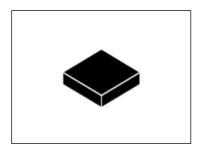
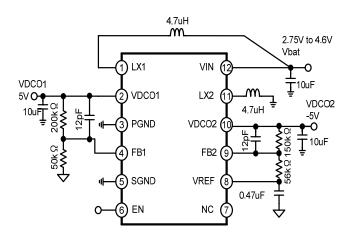
Advance Information

Bi-CMOS IC

Dual-Output DC-DC Converter for LCD Panel


http://onsemi.com

Overview


The LV52117 is a high current dual-output DC-DC converter which can generate both a positive and a negative voltage. The LV52117 is particularly suitable for powering applications such as LCD display.

Function

- Integrated 1.5MHz Synchronous Boost and Inverter Converters
- 2.75V to 4.6V Input Voltage Range
- 4.6V to 5.8V Adjustable Positive Output (VDCO1)
- -5.8V to -4.6V Adjustable Negative Output (VDCO2)
- Output Current Up to 100mA
- Pulse Skipping Mode in Low Load Condition
- Over Current/Short Circuit Protection

TDFN12 3.0x3.0x0.75mm 0.45mm pitch

Typical Applications (Tentative)

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VINmax	VIN to GNDs	-0.3 to +5.5	V
Maximum Pin voltage1	Vpin1max	LX1 to GNDs	-0.3 to +7.0	V
Maximum Pin voltage2	Vpin2max	LX2 to GNDs	-8.0 to +5.5	V
Maximum Pin voltage3	Vpin3max	VDCO1 to GNDs	-0.3 to +7.0	V
Maximum Pin voltage4	Vpin4max	VDCO2 to GNDs	-7.0 to +0.3	V
Maximum Pin voltage5	Vpin5max	LX2 to VDCO2	+12.5	V
Maximum Pin voltage6	Vpin6max	VDCO1 to VDCO2	+12.5	V
Maximum Pin voltage7	Vpin7max	VIN to LX2	+12.5	V
Maximum Pin voltage8	Vpin8max	EN to GNDs	-0.3 to +5.5	V
Maximum Pin voltage9	Vpin9max	Other pin to GNDs	-0.3 to +4.5	V
Allowable power	Pdmax	Ta=25°C The specified board*1	0.959	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-40 to +125	°C

^{*1} Mounted on a specified board: 50mm×70mm×1.2mm (Double-layer glass epoxy)

Caution 1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VINop	VIN	+2.75 to +4.6	V

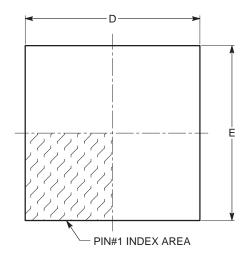
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

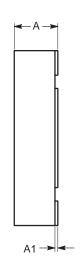
Electrical Characteristics at Ta = 25°C, VIN=3.7V, VDCO1=5.0V VDCO2=-5.0V(Unless otherwise noted)

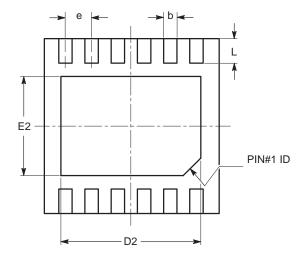
Description	Symbol Conditions	O and distance		Ratings		
Parameter		min	typ	max	Unit	
Control Input						
High level input voltage	VINH	Input High level	1.2		5.5	V
		EN				
EN pull down resistor	Rpulldown			1.6		МΩ
Low level input voltage	VINL	Input Low level	0		0.3	V
		EN				
UVLO	UVLO					
UVLO up	Vuvlo_h	VIN up		2.2		V
UVLO down	Vuvlo_l	VIN down	1.9	2.1		V
VIN current						
Standby current dissipation	n lcc1	IC disable		0	1	uA
DC/DC current dissipation	lcc2	IC enable,switching=on		2		mΑ
VREF Output						
VREF Output	VREF	IVREF=50uA	2.673	2.7	2.727	V

Continued on next page

Continued from preceding page.

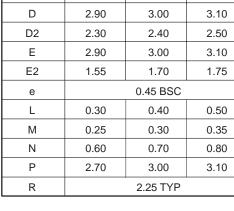

		Ratings				
Parameter	Symbol	Symbol Conditions	min	typ	max	Unit
VDCO1 DC/DC Converte	r					
Feedback voltage	FB1		0.99	1.0	1.01	V
of Positive voltage						
VNEG voltage range	VNEG		4.6		5.8	٧
Maximum Load Current	ILOAD_MAX	VIN=2.9V to 4.5V	100			mA
ON Resistance LX1 Pch	RLX1P	Design guarantee		0.8		Ω
ON Resistance LX1 Nch	RLX1N	Design guarantee		0.55		Ω
VDCO2 DC/DC Converter						
Feedback voltage	FB2		0.594	0.6	0.606	V
of Negative voltage						
VNEG voltage range	VNEG		-5.8		-4.6	٧
Maximum Load Current	ILOAD_MAX	VIN=2.9V to 4.5V	100			mA
ON Resistance LX2 Pch	RLX2P	Design guarantee		0.48		Ω
ON Resistance LX2 Nch	RLX2N	Design guarantee		0.48		Ω
OSC						
OSC frequency	Fosc		1.26	1.5	1.74	MHz


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

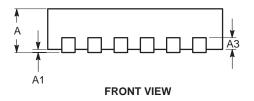

Package Dimensions

unit: mm

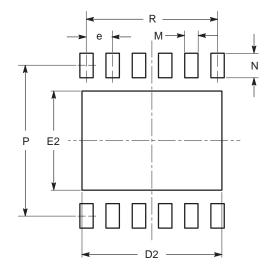
TDFN12, 3x3 CASE 511AN-01 ISSUE A

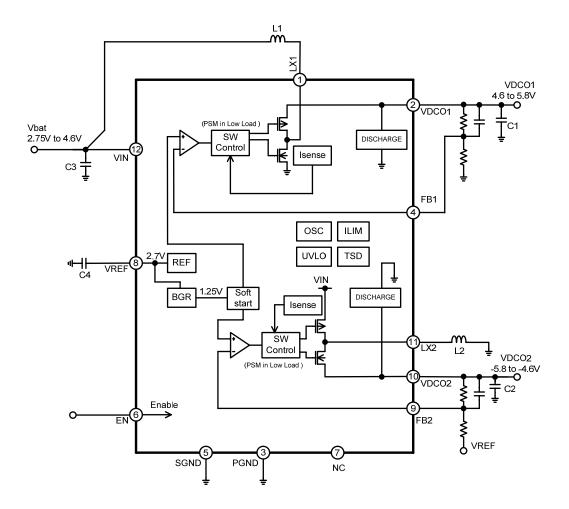


TOP

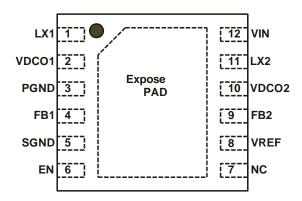

VIEW	SID

DE VIEW	BOTTOM VIEW


SYMBOL	MIN	NOM	MAX
А	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.178	0.203	0.228
b	0.18	0.23	0.30
D	2.90	3.00	3.10
D2	2.30	2.40	2.50
Е	2.90	3.00	3.10
E2	1.55	1.70	1.75
е	0.45 BSC		
L	0.30	0.40	0.50
М	0.25	0.30	0.35
N	0.60	0.70	0.80
Р	2.70	3.00	3.10
R	2.25 TYP		


- (1) All dimensions are in millimeters.(2) Complies with JEDEC MO-229.

RECOMMENDED LAND PATTERN


Block Diagram

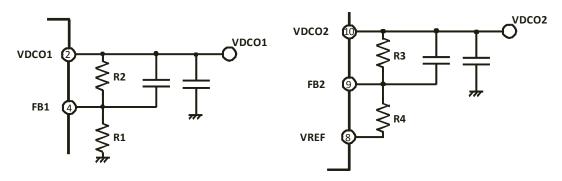
L1,L2: SPM3012T-4R7M(TDK) C1,C2,C3: C2012JB0J106K(TDK)

Pin Connection

TOP VIWE

Pin Function

	1011011	
Pin #	Pin name	
1	LX1	Boost converter switching pin
2	VDCO1	Boost converter output voltage
3	PGND	Power ground
4	FB1	Feedback pin of Boost converter.
5	SGND	Signal ground
6	EN	Chip enable (Active high) (*1)
7	NC	No Connection
8	VREF	Voltage reference output for Inverting converter
9	FB2	Feedback pin of Inverting converter.
10	VDCO2	Inverting converter output voltage
11	LX2	Inverting converter switching pin
12	VIN	Input supply voltage
	Expose-pad	Internally No Connection
		This pin must be connected to GND layers or VDCO2 layers


^{*1} DO NOT connect 6pin (EN) and 12pin (VIN) in the same line.

VDCO Output voltage setting

Output voltage is set by external resistor.

VDCO1: Two external resistor that it connected between VDCO1 and GND. VDCO2: Two external resistor that it connected between VDCO2 and VREF.

*FB1=1.0V(Typ), FB2=0.6V(Typ), VREF=2.70V(Typ)

$$VDCO1 = \frac{R1 + R2}{R1} \cdot VFB1$$

$$VDCO2 = -\frac{R3}{R4} \cdot VREF + \frac{R3 + R4}{R4} \cdot VFB2$$

Starting & Shutdown flow

< Starting flow >

- 1. Apply battery voltage to 12pin (VIN) and L1(LX1 coil).
- 2. Apply high voltage to 6pin (EN).

< Shutdown flow >

- 1. Apply low voltage to 6pin (EN).
- 2. Drop supply voltage of the battery for 12pin (VIN) and L1(LX1 coil).

*DO NOT connect 6pin (EN) and 12pin (VIN) in the same line.

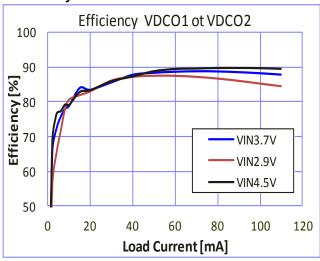
Pulse skipping mode in low load condition

When DCM is detected automatically, converter is driven in skipping mode.

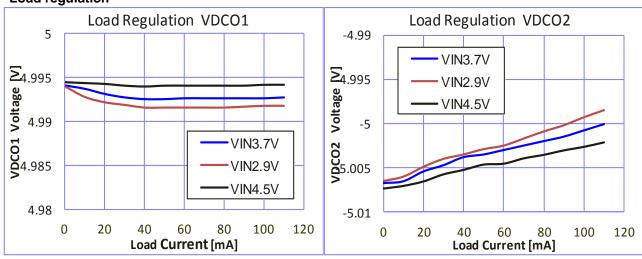
The skipping mode reduces power consumption by performing intermittent switching and contributes to the improving the efficiency in the low load condition.

*DCM: Dis-continuous Current Mode

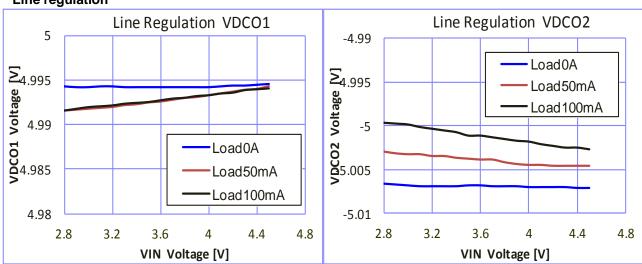
Over Current Protection and Short Circuite Protection

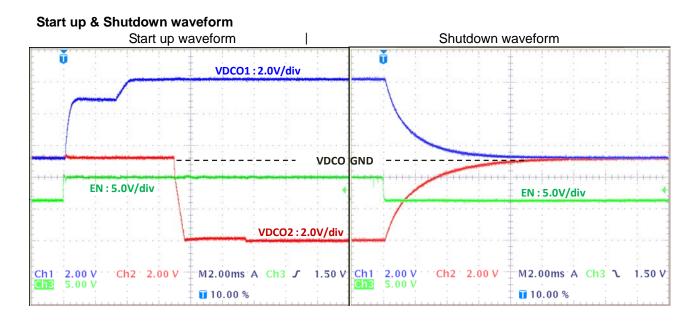

When a heavy load to exceed a rule appears, current is limited by protection system. If this limiter continues more than 50ms, it is judged to have short-circuited and converter is stoped.

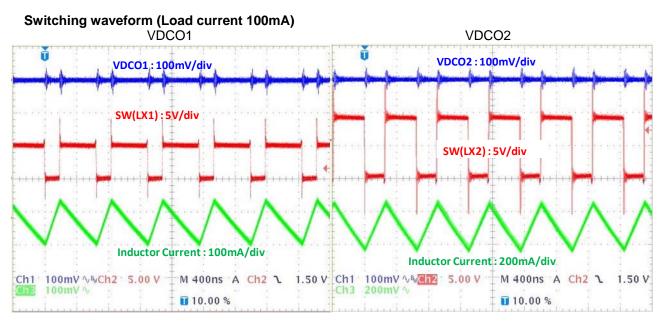
Thermal Shutdown


When chip temperayure is too high, boost converter and inverter converter is stopped.

Typical Characteristics (VIN:3,7V, VDCO1:5V, VDCO2:-5V, L=4.7 μ F)


Efficiency vs Load Current




Load regulation

Line regulation

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV52117QATXG	TDFN12 (3.0×3.0×0.75) (Halogen Free)	3000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent re