER
WITH SSTL_2 INPUTS AND OUTPUTS

SCES344E – DECEMBER 2000 – REVISED NOVEMBER 2002

FUNCTION TABLE

INPUTS				OUTPUT Q
RESET	CLK	CLK	D	
H	↑	↓	H	H
H	↑	↓	L	L
H	L or H	L or H	X	Q ₀
L	X, or floating	X, or floating	X, or floating	L

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} or V _{DDQ}	–0.5 V to 3.6 V
Input voltage range, V _I (see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)	–0.5 V to V _{DDQ} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DDQ})	±50 mA
Continuous output current, I _O (V _O = 0 to V _{DDQ})	±50 mA
Continuous current through each V _{CC} , V _{DDQ} , or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3)	70°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. This value is limited to 3.6 V maximum.
 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	V_{DDQ}		2.7	V
V_{DDQ}	Output supply voltage		2.3	2.7	V
V_{REF}	Reference voltage ($V_{REF} = V_{DDQ}/2$)		1.15	1.25	V
V_{TT}	Termination voltage	$V_{REF}-40\text{mV}$	V_{REF}	$V_{REF}+40\text{mV}$	V
V_I	Input voltage	0	V_{CC}		V
V_{IH}	AC high-level input voltage	Data inputs	$V_{REF}+310\text{mV}$		V
V_{IL}	AC low-level input voltage	Data inputs		$V_{REF}-310\text{mV}$	V
V_{IH}	DC high-level input voltage	Data inputs	$V_{REF}+150\text{mV}$		V
V_{IL}	DC low-level input voltage	Data inputs		$V_{REF}-150\text{mV}$	V
V_{IH}	High-level input voltage	RESET	1.7		V
V_{IL}	Low-level input voltage	RESET		0.7	V
V_{ICR}	Common-mode input voltage range	CLK, $\overline{\text{CLK}}$	0.97	1.53	V
$V_{I(PP)}$	Peak-to-peak input voltage	CLK, $\overline{\text{CLK}}$	360		mV
I_{OH}	High-level output current			-20	mA
I_{OL}	Low-level output current			20	
T_A	Operating free-air temperature		0	70	°C

NOTE 4: The RESET input of the device must be held at a valid logic level (not floating) to ensure proper device operation. The differential inputs must not be floating unless RESET is low. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V_{CC} AND V_{DDQ}	MIN	TYP†	MAX	UNIT
V_{IK}		$I_I = -18\text{ mA}$	2.3 V			-1.2	V
V_{OH}		$I_{OH} = -100\text{ }\mu\text{A}$	2.3 V to 2.7 V	$V_{DDQ}-0.2$			V
		$I_{OH} = -16\text{ mA}$	2.3 V	1.95			
V_{OL}		$I_{OL} = 100\text{ }\mu\text{A}$	2.3 V to 2.7 V		0.2		V
		$I_{OL} = 16\text{ mA}$	2.3 V		0.35		
I_I	All inputs	$V_I = V_{CC}$ or GND	2.7 V		± 5		μA
I_{CC}	Static standby	RESET = GND	$I_O = 0$	2.7 V		10	μA
	Static operating	RESET = V_{CC} , $V_I = V_{IH}(\text{AC})$ or $V_{IL}(\text{AC})$			8	56	mA
I_{CCD}	Dynamic operating – clock only	$\overline{\text{RESET}} = V_{CC}$, $V_I = V_{IH}(\text{AC})$ or $V_{IL}(\text{AC})$, CLK and $\overline{\text{CLK}}$ switching 50% duty cycle	$I_O = 0$	2.5 V	28		$\mu\text{A}/\text{MHz}$
	Dynamic operating – per each data input	$\overline{\text{RESET}} = V_{CC}$, $V_I = V_{IH}(\text{AC})$ or $V_{IL}(\text{AC})$, CLK and $\overline{\text{CLK}}$ switching 50% duty cycle, One data input switching at one-half clock frequency, 50% duty cycle			9		$\mu\text{A}/\text{clock MHz}/\text{D input}$
I_{OH}	Output high	$I_{OH} = -20\text{ mA}$		2.3 V to 2.7 V	7	20	Ω
I_{OL}	Output low	$I_{OL} = 20\text{ mA}$		2.3 V to 2.7 V	7	20	Ω
$ I_{O(\Delta)} $	$ I_{OH} - I_{OL} $	$I_O = 20\text{ mA}$, $T_A = 25^\circ\text{C}$		2.5 V		6	Ω
C_i	Data inputs	$V_I = V_{REF} \pm 310\text{ mV}$	2.5 V	2.5	3	3.5	pF
	CLK, $\overline{\text{CLK}}$	$V_{ICR} = 1.25\text{ V}$, $V_{I(PP)} = 360\text{ mV}$		2.5	3	3.5	
	RESET	$V_I = V_{CC}$ or GND		2.5	3	3.5	

† All typical values are at $V_{CC} = 2.5\text{ V}$, $T_A = 25^\circ\text{C}$.

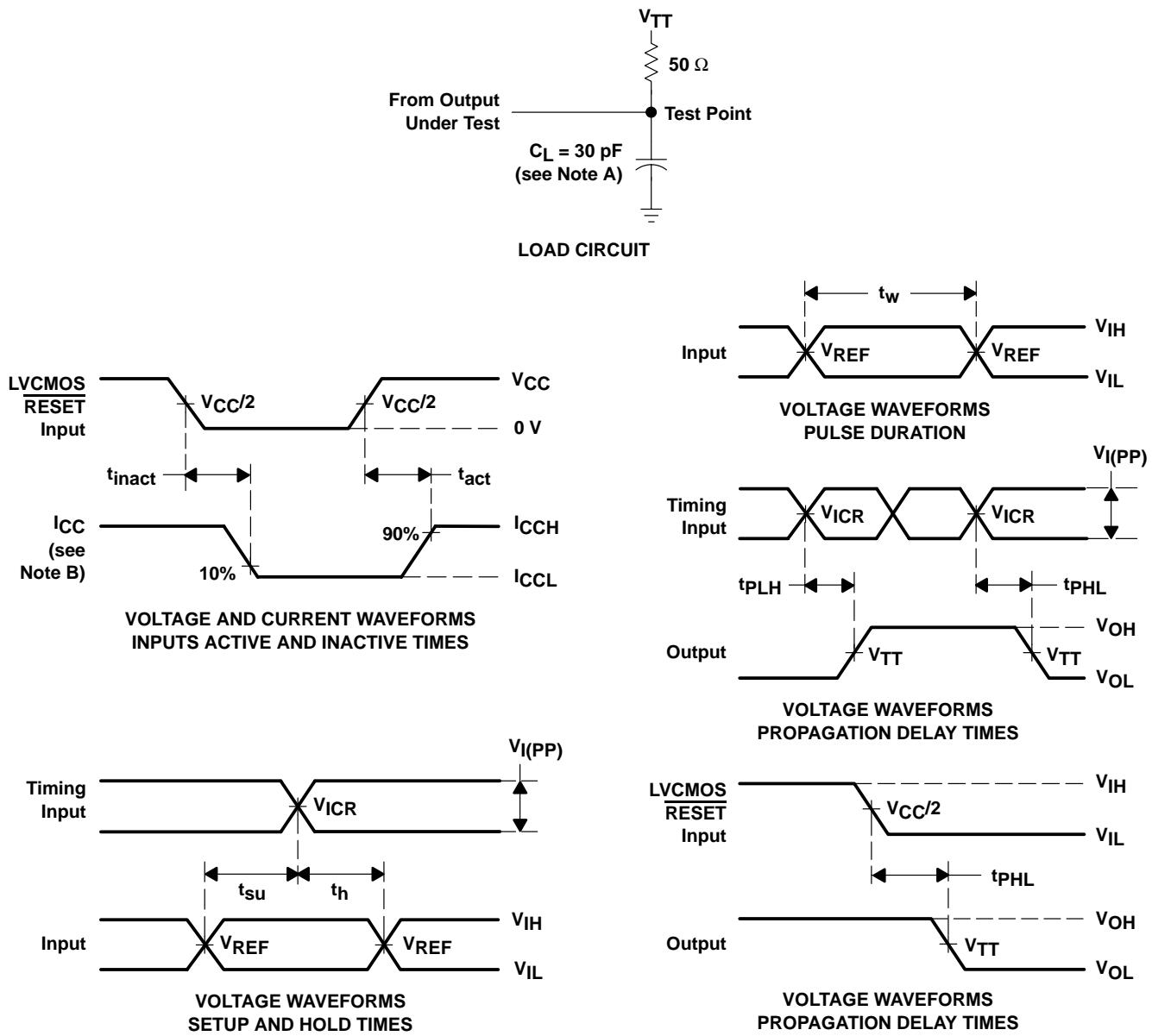
SN74SSTV16857
14-BIT REGISTERED BUFFER
WITH SSTL_2 INPUTS AND OUTPUTS

SCES344E – DECEMBER 2000 – REVISED NOVEMBER 2002

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}^{\dagger}$	UNIT
			MIN	
t_{clock}	Clock frequency		200	MHz
t_w	Pulse duration	CLK, \overline{CLK} high or low	2.5	ns
t_{act}	Differential inputs active time (see Note 5)		22	ns
t_{inact}	Differential inputs inactive time (see Note 6)		22	ns
t_{su}	Setup time	Fast slew rate (see Notes 7 and 9)	0.75	ns
		Slow slew rate (see Notes 8 and 9)	0.9	
t_h	Hold time	Fast slew rate (see Notes 7 and 9)	0.75	ns
		Slow slew rate (see Notes 8 and 9)	0.9	

[†] For this test condition, V_{DDQ} always is equal to V_{CC} .


NOTES: 5. Data inputs must be held low for a minimum time of t_{act} min, after RESET is taken high.
 6. Data and clock inputs must be held at valid levels (not floating) for a minimum time of t_{inact} min, after RESET is taken low.
 7. Data signal input slew rate $\geq 1 \text{ V/ns}$
 8. Data signal input slew rate $\geq 0.5 \text{ V/ns}$ and $< 1 \text{ V/ns}$
 9. CLK, \overline{CLK} input slew rates are $\geq 1 \text{ V/ns}$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}^{\dagger}$	UNIT
			MIN	
f_{max}			200	MHz
t_{pd}	CLK and \overline{CLK}	Q	1.1	2.8
t_{PHL}	<u>RESET</u>	Q	5	ns

[†] For this test condition, V_{DDQ} always is equal to V_{CC} .

PARAMETER MEASUREMENT INFORMATION

NOTES:

- A. C_L includes probe and jig capacitance.
- B. I_{CC} tested with clock and data inputs held at V_{CC} or GND, and $I_O = 0 \text{ mA}$.
- C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, input slew rate = $1 \text{ V/ns} \pm 20\%$ (unless otherwise noted).
- D. The outputs are measured one at a time with one transition per measurement.
- E. $V_{TT} = V_{REF} = V_{DDQ}/2$.
- F. $V_{IH} = V_{REF} + 310 \text{ mV}$ (ac voltage levels) for differential inputs. $V_{IH} = V_{CC}$ for LVC MOS input.
- G. $V_{IL} = V_{REF} - 310 \text{ mV}$ (ac voltage levels) for differential inputs. $V_{IL} = \text{GND}$ for LVC MOS input.
- H. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Top-Side Markings (4)	Samples
SN74SSTV16857DGGR	NRND	TSSOP	DGG	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	SSTV16857	
SN74SSTV16857DGVR	NRND	TVSOP	DGV	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SS857	
SN74SSTV16857DGVRG	NRND	TVSOP	DGV	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SS857	
SN74STV16857DGGRG4	NRND	TSSOP	DGG	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	SSTV16857	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

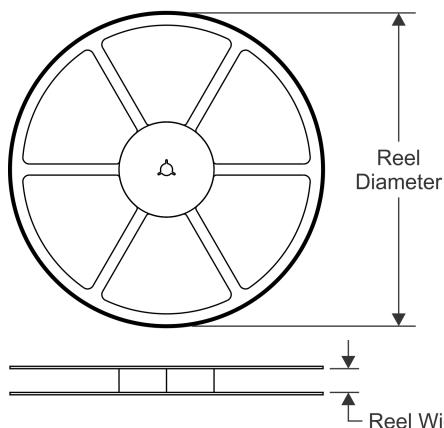
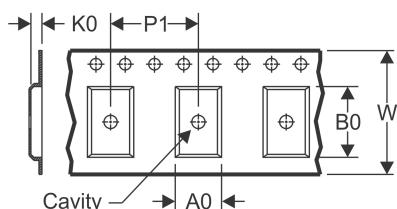
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

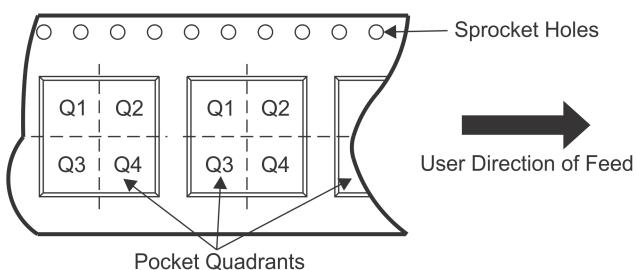
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

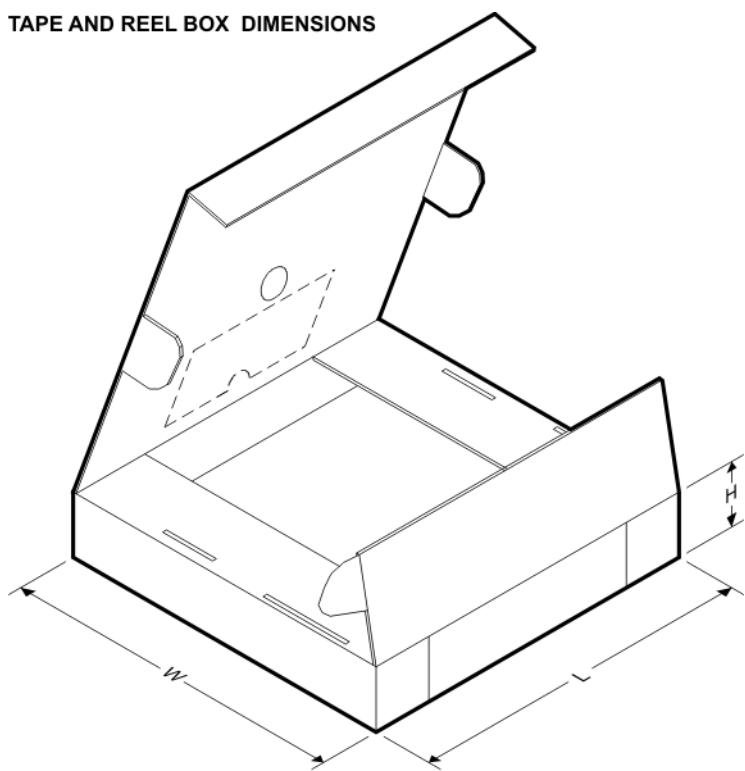
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

PACKAGE OPTION ADDENDUM

11-Apr-2013


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

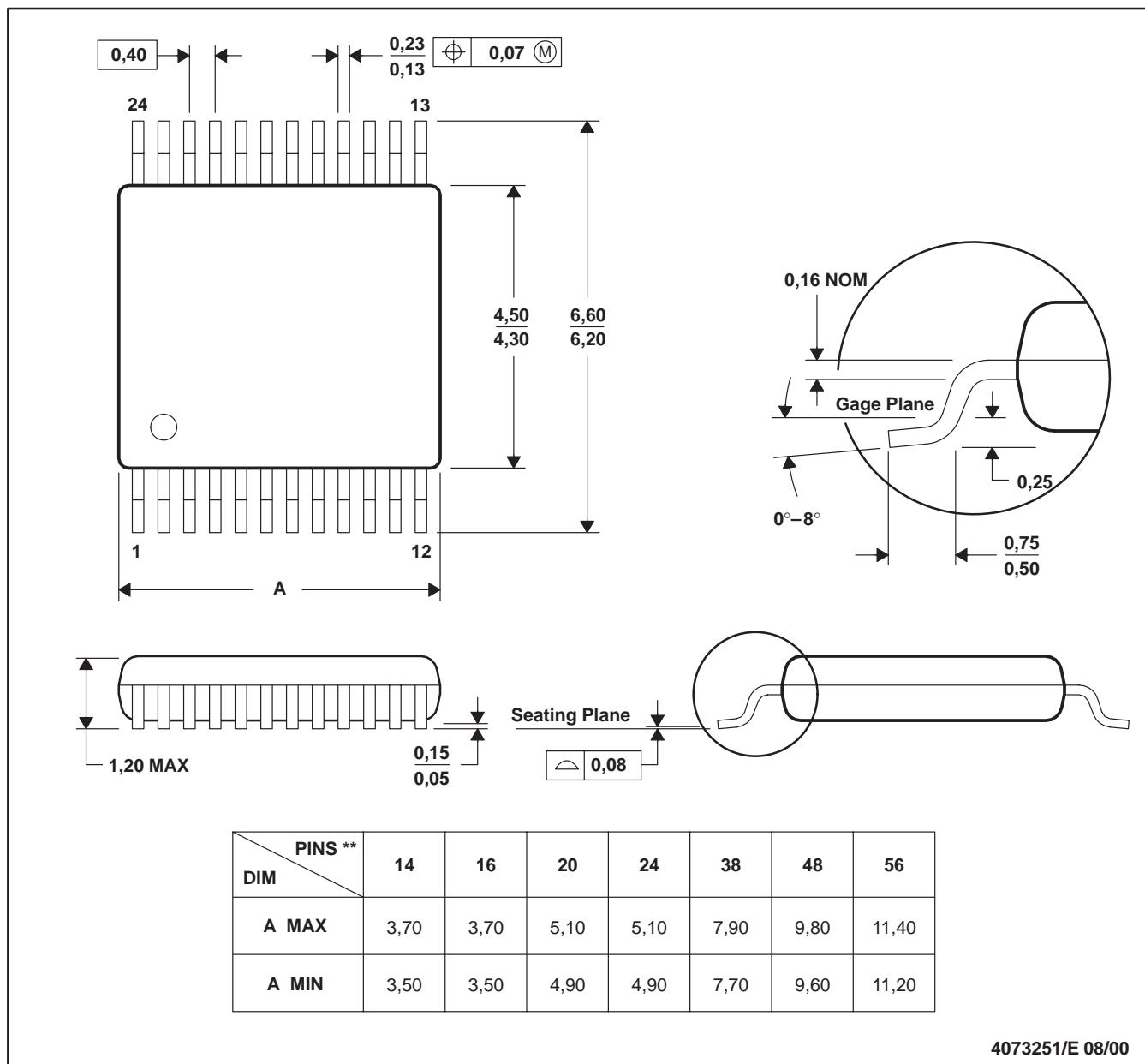
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74SSTV16857DGGR	TSSOP	DGG	48	0	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74SSTV16857DGVR	TVSOP	DGV	48	0	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

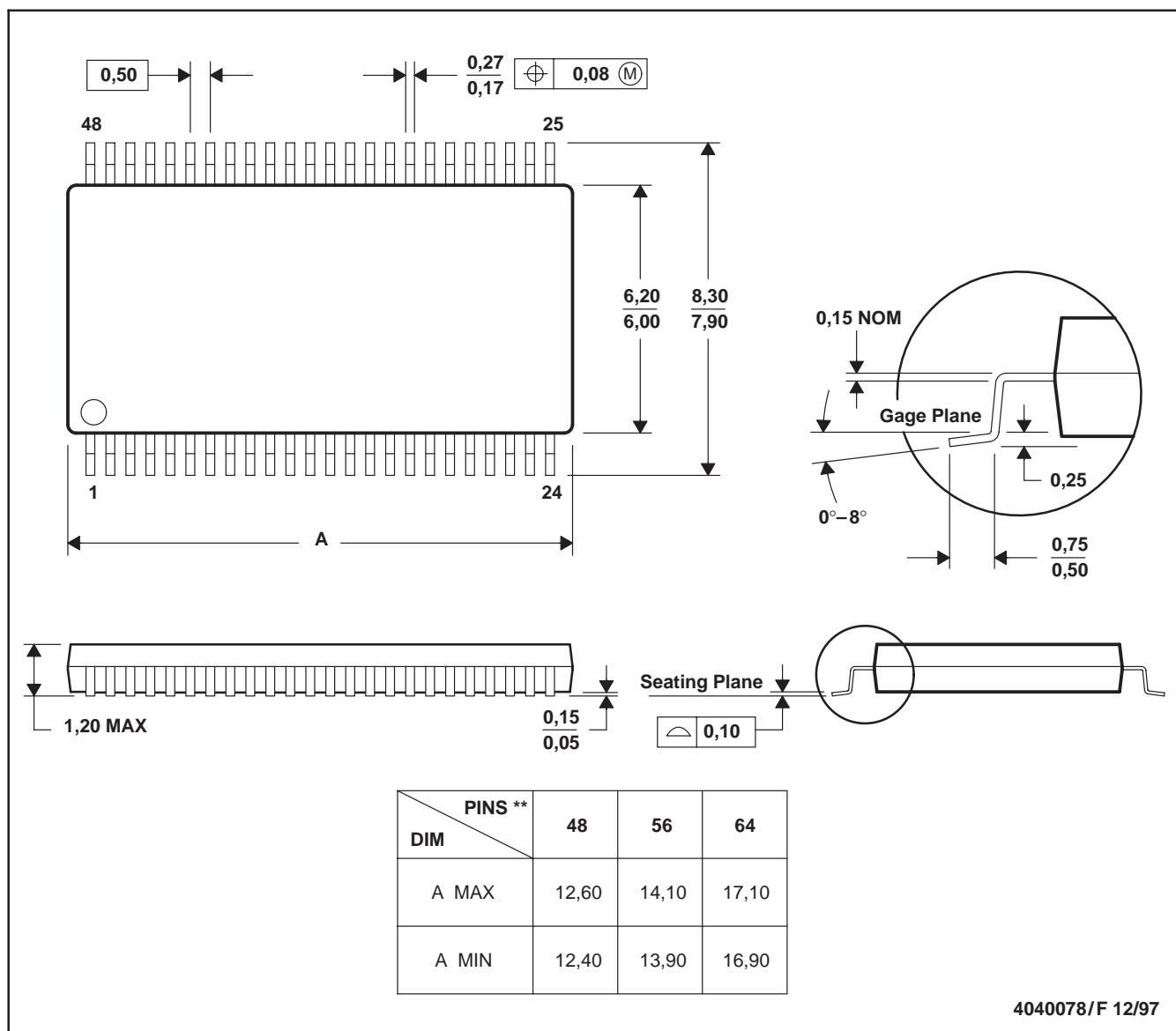

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74SSTV16857DGGR	TSSOP	DGG	48	0	367.0	367.0	45.0
SN74SSTV16857DGVR	TVSOP	DGV	48	0	367.0	367.0	38.0

DGV (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

24 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
 D. Falls within JEDEC: 24/48 Pins – MO-153
 14/16/20/56 Pins – MO-194

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold protrusion not to exceed 0,15.
 D. Falls within JEDEC MO-153

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products (<http://www.ti.com/sc/docs/stdterms.htm>), evaluation modules, and samples (<http://www.ti.com/sc/docs/samptersms.htm>).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated